Skip to main content
Log in

Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Association and linkage mapping techniques were used to identify and verify single nucleotide polymorphisms (SNPs) associated with Sclerotinia sclerotiorum resistance. A novel resistant gene, GmGST , was cloned and shown to be involved in soybean resistance to SSR.

Abstract

Sclerotinia stem rot (SSR), caused by the fungus Sclerotinia sclerotiorum, is one of the most devastating diseases in soybean (Glycine max (Linn.) Merr.) However, the genetic architecture underlying soybean resistance to SSR is poorly understood, despite several mapping and gene mining studies. In the present study, the identification of quantitative trait loci (QTLs) involved in the resistance to S. sclerotiorum was conducted in two segregating populations: an association population that consisted of 261 diverse soybean germplasms, and the MH population, derived from a cross between a partially resistant cultivar (Maple arrow) and a susceptible cultivar (Hefeng25). Three and five genomic regions affecting resistance were detected by genome-wide association study to control the lesion length of stems (LLS) and the death rate of seedling (DRS), respectively. Four QTLs were detected to underlie LLS, and one QTL controlled DRS after SSR infection. A major locus on chromosome (Chr.) 13 (qDRS13-1), which affected both DRS and LLS, was detected in both the natural population and the MH population. GmGST, encoding a glutathione S-transferase, was cloned as a candidate gene in qDRS13-1. GmGST was upregulated by the induction of the partially resistant cultivar Maple arrow. Transgenic experiments showed that the overexpression of GmGST in soybean increased resistance to S. sclerotiorum and the content of soluble pigment in stems of soybean. The results increase our understanding of the genetic architecture of soybean resistance to SSR and provide a framework for the future marker-assisted breeding of resistant soybean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastien M, Huynh TT, Giroux G, Iquira E, Belzile F (2012) A reproducible assay for measuring partial resistance to Sclerotinia sclerotiorum in soybean. Can J Plant Ence 92:279–288

    Article  Google Scholar 

  • Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. The Plant Genome 7:1–13

    Article  Google Scholar 

  • Boland GJ, Hall R (1986) Growth room evaluation of soybean cultivars for resistance to Sclerotinta sclerotiorum. Can J Plant Sci 66:559–564

    Article  Google Scholar 

  • Bradbury P, Zhang Z, Kroon D, Casstevens T, Y, Buckler E, (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Briard M, Dutertre M, Brygoo Y (1997) Du nouveau du côté des Sclerotinia. Phytoma 490:1519

    Google Scholar 

  • Cline MN, Jacobsen BJ (1983) Methods for evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum. Plant Dis 67:784–786

    Article  Google Scholar 

  • Coyne DP, Steadman JR, Anderson FN (1974) Effect of modified plant architecture of great northern dry bean varieties (Phaseolus vulgaris) on white mold severity, and components of yield. Plant Dis Rep 58:379–382

    CAS  Google Scholar 

  • David G, Nelson RT, Cannon SB, Shoemaker RC (2010) Soybase, the usda-ars soybean genetics and genomics database. Nucl Acids Res 38(suppl_1):D843–D846

    Article  CAS  Google Scholar 

  • Dudler R, Hertig C, Rebmann G, Bull J, Mauch F (1991) Pathogen-induced genes in wheat. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol. 1. Current plant science and biotechnology in agriculture, vol 10. Springer, Dordrecht

  • Esposito AM, Kinzy TG (2010) The eukaryotic translation elongation Factor 1Bgamma has a non-guanine nucleotide exchange factor role in protein metabolism. J Biol Chem 285:37995–38004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Russell H, Rochak N, Hayes RD, Joni F, Therese M, William D, Uffe H, Nicholas P (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:1178–1186

    Article  CAS  Google Scholar 

  • Grau CR (1982) Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Dis 66:506–508

    Article  Google Scholar 

  • Hahn K, Strittmatter G (1994) Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226(2):619–626

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhao X, Liu D, Li Y, Lightfoot DA, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871–884

    Article  CAS  PubMed  Google Scholar 

  • He J, Meng S, Zhao T, Xing G, Gai J (2017) An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Tagtheoretical Appl Geneticstheoretische Und Angewandte Genetik 130:2327

    Article  CAS  Google Scholar 

  • Kim HS, Diers BW (2000) Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Ence 40:5561

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12

  • Kull LS, Vuong TD, Powers KS, Eskridge KM, Steadman JR, Hartman GL (2003) Evaluation of resistance screening methods for Sclerotinia stem rot of soybean and dry bean. Plant Dis 87:1471–1476

    Article  PubMed  Google Scholar 

  • Kurle JE, Grau CR, Oplinger ES, Mengistu A (2001) Tillage, crop sequence, and cultivar effects on sclerotinia stem rot incidence and yield in soybean. Agron J 93:973–982

    Article  Google Scholar 

  • Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Ji L, Wang J, Chen Z, Ye M, Ma H, An X (2014) Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct Integr Genomics 14:517–529

    Article  CAS  PubMed  Google Scholar 

  • Li D, Sun M, Han Y, Teng W, Li W (2009a) Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172:49–57

    Article  Google Scholar 

  • Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009b) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li Y-h, Reif J, Ma Y-s, Hong H-l, Liu Z-x (2015) Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genom 16:841

    Article  CAS  Google Scholar 

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9:e98855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu HJ, Tang ZX, Han XM, Yang ZL, Zhang FM, Yang HL, Liu YJ, Zeng QY (2015) Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Mol Biol Evol 32:2844–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang Y, Meng Q, Shi F, Jia L, Li Y (2018a) Enhancement of and oxalic acid resistance in tobacco by a novel pathogen-induced gst gene from sunflower. Crop Sci 58(3):1318–1327

    Article  CAS  Google Scholar 

  • Ma L, Zhang Y, Meng Q, Shi F, Liu J, Li Y (2018b) Molecular cloning, identification of GSTs family in sunflower and their regulatory roles in biotic and abiotic stress. World J Microbiol Biotechnol 34(8):109

    Article  PubMed  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly MJGr, (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom Res 20:1297–1303

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283

    Article  Google Scholar 

  • Messner B., Thulke O., Schäffner A.R. (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146

    Article  CAS  PubMed  Google Scholar 

  • Mila AL, Yang XB (2008) Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of sclerotinia sclerotiorum. Plant Dis 92:78–82

    Article  CAS  PubMed  Google Scholar 

  • Moellers TC, Singh A, Zhang J, Brungardt J, Kabbage M, Mueller DS, Grau CR, Ranjan A, Smith DL, Chowda-Reddy RV (2017) Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Sci Rep 7:3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller DS, Bradley CA, Grau CR, Gaska JM, Kurle JE, Pedersen WL (2004) Application of thiophanate-methyl at different host growth stages for management of sclerotinia stem rot in soybean. Crop Prot 23:983–988

    Article  CAS  Google Scholar 

  • Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Pedersen WL (2002) Efficacy of fungicides on sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Dis 86:26–31

    Article  CAS  PubMed  Google Scholar 

  • Padmanaban P, Viswanathan R, Mohanraj D, Section PP, Institute SB, Coimbatore I (2000) Possible involvement of anthocyanin compounds in resistance of sugarcane against red rot. Indian Phytopathol 53:311–313

    Google Scholar 

  • Paz MM, Shou HX, Guo ZB, Zhang ZY, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss, and control of sclerotinia stem rot of soybean. J Int Pest Manag 3(2):B1–B7

    Article  Google Scholar 

  • Rousseau G, Huynh Thanh T, Dostaler D, Rioux S (2004) Greenhouse and field assessments of resistance in soybean inoculated with sclerotia, mycelium, and ascospores of Sclerotinia sclerotiorum. Can J Plant Ence 84:615

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng JJn (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

  • Šlndelářová M, Šlndelář L (1991) Subcellular localization of glucose-6-phosphate dehydrogenase in tobacco mesophyll protoplasts. Biol Plant 33:150–155

    Google Scholar 

  • Sun M, Jing Y, Zhao X, Teng W, Qiu L, Zheng H, Li W, Han Y (2020) Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method. PLoS ONE 15:e0233366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Rep 5:10342

    Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuong TD, Diers BW, Hartman GL (2015) Identification of QTL for resistance to sclerotinia stem rot in soybean plant introduction 194639. Crop Ence 48:2209–2214

    Google Scholar 

  • Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL (2019) Recent Advances in Mechanisms s of Plant Defense to Sclerotinia sclerotiorum. Front Plant Sci 10:1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegulo SN, Yang XB, Martinson CA (1998a) Soybean cultivar responses to Sclerotinia sclerotiorum in field and controlled environment studies. Plant Dis 82:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, Lv C, Li D, Yang Z, Huang L (2015) Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J Cell Mol Biol 82:245–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted in the Key Laboratory of Soybean Biology of the Chinese Education Ministry, Soybean Research & Development Center (CARS), and the Key Laboratory of Northeastern Soybean Biology and Breeding/Genetics of the Chinese Agriculture Ministry and was financially supported by the Chinese National Natural Science Foundation (31871650, 31671717, 31471517, 31971967), National Key R & D Project (2016YFD0100304, 2017YFD0101306, 2017YFD0101302), Heilongjiang Provincial Project (JC2018007, GX17B002, C2018016, GJ2018GJ0098),the National Project (2014BAD22B01, 2016ZX08004001-007), the Youth Leading Talent Project of the Ministry of Science and Technology in China (2015RA228), The National Ten-thousand Talents Program, Postdoctoral Fund in Heilongjiang Province (LBH-Z15017), The national project (CARS-04-PS04). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YPH and XZ designed and supervised the research; JNZ, WJL and YTZ conducted the experiment and analyzed the data; WS, HPJ, YHZ, JYZ and WLT conducted the phenotype identification and transgenic work. XZ, JNZ and LJQ wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xue Zhao or Yingpeng Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors have adhered to the ethical responsibilities outlined by Theoretical and Applied Genetics.

Additional information

Communicated by Volker Hahn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jianan, Z., Li, W., Zhang, Y. et al. Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping. Theor Appl Genet 134, 2699–2709 (2021). https://doi.org/10.1007/s00122-021-03855-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03855-6

Navigation