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Abstract 
 

This work focused on the identification and characterization of the genetic basis of 

important agronomic traits in the potato with main interest centered on resistance to the 

potato cyst nematode, Globodera pallida. A high level of genetic resistance to nematodes 

is an important aspect in breeding new potato varieties. The first step towards that is the 

localization of genetic factors controlling resistance on the potato map. We made use of 

information obtained from experimental diploid mapping populations to evaluate tetraploid 

breeding material for the applied research. We explored the genetic resistances present in 

the crop, which show a continuous variation and are assumed to be controlled by several 

loci which act collectively on the expression of resistance. These loci are referred to as 

quantitative trait loci (QTL) (Meyer et al. 1998).  

 

The number of QTL for resistance was determined through an association mapping 

approach. Two tetraploid populations were genotyped with several markers either within or 

physically linked to candidate genes. Phenotypic data was supplied by the two breeding 

companies, Saka-Ragis and Böhm-Nordkartoffel. Significant associations with quantitative 

resistance were found for all marker types. Single nucleotide polymorphisms (SNPs) were 

shown to be the most efficient marker type to detect significant associations between 

markers and the resistance phenotype. Two of them served as basis for developing a PCR-

based marker highly diagnostic for potato varieties with high resistance to Globodera 

pallida (Sattarzadeh et al. 2006). Based on an InDel in the sequence we designed an allele-

specific CAPS marker for the quantitative detection of maturity corrected resistance to the 

oomycete Phytophthora infestans. Using this marker we provide solutions for the selection 

of superior potato genotypes through the development of easy-to-use DNA based 

molecular markers. 

 

Fine mapping of a QTL for resistance to the nematode located on chromosome V was done 

by a combination of association tests and physical mapping to gain more insight in the 

genomic organisation of a QTL. We were able to delimit the size to a genetic region of 2 

cM. Fluorescent in situ hybridization (FISH) was applied to obtain valuable 

complementary information regarding size and chromosomal position of this QTL. The 
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region was estimated to span less than 1 Mb and is located in the euchromatic region of the 

long arm of chromosome V. These findings will assist future map based cloning efforts in 

this region.  

 

The detection of numerous loci in tetraploid breeding material associated with important 

agronomic traits provides valuable data which can be used to design additional markers not 

just for resistance against G. pallida but also for other traits, such as resistance to 

Phytophthora infestans, maturity, yield, and starch content.  
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Zusammenfassung 
 

Ziel dieser Doktorarbeit war die Identifikation und Charakterisierung der genetischen 

Grundlagen von wichtigen agronomischen Merkmalen in der Kartoffel. Wesentlich war 

hierbei die Resistenz gegen den Kartoffelnematoden Globodera pallida (Stone 1973). Die 

starke Resistenz gegen den Nematoden ist ein wichtiger Aspekt in der Kartoffelzüchtung. 

Der erste Schritt hin zu resistenten Sorten ist die Kartierung der mitwirkenden genetischen 

Faktoren auf den Kartoffelchromosomen. Zu diesem Zweck wurden Informationen aus 

Versuchen mit diploiden Kartierungspopulationen für unsere Studie in tetraploidem 

Züchtungsmaterial evaluiert. Die Idee war, die Erkenntnisse der Forschung auf die Praxis 

zu übertragen und wichtige Informationen über die Struktur und Funktion des Genomes 

des tetraploiden Züchtungsmaterials zu erhalten. Wir untersuchten den 

Resistenzphänotypen, der eine Normalverteilung zeigt. Es wird angenommen, dass diese 

Form der Resistenz von mehreren Genorten gemeinsam verliehen wird. Diese 

Genomabschnitte nennt man „quantitative trait loci“ (QTL).  

 

Die Anzahl der QTL für Resistenz wurde mittels einer Assoziationsstudie ermittelt. Zwei 

tetraploide Populationen wurden mit mehreren Markern genotypisiert, die, wie aus 

vorhergenenden Studien bekannt, mit Resistenzloci im Kartoffelgenom gekoppelt sind. 

Signifikante Assoziationen mit Resistenz wurden mit allen Markertypen gefunden. 

Punktmutationen „Single nucleotide polymorphisms“ (SNPs) bewiesen sich als 

effizienteste Marker, um signifikante Assoziationen zwischen Markern und Phänotypen zu 

dedektieren. Zwei SNP-Marker bildeten die Basis für die Entwicklung eines PCR-Tests 

diagnostisch für Sorten mit hoher Resistenz gegen G. pallida (Sattarzadeh et al. 2006). 

Basierend auf einem InDels entstand ein weiterer PCR-Test für die Identifizierung von 

Genotypen mit reife-korrigierter Resistenz gegenüber dem Oomyzeten, Phytophthora 

infestans. Hiermit bieten wir erste technisch einfach anwendbare Marker für die Selektion 

von überlegenen Genotypen für die markergestützte Züchtung. 

 

Ein weiterer Aspekt dieser Arbeit war die Fein-kartierung von dem QTL für 

Nematodenresistenz auf Chromosom V. Hierfür bedienten wir uns einer Kombination aus 

Assoziationstests und physikalischer Kartierung. Wir konnten das QTL auf die genetische 

 V



Zusammenfassung 
 

 VI

Größe von 2 cM reduzieren. Ein Fluorescent-in-situ-hybridization Experiment (FISH) 

diente dazu, die physikalische Größe des Genomabschnittes zu messen und seine genaue 

Position auf dem Chromosom zu bestimmen. Der Abschnitt liegt im Euchromatin und 

beträgt maximal 1 Mb. Diese Ergebnisse sind wichtige Infomationen für die „map-based 

cloning“- Strategie in der Zukunft. 

 

Die Identifizierung von mehreren Genomabschnitten in tetraploiden Züchtungsmaterial, 

die mit wichtigen agronomischen Merkmalen assoziiert sind, bietet wertvolles 

Datenmaterial für die Entwicklung von weiteren PCR-basierenden Markern. Dies 

beschränkt sich nicht nur auf die Resistenz gegen G. pallida, sondern auch auf andere 

Merkmale. Diese Merkmale sind Resistenzen gegen P. infestans, Reife, Ertrag und 

Stärkegehalt. 
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The Potato (Solanum tuberosum) 
 
The potato (Solanum tuberosum) originated in the highlands of South America, where it 

has been cultivated for more than 8000 years. Spanish explorers introduced the plant into 

Europe in the 16th century as a botanical curiosity (Brücher 1975; Figure 1.1). By the 19th 

century it was cultivated throughout the continent, providing an inexpensive food source 

for the workers of the Industrial Revolution. Today the potato is the fourth most important 

food crop in the world following wheat, maize and rice (www.cipotato.org). Disease 

control is a prerequisite for improving and maintaining yield and quality of the potato crop 

and since the potato became widely grown serious outbreaks of disease and crop failures 

and consequent social and economic effects have repeatedly provided incentive for 

improvement (Hide and Lapwood 1978). The worst famine, by far, was the Potato Famine 

of the 1840's. Starting in late 1845, the famine took an estimated one million lives, and 

drove another two million to travel to the Continent or to the United States 

(http://www.usna.edu/EnglishDept/ilv/famine.htm). The potato is prone to more than a 

hundred diseases caused by bacteria, fungi, viruses or mycoplasmas but fortunately 

relatively few reach serious proportions in any one growing areas. Late blight, caused by 

the oomycete Phytophthora infestans, is generally the most important disease wherever 

potatoes are grown (Hide and Lapwood 1978). In addition the potato cyst nematode, 

Globodera pallida, is the most destructive pest in potato cultivation in temperate regions.  

 

 
Figure 1.1 Migration of the potato (Solanum tuberosum L.) (Brücher 1975). 
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Conventional ways to control late blight or G. pallida on potato crops rely essentially on 

cultural and chemical methods but are costly and time consuming.  

Increasing host plant resistance is a cost effective and environmentally friendly method of 

controlling pests and diseases. Breeding for resistance is therefore a major aim of 

companies involved in potato breeding.  
 

The cultivated potato (Solanum tuberosum ssp. tuberosum) is a far from ideal species for 

genetic analysis: It is tetraploid (2n = 4x = 48) with tetrasomic inheritance and highly 

heterozygous owing to inbreeding depression after repeated selfing. One to four different 

alleles are present per locus, resulting in one homozygous and four heterozygous 

genotypes (Gebhardt and Valkonen 2001). Nevertheless the use of molecular markers 

enables the selection of favourable genotypes at an early time point in the potato breeding 

process. More than 60 mapped R genes and QTL for resistance to different pathogens of 

potato have been identified to date (reviewed in Gebhardt and Valkonen 2001). 

The 'SOLanaceae Function Map for Pathogen Resistance' compiles the current knowledge 

on genomic positions of candidate genes having putative functions in pathogen 

recognition, defence signalling and defence responses (gabi.rzpd.de/projects/Pomamo/ 

SolFunctionMap.html).  

 

The parasitic root cyst nematode Globodera pallida 

Globodera pallida (Figure 1.2) and Globodera rostochiensis originate from the Andes in 

South America (Evans and Stone 1977).  From here they were most probably transported 

to Europe and distributed in many ways to different potato growing areas. The major 

import started approximately 150 years ago when potato tubers were brought to Europe for 

breeding purposes (Müller and Rumpenhorst 2000).  

In Germany the first report on the appearance of Globodera was in 1913.  In gardens near 

Rostock damage was observed on several potato plants. The cause for the damage was 

determined by Wollenweber to be the cyst nematode Heterodera schachtii. It was not until 

the 1930s that H. schachtii was acknowledged to be a new species and the name 

Heterodera rostochiensis was introduced. In 1972 a part of the population was recognized 

as a new species, which was named Heterodera pallida. Later both potato cyst nematodes 
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together with other species with round cysts were subsumed under the new genus 

Globodera (Müller and Rumpenhorst 2000). 

 
Figure 1.2 Globodera pallida juvenile (J2) . Scale bar = 100 µm 

 

Life cycle of the nematode: Second-stage juveniles hatch, under a stimulus from host root 

exudates, from eggs within cysts in the soil and invade the roots. Each individual nematode 

feeds on a group of cells in the pericycle, cortex, or endodermis, transforming them into a 

syncytium (feeding cell). The nematode remains here for the rest of its development, as it 

passes through two more juvenile stages to become either male or female. Females swell 

and break through the root surface but remain attached. They are fertilized by the 

vermiform, actively moving males. After copulation the males die and the females remain 

on the roots while eggs develop within them. Females are white when they protrude from 

the root surface and those of G. pallida remain so (Figure 1.3); those of G. rostochiensis 

pass through a golden yellow phase lasting 4-6 weeks. When the females are fully mature 

they die and their skin hardens and turns brown to become a protective cover (the cyst) 

around the eggs within. There are, on average, 500 eggs per cyst. At this point they 

generally drop from the surface of the root into the soil, where the eggs can either hatch 

immediately to attack the crop or remain dormant to act as a source of inoculum for future 

crops (www.eppo.org/QUARANTINE/quarantine.htm). Cysts can remain dormant for 

many years in the absence of solanaceous hosts (Jones & Jones 1974). The average size of 

soil and plant nematodes is about 1mm (Jones & Jones 1974). 
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Figure 1.3 G. pallida cyst on root of the susceptible potato variety ‘Desiree’.  

Scale bar = 100 µm. 

 

Symptoms: The symptoms of attack by Globodera spp. are not specific. Patches of poor 

growth occur generally in the crop (Figure 1.4), sometimes with yellowing, wilting or 

death of the foliage. Even with minor symptoms on the foliage, the size of the tubers can 

be reduced (www.eppo.org/QUARANTINE/quarantine.htm). 

 

 
Figure 1.4 Patches of stunted plants (NIVAP, the Netherlands Potato Consultative Institut, 
www.aardappelpagina.nl/explorer/) 
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Resistance to potato cyst nematodes 

Cyst nematodes cause a variety of plant diseases, mostly in temperate regions of the world. 

Some cyst nematode species attack only a few plant species and are present over limited 

geographic areas, whereas others attack a large number of plant species and are widely 

distributed (Agrios 1997). About 60 parasitic nematode species feed on potato plants 

(Jensen et al. 1979). Species causing yield reduction are cyst nematodes of the genus 

Globodera, root lesion nematodes of the genus Pratylenchus and root knot nematodes of 

the genus Meloidogyne (Brodie 1999). 

Globodera root cyst nematodes have as hosts Solanum species and among those important 

crops such as potato (Solanum tuberosum), tomato (Solanum lycopersicon), and eggplant 

(Solanum melongena) (Southey 1965).  The most damage to Solanaceae is caused by 

Globodera species, followed by root knot nematode (RKN) species of the genus 

Meloidogyne.  

An efficient way of protection against nematodes is the introgression of resistance genes. 

Introgression in the classical sense is the incorporation of genes from one individual or 

population into the gene complex or gene pool of another (Bradshaw and Mackay 1994). 

This breeding goal has been successfully achieved for resistance to Globodera 

rostochiensis by the introgression of the major H1 gene for resistance from S. tuberosum 

ssp. andigena (Ellenby 1952) (Table 1.1). However the wide spread cultivation of varieties 

with resistance to G. rostochiensis favoured the multiplication of pathotypes of G. pallida, 

which are not affected by this resistance gene. 

Several other R genes and QTL have been mapped, including genes for resistance to G. 

rostochiensis, G. pallida and Meloidogyne chitwoodi (reviewed in Gebhardt and Valkonen, 

2001). Thirteen PCN resistance loci have been mapped on potato chromosomes III, IV, V, 

VII, IX, X, XI and XII (after Grube et al. 2000, Table 1.1). Eight resistance loci (Gro1.4, 

Gpa4, Gpa, Gpa5, Gpr1, Gpa6, Gro1.2, Gro1.3) confer partial resistance, while four of 

them (H1, GroV1, Gpa2 and Gro1-4) confer absolute resistance to different Globodera 

species or pathotypes. 
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Table 1.1 Overview of mapped loci that confer resistance to nematodes in the potato.  

LG Gene/ 
Allele 

SD/QTL Species Origin Cloned Reference 

III Gro1.4 QTL G. rostochiensis S. spegazzinii No Kreike et al. 1996

IV Gpa4 QTL G. pallida S. tuberosum 
spp. tuberosum 

No Bradshaw et al. 
1998 

V Gpa QTL G. pallida S. spegazzinii No Kreike et al.1994 

V Gpa5 QTL G. pallida Solanum spp. No Rouppe van der 
Voort et al. 2000 

V Grp1 QTL G. pallida/  
G. rostochiensis   

Solanum spp. No Rouppe van der 
Voort et al. 2000 

V H1 SD G. rostochiensis S. tuberosum 
spp. andigena 

No Gebhardt et al. 
1993,                      
Pineda et al.1993 

V GroVI SD G. rostochiensis S. vernei No Jacobs et al. 1996

VII Gro1-4 SD G. rostochiensis S. spegazzinnii Yes Paal et al. 2004 

IX Gpa6 QTL G. pallida Solanum spp. No Rouppe van der 
Voort et al. 2000 

X Gro1.2 QTL G. rostochiensis S. spegazzinnii No Kreike et al. 1993

XI Gro1.3 QTL G. rostochiensis S. spegazzinnii No Kreike et al. 1993

XII Gpa2 SD G. pallida S. tuberosum 
spp. andigena 

Yes Rouppe van der 
Voort et al. 1997,   
Van der Vossen 
et al. 2000 

LG: Linkage group; SD: Single dominant locus; QTL: Quantitative trait locus (after Grube et al. 2000). 

 

To date two nematode resistance genes have been cloned in the potato. The Gro1-4 gene 

conferring resistance to pathotype Ro1 of the root cyst nematodes G. rostochiensis was 

cloned based on the candidate gene approach (Paal et al. 2004). Gro1-4 encodes a protein 

of 1136 amino acids that contains a Toll-interleukin 1 receptor (TIR), nucleotide binding 

(NBS); leucin rich repeat (LRR) homology domains and a C-terminal domain with 

unknown function.  The deduced Gro1-4 protein differed by 29 amino acid changes from 

susceptible members of the Gro1 gene family. Gro1-4 is expressed, among other members 

of the family including putative pseudogenes, in non-infected roots of nematode resistant 
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plants. It was also demonstrated that the members of the Gro1 gene family are expressed in 

most potato tissues. 

 

The Gpa2 gene, which confers resistance to a small set of populations of the potato cyst 

nematode G. pallida, has been mapped to the same 6 cM interval on chromosome 12 of the 

potato as the virus resistance gene Rx. From the sequence similarity between Gpa2 and 

Rx1, it is clear that there is an evolutionary relationship between the two genes. Sequence 

diversity is concentrated in the LRR region and in the C-terminus (Van der Vossen et al. 

2000). Gpa2 is a member of the leucine zipper, nucleotide binding, leucine rich repeat 

family of plant genes (Rouppe van der Voort et al. 1997). Molecular analysis of the locus 

resulted in the identification of cluster harbouring four highly homologous genes in a 

region of approximately 115 kb. Although the precise mechanism of Gpa2-mediated 

resistance is unknown, preliminary results suggest that it is not associated with a localized 

necrosis response (A. Goverse, personal comment). This is in contrast to the response 

mediated by the nematode-resistance genes Mi-1 from the tomato  (Milligan et al. 1998), 

and H1 from the potato (Rice et al. 1985).  

 

Resistance mechanisms 

R genes are monogenetic. Plants possess genes for resistance (R genes) directed against 

avirulence genes of pathogens or pests. The discovery of matched specificity between 

single host R genes and single pathogen AvR genes was made by Harold Flor in the 1940s 

(Flor 1971) and is the source of the term gene-for-gene interaction. R gene mediated 

resistance is able to activate defence mechanisms more rapidly and effectively than basal 

defence pathways, such as synthesis of phytoalexins or pathogenesis-related (PR) proteins, 

which inhibit the spread of the pathogen after a successful infection. R gene mediated 

resistance is often associated with a hypersensitivity response during which the cells in the 

vicinity of the infection site undergo programmed cell death. In the cell the earliest signs of 

R gene dependent resistance mechanisms are calcium influx, alkalization of the 

extracellular space, protein kinase activation, production of reactive oxygen species and 

nitric oxide, and transcriptional reprogramming (Bent 1996). 
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R genes can be divided into five structural classes (Takken et al. 2000; Figure 1.5). Most R 

genes characterized so far encode leucine-rich repeats (LRRs) shown to be involved in 

protein-protein interactions (Hwang et al. 2000).  

LRR-containing R proteins can be divided into two classes: those in which the predicted 

gene product contains an extracellular LRR and a membrane anchor; and those in which 

the R gene product is predicted to be cytoplasmic. Cytoplasmically located R gene products 

are characterized by the presence of a conserved region containing a nucleotide binding 

site (NBS) and a C-terminal LRR region (Hwang et al. 2000). 

 

 

 

 

Figure 1.5 Major protein motifs shared between the deduced products of cloned resistance 
genes (Michelmore and Meyers 1998). 

 

However in nature most genetic variation in readily observable traits is polygenic 

(Tanksley 1993), meaning that phenotypic variations result from the segregation of alleles 

at multiple quantitative trait loci (QTL) with effects that are sensitive to the genetic, and 

external environments.  

Major challenges for biology are to map the molecular polymorphisms responsible for 

variation in agriculturally important complex traits (Mackay 2001). A number of factors 

for quantitative resistance to root cyst nematodes have been identified and mapped (Table 

1.1 and Gebhardt and Valkonen 2001 for review). Causative candidates for the expression 

of a quantitative trait are genes with a possible structural or regulatory function. This 
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makes the identification of the causative gene a difficult task. To date three QTL were 

cloned in the tomato, the Brix9-2-5 for fruit sugar content (Fridman et al. 2000), Ovate for 

fruit shape (Liu et al. 2002), and fw2.2 for fruit weight (Frary et al. 2000). No QTL have 

been cloned so far in the potato. 

 

Both potato cyst nematodes species display different pathotypes or virulence groups. Three 

pathotypes Pa1, Pa2 and Pa3 of G. pallida have been distinguished based on differentials 

(Table 1.2, Kort et al. 1977). G. pallida field populations are however not uniform with 

respect to pathotype composition. Populations containing mixtures of pathotypes Pa2 and 

Pa3 (Pa2/3) are currently the most common in potato cultivation in middle Europe. The 

detection and description of these pathotypes parallels the history of breeding for 

resistance.   

Initially only two genes, the H1 gene from the Solanum tuberosum ssp. andigena (CPC 

1673) (Ellenby 1952) and the H2 gene from Solanum multidissectum (Dunnett et al. 1961), 

were known.  Both are dominant genes, which account for almost 100% of resistance 

against avirulent pathotypes. When populations were discovered which could overcome 

the resistance, new sources for resistance were introgressed from wild Solanum species and 

became part of the breeding programs. Wild species, such as S. spegazzinii (Caromel et al. 

2003) became part of the breeding programs for resistance.   

 

Table 1.2 International pathotype scheme for G. rostochiensis and G. pallida (Kort et al. 

1977). 

Differentials Pathotypes 
 Ro1 Ro2 Ro3 Ro4 Ro5 Pa1 Pa2 Pa3 
Solanum tuberosum ssp. tuberosum + + + + + + + + 
Solanum tuberosum ssp. andigenum CPC 1673 - + + - + + + + 
Solanum kurtzianum- hybr. KTT 60-21-19 - - + + + + + + 
S. vernei hybr. 58.1642/4 - - - + + + + + 
Solanum vernei- hybr. (VTN2) 62.33.3 - - - - + - - + 
Solanum vernei- hybr. 65.346/19 - - - - - + + + 
Solanum multidissectum P55/7 + + + + + - + + 
 

Interestingly, it was determined that only Ro1 and Pa1 are considered to be true 

pathotypes. The remaining ones (Ro2, Ro3, Ro4, Ro5, Pa2, Pa3) should be understood as 
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virulence groups, which consist of varying complexes of different virulence (European and 

Mediterranean Plant Protection Organization 1985).  

In Germany the varieties considered resistant are described in the 

‘Kartoffelschutzverordnung’. A tested variety is considered resistant when resistance 

ranges between 25 and 50% depending on environmental conditions. This value is 

calculated as Pf//Pi value (Pi: initial population density, Pf: final population density after 

12-14 weeks). 

 

Association mapping 

For the past two decades, the dominant study design for investigation of the genetic basis 

of inherited disease has been linkage analysis in families (Carlson et al. 2004). Linkage 

analysis searchs for regions of the genome with a higher-than-expected number of shared 

alleles among affected individuals within a family. This indicates that somewhere within 

this linked region is a disease-predisposing allele. Closely related individuals tend to share 

large regions of the genome inherited from the same recent ancestor (Carlson et al. 2004). 

Association studies are carried out with unrelated individuals making use of the higher 

frequency of recombination events which may have occurred in the past. Consequently 

molecular makers associated with an interesting allele are expected to be closer together 

(Cardon and Bell 2001 for review). Further advantages are a higher allelic diversity present 

in the population, and the random collection of individuals without the need to generate 

mapping populations. First association studies in potato showed the variation in tetraploid 

breeding material regarding the invertase locus (Li et al. 2005), resistance to late blight 

(Gebhardt et al. 2004), resistance to Verticillium albo-atrum (Simko et al. 2004a), and 

resistance to Verticillium dahliae (Simko et al. 2004b). 
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Objective of this thesis 

Objective of this study was the identification and characterization of important agronomic 

traits in tetraploid potato breeding material with focus on the resistance to Globodera 

pallida. At this main interest was to characterize a region on the upper arm of chromosome 

V in more detail since it is known to harbour a wealth of resistance factors to different 

pests and pathogens including G. pallida (Chapter 4). The project aims can be summarized 

as follows (a) identification of QTL for different agronomic traits using association 

mapping in the main discovering associations with resistance to G. pallida; (b) 

development of PCR marker assays to facilitate the development of superior varieties in 

commercial potato breeding programs; (c) fine mapping and characterization of the major 

QTL conferring resistance to the potato cyst nematode G. pallida pathotypes Pa2/Pa3 on 

chromosome V.  

Figure 1.6 shows the aspects dealt with in each of the following chapters. 

 

 

Association 
mapping  

(Chapter 2) 

Development of 
PCR assays 

(Chapters 2, 3)  

Physical 
chromosome 

mapping 
(Chapter 5) 

Globodera pallida Solanum tuberosum 

Phenotype data Genotype data 

Fine mapping 
(Chapter 4 )

Figure 1.6 Strategy of the PhD work. The black boxes contain aspects for which 
information was available. The blue box frames basic work for which genotypic and 
phenotype data was assembled. Following the association mapping study, three additional 
projects (red boxes) were carried out to obtain a more accurate picture of the region on the 
upper arm of chromosome V. 
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Chapter 2  
 
Detection of associations between candidate 
gene loci and quantitative traits  
 
_________________________________________________________________________ 

Abstract 

Two populations of 96 tetraploid varieties and breeding clones each, which are related by 

descent, were evaluated for resistance to Globodera pallida, Phytophthora infestans, 

maturity, maturity corrected resistance (MCR), starch content, and yield. The same 

populations were genotyped for SNPs, SSR, CAPS, SCAR and ASO markers either within 

or physically linked to candidate genes. Associations with quantitative resistance were 

found for all marker types. One allele specific marker developed upon sequence 

information was shown to be associated with MCR and can be used in breeding programs 

for marker assisted selection (MAS).  

_________________________________________________________________________ 
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Introduction 

For the past two decades, the prevalent study design for investigating the genetic basis of 

inherited diseases has been linkage analysis in families (Carlson et al. 2004). Traditionally, 

linkage mapping relies on the linkage disequilibrium (LD) between markers and trait 

values that occur within mapping populations or families. However, LD occurs also in 

unrelated (associated) populations. Association studies are carried out with unrelated 

individuals making use of the higher frequency of recombination events which may have 

occurred in the past. Association mapping of QTL is based on marker-trait LD in such 

populations, identifying events that created association in the relatively distant past 

(Jannink and Walsh 2002). Assuming that many generations, and therefore meioses, have 

elapsed recombination will have removed association between a QTL and any marker not 

tightly linked to it. Thus association mapping allows for much finer mapping than standard 

bi-parental cross approaches. It has become the method of choice for identifying the 

inheritance of complex traits with SNPs as the main marker used for genotyping in humans 

(Jorde 2000; Hinds et al. 2006), animals (Palsson and Gibson 2004) as well as plant 

genomes, such as potato (Simko et al. 2004a, 2004b; Gebhardt et al. 2004; Li et al. 2005). 

The idea is to identify markers with allele-frequency differences between groups of 

individuals displaying a significant difference in the phenotype of interest compared to 

control individuals. When enough segregating markers are scattered throughout the entire 

genome, it is theoretically possible to detect and characterize all genes affecting a 

quantitative trait except in areas on the chromosome where the recombination frequencies 

are low and the detection of polymorphisms is limited. Today, molecular linkage maps 

covering the entire genome are available for quantitative trait studies in many organisms 

including the potato (Tanksley 1993).  

In contrast to quantitative resistance to Phytophthora infestans, which is controlled by 

factors on every potato chromosome, quantitative resistance to Globodera pallida seems to 

be controlled mainly by few QTL with large effects (reviewed in Gebhardt and Valkonen 

2002). Genetic control of P. infestans in the foliage can be race-specific, controlled by the 

dominant alleles of resistance genes (R genes), but can also be effected through the action 

of general resistance which is considered to be more durable and based on polygenes 

(Umaerus and Umaerus 1994; Wastie 1991). In potato, 11 R genes (R1-R11) have been 
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identified originating from S. demissum (Malcomson and Black 1966; Shaw 1991). 

However, the immunity reaction of the resistant plants can be easily overcome by the 

appearance of new virulent factors of the pathogen (Micheletto et al. 2000). Breeding 

efforts are therefore directed towards the increase of quantitative resistance which is longer 

lasting than race-specific resistance. Caveat is the correlation between quantitative 

resistance to Phytophthora infestans and late maturity in temperate climates, which is an 

undesirable characteristic (Collins et al. 1999; Oberhagemann et al. 1999; Visker et al. 

2003; Bormann et al. 2004). To break the correlation between resistance and maturity, 

resistance factors that do not affect maturity or are separated by recombination from the 

genes controlling maturity must be identified (Bormann et al. 2004).  

Marker-assisted selection (MAS) in early generations in the greenhouse could accelerate 

breeding for resistance. Special disease and quality tests are often required to find potential 

new cultivars; a diagnostic marker can improve the efficiency of selection. 

The objectives of this study were (a) increasing the mapping resolution of known QTL 

conferring resistance to the potato cyst nematode G. pallida; (b) evaluation of the 

genotypic data additionally for resistance to P. infestans, maturity, maturity corrected 

resistance (MCR), starch content, and yield; (c) detection of novel QTL of interest for the 

improvement of the characteristics of the potato; (d) development of molecular markers 

tagging QTL for the selection of superior genotypes in potato breeding.  

 

Materials and Methods 
 

Plant material 

Plant material of two populations of tetraploid potato breeding clones and varieties were 

provided by two breeding companies. Saka-Ragis Pflanzenzucht GbR (SaRa) supplied 120 

individuals and Böhm-Nordkartoffel-Agrarproduktion (BNA) supplied 109 individuals. 

For genotyping 96 individuals for each population were used. 

 

Plant genomic DNA extraction: Young, healthy potato leaves were harvested, freeze dried 

(Eps1-15, Typ 1815, Christ Gefriertrocknung GmbH, Osterode, Germany) and stored in 
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air-tight containers at -20°C. Total genomic DNA was extracted from 0.3g – 0.4 g freeze 

dried leave material according to Bormann et al. (2004). 

 

Concentration measurement of DNA: The quality and quantity of DNA was measured by 

comparison of band-intensity on ethidium bromide stained agarose gels with a DNA 

molecular weight standard or alternatively by the absorbance at 260 nm using a photometer 

(Smart Spec™ 3000, BioRad, München, Germany). 

 

Genotyping 

Standard PCR reaction: Amplicons were generated from 50 ng genomic DNA template in 

20 μl total volume containing buffer (20 mM Tris-HCl, pH 8.4, 2.5 mM MgCl2, 50 mM 

KCl), including 0.25 µM of each primer (Table 2.2),  0.2 mM of dNTP and 1.0 unit Taq 

DNA polymerase (Invitrogen Life Technologies, Freiburg, Germany). Standard cycling 

conditions were: 3 min initial denaturation at 94°C, followed by 39 cycles of 1 min 

denaturation at 94°C, 1 min annealing at the appropriate Tm and 1 min extension at 72°C. 

Reactions were finished by 8 min incubation at 72°C. PCR products were examined for 

quality on ethidium bromide stained agarose gels. 

Purification of PCR products for sequencing: ExoSAP-IT® (USB Corporation, Cleveland, 

USA) was used for simplified PCR clean-up. 2 µl of ExoSap were added to 5 µl of PCR 

product and the mixture was incubated for 15 min at 37°C and inactivated at 80°C for 15 

min. 

 

Sequencing of PCR amplicons: DNA sequences were run at the MPIZ DNA core facility 

using Applied Biosystems Abi Prism 3730 sequencer (Weiterstadt, Germany) and BigDye-

terminator v3.1 chemistry. Premixed reagents were from Applied Biosystems. 

Oligonucleotides were purchased from Invitrogen, Life Technologies, Freiburg, Germany 

or QIAGEN GmbH, Hilden, Germany. 

 

Detection of single nucleotide polymorphisms (SNPs): Sequencing data of all genotypes 

were aligned using the multalin interface page (Corpet 1988) to detect polymorphisms. For 

further detection and quantification tracefiles (Figure 2.1) were subjected to the Data 

Acquisition and Analysis Software (DAx) (van Mierlo 2006).  
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Figure 2.1 Section of a sequence (tracefile) with a SNP at position 102. 

 

Detection of marker alleles: Marker alleles (SCAR, CAPS, ASO, and SSR) were scored as 

absent or present of the PCR fragment. 

 

Microsatellite Analysis  

PCR was performed in a total volume of 20 µl containing 10x standard reaction buffer 

(Amplicon), 0.2 mM dNTPs, 3.0 mM MgCl2, 0.25 µM of each primer, 25 ng template 

DNA and 1unit Taq polymerase. 

PCR conditions: Initial denaturation for 3 min at 94°C, 2 min at the respective annealing 

temperature (Table 2.1), 90 sec at 72°C, 30 cycles of 1 min at 94°C, 1 min at Ta  and 45 sec 

at 72°C, and one cycle at final extension for 5 min at 72°C. 

Electrophoresis was run in 30 mM TAE buffer on SPREADEX gels (Elchrom Scientific, 

Cham, Switzerland) using the SEA 2000 Electrophoresis System (Elchrom Scientific). 

Gels were run at 50°C at 120 volts according to manufacturer’s instructions. 

Gels were staining after electrophoresis (10% SYBR™ Gold in 30mM TAE buffer) for 45 

min and destained for 30 min in a mixture containing: 20 ml of 30 mM TAE, 30 ml H20 

and 0.5 ml 100x Destaining Solution (Elchrom Scientific). 

SSR alleles were numbered and scored according to their presence on the gel starting with 

the smallest size band. 
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Table 2.1 SSR markers scored in the BNA and SARA population to assess population 
structure.  
 
SSR marker Primer sequence 5'-3' Size range (bp) TA°C LG 
StI 004 f-gct gct aaa cac tca agc aga a  78 - 112 60 – 54* VI 
 r-caa cta caa gat tcc atc cac ag     
StI 007 f-tat gtt cca cgc cat ttc ag  115 - 146 60 – 54* XII 
 r-acg gaa act cat cgt gca tt     
StI 009 f-gcg aaa acc ttg aag caa ct  262 - 322 60 – 54* I 
 r-ctg ctg ttg ctg ttg atg gt     
StI 013 f-cca ctt cct cca ctt cca aa  240 -340 60 – 54*  III 
 r-cca tgg ttg cac caa cta ga     
StI 022 f-tct cca att act tga tgg acc c  114 - 145 63 VIII 
 r-caa tgc cat aca cgt ggc ta     
StI 023 f-gcg aat gac agg aca aga gg  160 - 280 60 – 54* X 
 r-tgc cac tgc tac cat aac ca     
StI 024 f-cgc cat tct ctc aga tca ctc  149 - 186 60 – 54* II 
 r-gct gca gca gtt gtt gtt gt     
StI 028 f-ata ccc tcc aat ggg tcc tt  170 - 217 60 XI 
 r-ctt gga gat ttg caa gaa gaa     
StI 031 f-agg cgc act tta act tcc ac  123 - 141 60 – 54* I 
 r-cgg aac aaa ttg ctc tga tg     
StI 047 f-act gct gtg gtt ggc gtc  128 - 170 60 – 54* VIII 
 r-acg gca tag att tgg aag cat c     
StI 058 f-caa gca cgt tac aac aag caa  77 - 103 60 – 54* V 
 r-ttg aag cat cac ata cac aaa ca     
STM 0001 f-agt att caa ccc att gac ttg ga    113 - 174 60 VI 
 r-tag aca agc caa gct gga gaa     
STM 0030  f-aga gat cga tgt aaa aca cgt  122 - 191 53 XII 
 r-gtg gca ttt tga tgg att     
STM 0037 f-aat tta act tag aag att agt ctc  75 - 90  48 XI 
 r-att tgg ttg ggt atg ata     
STM 0038 f-aac tct agc agt att tgc ttc a  108 54 II 
 r-tta ttt agc gtc aaa tgc ata     
STM 1043 f-att tga att gaa gaa ctt aat aga a  226 53 VII 
 r-cac aaa caa aat act gtt aac tca     
STM 1052 f-caa ttt cgt ttt ttc atg tga cac  200 - 268 59 ? 
 r-atg gcg taa ttt gat tta ata cgt aa     
STM 1097 f-tga ttt agt tgc ttg ttt g  90 - 160 54 VII 
 r-gct ttc gat cct aat aca cc     
STM 1106 f-tcc agc tga ttg gtt agg ttg  150 - 200 60 X 
 r-atg cga atc tac tcg tca tgg     
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SSR marker Primer sequence 5'-3' Size range (bp) TA°C LG 
STM 2012 f-gcg gcc gct tct cag cca a  247 64 X 
 r-tct cgt tca atc cac cag atc     
STM 3012 f-caa ctc aaa cca gaa ggc aaa  168 - 213 57 IX 
 r-gag aaa tgg gca caa aaa aca     
STM 3023b f-aag ctg tta ctt gat tgc tgc a  183 - 193 50 IV 
  r-gtt ctg gca ttt cca tct aga ga        

*Touch down PCR, StI markers: Feingold et al. 2005; STM markers: Milbourne et al. 1998 

 

Cloning of PCR products for the development of the CAPS marker 

PCR conditions: In a final volume of 20 µl PCR buffer (20 mM Tris-HCl, pH 8.0, 50 mM 

KCl); 2.0 mM MgCl2; 0.2 mM of each dNTPs; 0.4 µM of each primer and 1 unit of Taq 

polymerase (Invitrogen, Life Technologies, Karlsruhe, Germany) were mixed together 

with 50 ng template DNA. PCR reaction conditions were 93°C for 2 min followed by 40 

cycles of 92°C for 45 sec, 55°C for 45 sec and 72°C for 60 sec with a final elongation time 

of 10 min at 72°C. 

Cloning of PCR products: PCR products were cloned using the pGEM®-T Vector System 

according to the manufacturer’s instructions (Promega Corporation, Madison, USA). For 

each transformation, 25 µl competent cells of E. coli strain DH10B (Elektromax, 

Invitrogen, Life Technologies, Karlsruhe, Germany) were mixed with 1 µl ligation mixture 

and transferred to an electroporation cuvette. Electroporation was done at 1.8 volts on a 

MicroPulser Electroporator (BioRad Laboratories, UK). 

The cells were transferred to a 1.5 ml eppendorf tube containing 600 µl SOC medium and 

incubated at 37°C for 90 min. 20 µl bacteria suspension was plated on the white and blue 

selective Luria-Bertani-media (LB) containing ampicillin (100 µg/ml), IPTG (8 µl/ml) and 

X-Gal (40 µl/ml). Petri-dishes were incubated at 37°C for 14-20 h. 

Screening: Single white colonies were picked with a sterile tip and dipped in a PCR master 

mix to amplify the target insert of the plasmid using the specific primers. In parallel, the 

single colony was streaked on a selective LB medium containing ampicillin (100 µg/ml), 

IPTG (8 µl/ml) and X-Gal (40 µl/ml). Once the correct PCR product was obtained, the 

corresponding colony was propagated for plasmid DNA isolation and sequencing with the 

T7 Promoter Primer 5′-TAATACGACTCACTATAGGG-3′. Plasmid DNA isolation was 

performed using the QIAGEN Plasmid Midi Kit according to manufacturer’s instructions 

(QIAGEN GmbH, Hilden, Germany). 
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Detection of polymorphisms between alleles and development of the CAPS marker: 

Sequencing data of the clones were aligned using the multalin interface page (Corpet, 

1988) to detect polymorphisms. Polymorphism discriminating the alleles associated with 

either resistance or susceptibility could be identified at position 211 bp and used to design 

a CAPS marker. The web-based program, dCAPS Finder 2.0 (Neff et al. 1998) was used to 

developed the CAPS marker. Primers sequences used 5’-3’: f- TGA GGA ATT GTA TCT 

CAT TGT TTG AAC TTA C and r- GAG AAC ATG TAC ATC CAT GAC. The forward 

primer ends with two mismatches at positions 209 bp and 210 bp in the sequence to allow 

the restriction enzyme cleavage of the primer of the allele associated with higher 

resistance. 13 µl of the PCR product was digested with 2 units of the restriction enzyme 

BseN1 (Bsr1) for 3 h at 65°C with 10 x reaction buffer in a 20 µl reaction volume 

(Fermentas, Life Sciences). The PCR products were separated on a 3% agarose gel 

(MetaPhor®, Cambrex Bio Science Rockland, USA) for 3 h at 80 volts. 

 

Table 2.2 Polymorphic markers scored by polymerase chain reaction (PCR) and amplicon 
sequencing in the BNA and SaRa populations. * Primers were designed upon sequence information 
 
LG Marker name Primer sequence ( 5'- 3') Amlicon 

size (bp) 
TA (C°) Assay Reference  

II StPAD4-1 f-GAA TTT TAT GCA ATT TGA ATT TTC 330 60 Sequence Pajerowska et al. 
2005 

  r-CGG CAT GGA CCA TTG CCG GA TC     

III StSGT1-1 f-GCC GTT GAC CTC TAC ACT C 370 60 Sequence Pajerowska et al. 
2005 

  r-ACC AAT TAA CAG AAA CAC AGG*     

  fn-ACA CTC AAG CCA TAA CGA TG     

IV 54I8L  f-GGT GTC TTG AGT ATT GTC G 350/480/500 58 CAPS/TaqI Park et al. 2005 

  r-CCA CTT TTT CCT TTG CCT G     

IV STM5140  f-GCT ATT GTT GCA GAT AAT ACG 188/192 55 SSR Bryan et al. 2004 

  r-GCC ATG CAC TAA TCT TTG A     

V BA213c14t7 f-CAA TTG ATT CAT TTT ATG TAG CGA G 650/710 56 Sequence, 
SCAR Rickert 2002 

  r-TCT TGA CGC AAA CCT CTG CGA G     

V 239E4left  f-GGC CCC ACA AAC AAG AAA AC 340 56 Sequence Bakker et al. 2004 

  r-AGG TAC CTC CAT CTC CAT TTT GTA AG     

V Jen1 f-CAA CGT TAC TGA GAA CTA C* 620/950 55 ASO unpublished 

  r-ATA TCG AAT ACT GAG TGA AC*     

V Haplotype C  f-ACA CCA CCT GTT TGA TAA AAA ACT 276 60.5 ASO Sattarzadeh et al. 
2006 

  r-GCC TTA CTT CCC TGC TGA AG     

V Haplotype A  f-ATT CTC ACC AGC AGT CTT A 121 52 ASO unpublished 

  r-ATC AAT ATT TAT AAT AGC TGG T     
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LG Marker name Primer sequence ( 5'- 3') Amlicon 
size (bp) 

TA (C°) Assay Reference  

V ScarU14  f-GGG CTT GTA TAA GAC CTC CGA GAG G 260 56 SCAR Jacobs et al. 1996 

  r-CCC TTC CTT GGG TAG TTT GAG CG     

V GP179  f-GGT TTT AGT GAT TGT GCT GC 570 58 SCAR Meksem et al. 
1995 

  r-AAT TTC AGA CGA GTA GGC ACT     

V BA47f2  f-TAA CCA ACA TTA TCT TCT TTG CC 650 55 ASO Gebhardt et al. 
2004 

  r-GAA TTT GGA GAG GGG TTT GCT G     

V R1 f-CAC TCG TGA CAT ATC CTC ACT A 1400 55 ASO Ballvora et al. 
2002 

  r-CAA CCC TGG CAT GCC ACG     

V BA151m8AB  f-GAC ACA GAT CCG AAG CCT ATC ACA* 380 56 ASO Gene bank AY 
730335 

  r-AAC GTA CTA TTC GTA TTT CGA AGA*     

V 239E4left  f-TGA GGA ATT GTA TCT CAT TGT TTG 
AAC TTA C* 560 56 CAPS Bakker et al. 2004

  r-GAG AAC ATG TAC ATC CAT GAC*     

V CosA  f-CTC ATT CAA AAT CAG TTT TGA TC 210 55 SCAR Gebhardt et 
al.2004 

  r-GAA TGT TGA ATC TTT TTG TGA AGG     

VIII LOX*  unpublished 800/1500 56 CAPS/EcoRV Trognitz et al. 
2002 

       

IX STH (PR10) * unpublished 710 49 CAPS/TaqI Trognitz et al. 
2002 

       

XI STM5130  f-AAA GTA CAG CGA AGA TGA CGA C 295/300  56 SSR Bryan et al. 2004 

  r-TTA CCT TTG CAA CCT TGC C     

X BA81l15t3  f-CTG TTG GGT CTT CCT ATA AGT TGG* 240 58 Sequence Gene bank  
CG783071 

  r-TGA AAC CAC TAA ACA TGA CAT TTT G*     

XII Gpa2  f-GCA GAT ATA ACC ACA CTA GCT C* 380 58 ASO van der Voort et 
al. 1997 

    r-ATG CTC CAT TTC GAC TTC CC*         
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Figure 2.2 Banding patterns of PCR markers used in this study. Seventeen markers were 
scored for polymorphic bands indicated with arrows. The left lane shows a 100 bp ladder 
(Fermentas), exceptions are marker 239E4left with the marker shown on the right; marker 
Haplotype C with a 1 kbp ladder (Invitrogen *) and the the two SSR markers STM5130 and 
STM5140 with size ladder M1 (Elchrom Scientific+). 
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Phenotypic data 

Phenotypic data were obtained for seven traits in the BNA population and five traits in the 

SaRa population. 

BNA population: Maturity, late blight resistance (AUDPC), maturity corrected resistance 

(MCR), resistance to G. pallida Pa2, tuber starch content (TSC), tuber yield (TY) and tuber 

starch yield (TSY). 

SARA Population: Maturity, late blight resistance (AUDPC), maturity corrected resistance 

(MCR), resistance to G. pallida Pa2/Pa3, tuber starch content (TSC).  

 

Statistical analysis: Statistical analysis was based on the mean values over the two test 

years 2004/2005. Exception was the assessment of resistance against Globodera pallida in 

the BNA population, which was only analyzed for the year 2004. Phenotypic data was 

generated for 109 individuals in the BNA population and 120 individuals in the SaRa 

population. The distribution of the data was obtained using the One-Sample-Kolmogorov-

Smirnov-Test. The data were found to be normal distributed when the Asymptotic 

Significance (2-tailed) was > 0.2.  

SNP analysis was performed using the free software R (http://www.r-project.org). For 

phenotypic data showing normal distribution the Anova test was used and the Kruskal 

Wallis tests was selected for data not normally distributed.  

Marker alleles were analyzed for significant associations (p < 0.01) using the T-test for 

normally distributed data and not normally distributed data were analysed using the Mann-

Whitney test. All tests were computed using the software SPSS 10.0 (SPSS Inc., Chicago, 

IL, USA). Figure 2.4 shows histograms of the traits under investigation.  

 

Assessment of resistance to G. pallida: Both tests were carried out according to Kort et al. 

(1977) (Chapter 1). For this assessment BNA used the population ‘Kalle’ with resistance to 

pathotype Pa2, individuals known to be highly susceptible were analyzed with a default 

score of 200 cysts. The SaRa population was evaluated for pathotypes Pa2/Pa3, population 

‘Chavornay’. Individuals of the Saka-Ragis population were tested for resistance to G. 

pallida at the ‘Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei 

Mecklenburg-Vorpommern’ (Rostock, Germany). Individuals of the BNA population were 

tested at the ‘Landwirtschaftskammer Niedersachsen’ (Hannover, Germany).  

Field assessments were located at Windeby (Schleswig-Holstein) in northern Germany for 

the SaRa population and in Ebstorf (Niedersachsen) for the BNA population (Figure 2.3).  
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Figure 2.3 Map of Northern Germany with the locations of the breeding companies 
indicated with red circles. 
  

Assessment of resistance to late blight: The Area under the disease progress curve 

(AUDPC) is a resistance parameter calculated from the percentages of leaf area affected, 

which are estimated at different time points during the epidemic. When data have been 

collected sequentially through the season, the AUDPC is calculated in order to compare 

cultivars or treatments. The AUDPC was calculated according to Campbell and Madden 

(1990).   

 

Relative AUDPC (rAUDPC): Field measurements were carried out over a different time 

frame each year (between 40 and 48 days). Therefore each AUDPC value was divided by 

the total area possible (= total number of evaluation days x 8 (BNA) or 9 (SaRa) resulting 

in the relative AUDPC (rAUDPC). Thus the rAUDPC values may be compared over the 

different years. BNA scored on a scale from 1-9, SaRa scored on a scale from 0-9. 

Maturity corrected resistance (MCR): A regression curve rAUDPC against maturity was 

computed. For each rAUDPC measurement the difference to the regression curve was 

calculated, which resulted in negative values for resistant plants and positive values for 

susceptible plants (= maturity corrected resistance) in the SaRa population, when maturity 

was scored on a scale from 1-9 (german system); the opposite is correct for BNA data, due 

to scores of maturity form 9-1 (dutch system). The phenotypic data were calculated in 

which the resistance was corrected for the maturity effect, resulting in a value for 

resistance independent from maturity.  
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Maturity: The maturity of uninfected plants grown for multiplication was evaluated based 

on the senescence of the plants using an 1 to 9 scale (1= very early maturing and 9= very 

late maturing in the SaRa population; 1= very late maturing and 9= very early maturing in 

the BNA population). The plants were compared with standard potato varieties with known 

maturity type according to the procedures of the ‘Bundessortenamt’ (BSA, Hannover, 

Germany). 

Tuber starch content in percent (TSC): The starch content of fresh potatoes is correlated 

with potato density. A sample of 5050 g potato in a net basket is weighed above water and 

then again immersed in clean water of maximum 18°C (International Starch Institute 

Science Park Aarhus, Denmark).  

Tuber yield (TY) and tuber starch yield (TSY): The tuber yield (TY) and tuber starch yield 

(TSY) were weighed in Dt/ha. 
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Figure 2.4 Histograms of the phenotypic data of the BNA population and SARA 
population.The histograms were created using Microsoft Excel.  
 
* The values on the x-axes display categories including all individuals with values inbetween the  
    previous category.
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Results 
Phenotypic analysis 

Phenotypic data for resistance to G. pallida, P. infestans, MCR, starch content, yield and 

starch yield were analyzed using the Kolmogov-Smirnov test for distribution. Data 

regarding the starch content and the maturity were normally distributed in both 

populations, AUDPC was found to be normally distributed only in the SaRa population. 

All remaining data sets were not normally distributed (Figure 2.4). The T-test and the 

ANOVA were used for the data with normal distribution and the Mann Whitney and the 

Kruskal-Wallis test were applied for the other data sets. Maturity scores of the SaRa 

population ranged between 1 and 8. The variability of the genotypes chosen by BNA was 

between 4 and 8, excluding the very late genotypes of classes 1-3. The phenotypic data sets 

are diverse for both populations, because traits were evaluated according to different 

methods with the exception of the starch content. This trait was measured in percent and 

ranged in both populations between 12% and 25%. Both populations were evaluated 

separately.  

 

Population structure 

Nineteen SSR markers (Feingold et al. 2005; Milbourne et al. 1998) distributed on eleven 

chromosomes were scored for 2-7 different alleles and employed to analyze population 

structure. For this a ‘genetic distance analysis’ and a ‘principal component analysis’ was 

carried out and resulted in no significant subdivision, indicating a homogenous population 

structure (Dr. Heckenberger, personal comment). 

 

Genotypic analysis 

The two populations were genotyped for SNP and InDel markers. Further, the two 

populations were fingerprinted with different DNA marker systems, such as Simple 

Sequence Repeats (SSR), Sequence Characterized Amplified Regions (SCAR), Cleaved 

Amplified Polymorphism (CAPS), and Allele specific oligonucleotide (ASO) taking into 

consideration that, depending on the type of molecular marker used, it may not always be 

possible to distinguish between each of the heterozygous genotypes, or to distinguish from 

the homozygous genotypes. Most of the selected markers were previously found to be 

linked to QTL for resistance to either P. infestans or Globodera species (reviewed in 

Gebhardt and Valkonen 2002). 
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Sequence data were obtained from five different loci, namely BA213c14t7, BA81l15t3, 

StPAD4-1, 239E4left and StSGT1-1. In total, 68 SNPs could be evaluated for association 

with the different traits. In addition 17 polymorphic PCR-based markers displaying a sum 

of 23 marker alleles were scored. Markers were chosen due to their position close to QTL 

or because they were previously identified as plant defense genes associated with 

quantitative resistance to potato late blight, such as lipoxygenase (LOX), STH (Manosalva 

et al. 2000) or Phytoalexin-Deficient 4 PAD4 (Glazebrook et al. 1997). Nine PCR-based 

markers were located on the upper arm of chromosome V in a region known to harbour 

QTL for different agronomic traits (Chapter 4) and in addition the sequence of marker 

BA213c14t7 on this segment was generated. Figure 2.5 shows the location of all markers 

used in this study on the 12 chromosomes of the potato function map.  
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Figure 2.5 The potato function map. Twelve linkage groups (LG) corresponding to the 12 
potato chromosomes are shown schematically. The loci for nematode resistance are written 
in bold italic red letters. Sequenced markers are in orange, SSRs used for assessment of 
population structure in black and PCR-based markers in bold blue letters. Different colours 
of the bars right to the LGs indicate associated regions on the chromosome with different 
agronomic traits. Red: G. pallida; light blue: AUDPC; dark blue: starch yield; green: 
starch; violet: MCR. 
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Association mapping in the BNA and SaRa populations  

Five of the PCR-based markers on the upper arm of chromosome V, as well as SNPs 

deduced from the sequence information BA213c14t7, were found to be significantly 

associated (p < 0.01) with at least one of the traits previously detected in this region. In 

some cases SNPs were found to be associated with more than one trait in both populations, 

e.g. BA213c14t7_SNP218 was associated with G. pallida, maturity and starch content in 

the BNA population and G. pallida and AUDPC in the SaRa population (Table 2.5). 

Besides numerous SNPs from BA213c14t7, which were associated with G. pallida in the 

SaRa population, were associated with starch in the BNA population (Table 2.5).   

SNPs from StPAD4-1 were associated with starch content and starch yield, SNPs from 

StSGT1-1 with G. pallida and maturity, BA81l15t3 with G. pallida and AUDPC, and 

239E4left with AUDPC, MCR, maturity, starch and G. pallida (Table 2.5). Marker locus 

LOX was associated with later maturity and higher resistance to G. pallida (Table 2.4) and 

alleles of SSR marker STM5130 were found to be associated with higher resistance to G. 

pallida as well as MCR. MCR was also detected with SNP211 of sequence 239E4left on 

the lower arm of chromosome V. 

In total six SNPs were associated with maturity in the BNA population and none with 

AUDPC while ten SNPs were found to be associated with AUDPC in the SaRa population 

and none were found for the trait maturity (Table 2.5).  
 

Regarding the PCR based marker alleles we detected one marker associated with maturity 

in the SaRa population but again no markers associated with late blight in the BNA 

population (Table 2.4). 

A number of SNPs and PCR based marker alleles were found to be associated with one or 

more of the selected agronomic traits which are summarized in table 2.3. Exception was 

the trait yield without any detected associations. The SNP scoring shows that in most cases 

the same nucleotide allele is associated with the superior direction of effect of the traits 

(Table 2.5). For instance BA213c14t7_SNP139, nucleotide allele A is associated with 

higher resistance to G. pallida in both populations as well as higher starch content in the 

BNA population. For the trait maturity the result was not clear using the Boxplot function 

in the software SPSS 10.0 (SPSS Inc., Chicago, IL, USA). 

The allele frequency indicates the presence of the allele in the population. Similarly we 

calculated the frequency of nucleotides for SNP markers. These distributions are 

comparable in both populations.  
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Table 2.3 Summary of markers significantly associated with different traits.  
 
Aspect Population PCR-based 

marker alleles 
SNPs 

Markers scored in each population BNA 23 68 
Total 10 26 
BNA 7 20 Significantly associated markers  
SaRa 7 20 

Markers1found in both populations          Total 4 15 
Markers1 found in both populations for 
the same trait3                    Total 2 0 

Total 4 17 
BNA 3 6 Markers1 for more than one trait  
SaRa 1 7 
Total 2 10 
BNA 0 0 Markers1 AUPDC                         
SaRa 2 10 
Total 3 6 
BNA 3 6 Markers1 Maturity  
SaRa 1 0 
Total 2 1 
BNA 0 0 Markers1 MCR 
SaRa 2 1 

Markers1 G. pallida Pa2 BNA 6 6 
Markers1 G. pallida Pa2/3 SaRa 2 16 

Total 3 17 
BNA 3 15 Markers1 Starch 
SaRa 1 2 

Markers1 Starch yield2 BNA 0 1 
Markers1 Yield2 BNA 0 0 

 

nt= not tested; 1significantly associated at p < 0.01; 2traits only assessed in the BNA population; 3G. pallida 
excluded due to the different pathotypes used in the assessment. 
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Table 2.4 Significantly associated marker alleles analyzed using the T-test or the Mann- 
Whitney Test. The level for significance was p < 0.01. +/- displays the direction of effect 
indicating whether the presence of the marker band is significantly associated with positive 
or negative characteristics of the trait. The allele frequency indicates the presence of the 
allele in the population.  
 
Marker  Population Allele 

frequency 
G. 
pallida 

AUDPC
 

MCR 
 

Maturity 
 

Starch  
 

Yield 
 

BNA 0.39     0.002-  GP179  
570 bp SaRa 0.32 0.001-       0.000-  

BNA 0.30 0.000+   0.000-  0.000+  Haplotype A 
121 bp SaRa 0.19 0.000+     0.002-    

BNA 0.16 0.000+   0.000- 0.000+  Haplotype C 
276 bp 

SaRa 0.16 0.000+       0.007+  
BNA 0.11       Jen1  

620 bp SaRa 0.15   0.001+        
BNA 0.16 0.007-     0.003+Jen1  

950 bp SaRa 0.16            
BNA 0.10            BA47f2 

650 bp SaRa 0.19   0.005+        
BNA  0.001+     0.000-    LOX, EcoRV 

1500 bp SaRa             
BNA 0.56            239E4left, 

BsrI 
560 bp SaRa 0.61   0.000- 0.005+  0.007+    

BNA 0.64 0.001+          STM5130  
295 bp SaRa 0.50     0.006-      

BNA 0.54 0.000+          STM5130  
300 bp SaRa 0.42            
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Table 2.5 Significantly associated marker alleles analyzed using the Anova or the Kruskal-
Wallis Test. The level for significance was p < 0.01. 
 
Marker Population G. pallida AUDPC  MCR Maturity  Starch  StarchYield* 

BNA     0.009  
(T/ 0.48) + 

 

BA213c14-t7_SNP78 SaRa 0.007 
(T/0.30)+ 

     

BNA     0.009 
(C/0.46) + 

 

BA213c14-t7_SNP96 SaRa 0.006 
(C/0.33) + 

     

BNA 0.000  
(A/ 0.17) +

  0.000 (?) 0.000 
(A/0.17) + 

 

BA213c14-t7_SNP139 SaRa 0.001 
(A/0.32) + 

     

BNA     0.006 
(T/0.14) + 

 

BA213c14-t7_SNP214 SaRa 0.019 
(C/0.84) + 

0.005  
(C/0.84) + 

    

BNA 0.005  
(A/0.42) + 

  0.008 (?) 0.000 
(C/0.58) + 

 

BA213c14t7_SNP218 SaRa 0.008 
(C/0.68) + 

0.006 
(C/0.68) + 

    

BNA 0.004 
(C/0.46) + 

   0.001 
(T/0.54)+ 

 

BA213c14t7_SNP244 SaRa 0.001 
(C/0.38) + 

     

BNA     0.000 (?)  
BA213c14t7_SNP253 SaRa       

BNA     0.000  
(G/0.57) + 

 

BA213c14t7_SNP273 SaRa 0.004 
(G/0.66) + 

0.005 
(G/0.66) + 

    

BNA 0.000 
(T/0.08) + 

  0.000 
(T/0.08) + 

0.002 
(T/0.08) + 

 

BA213c14t7_SNP274 SaRa 0.000 
(T/0.05) + 

     

BNA     0.000  
(G/0.58) + 

 

BA213c14t7_SNP284 SaRa 0.001 
(G/0.66) + 

0.004 
(G/0.66) + 

    

BNA     0.006  
(A/0.45) + 

 

BA213c14t7_SNP289 SaRa 0.001 
(A/0.34) + 

     

BNA     0.000  
(C/0.57) + 

 

BA213c14t7_SNP305 SaRa 0.001 
(C/0.66) + 

     

BNA     0.000  
(T/058+) 

 

BA213c14t7_SNP345 SaRa 0.002 
(T/0.66) + 

0.004 
(T/0.66) + 

    

BA213c14t7_SNP347 BNA 0.001 (?) 
 

   0.002 
(T/0.48) + 

 

 SaRa 0.002 
(T/0.38) +  
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Marker Population G. pallida AUDPC  MCR Maturity  Starch  StarchYield* 
BNA       

BA213c14t7_SNP381 SaRa 0.006 
(A/0.69) + 

0.006 
(A/0.69) + 

        

BNA       
BA81l15t3_SNP218   SaRa  0.000  

(G/0.13) + 
    

BNA 0.008 
(T/0.84) + 

     
BA81l15t3_SNP219   

SaRa             
BNA 0.005 

(C/0.72) + 
     

StSGT1-1_SNP_179  
SaRa       
BNA 0.004 

(G/0.17) + 
  0.008 

(A/0.83) 

+ 

  

StSGT1-1_SNP_183  
SaRa 0.016 

(G/0.03) + 
     

BNA    0.001  
(C/0.44) + 

  

StSGT1-1_SNP_249  SaRa 0.000 
(G/0.49) + 

     

BNA      0.008 
(T/0.28) + StPAD4-1_SNP95 

SaRa       
BNA     0.004 

(T/0.26) + 
 

StPAD4-1_SNP130  
SaRa             
BNA       

239E4left_InDel84  SaRa     0.000 
(T/nt) + 

 

BNA    0.002 (?)   
239E4left_SNP189  SaRa 0.004 

(G/0.18)+ 
0.000 
(G/0.18) + 

  0.002 
(G/0.18) + 

 

BNA       
239E4left_SNP207 SaRa  0.007 

(C/0.11) + 
    

BNA       
239E4left_InDel211 SaRa    0.000 

(T/nt) + 
0.001  
(T/nt) + 

      

+ Letters in brackets show the nucleotide allele associated with the superior nucleotide allele and the 
frequency it occurred in the population; (?) indicates that a nucleotide could not be assigned clearly to the 
direction of effect.                                             
 
Development of a PCR assay detecting an allele associated with MCR 

An InDel at position 211 bp in the sequence of marker 239E4left was found to be 

associated with MCR in the SaRa population. The amount of phenotypic variation in MCR 

explained by this allele was calculated to be about 8%. The use of sequencing data for 

marker-assisted selection in breeding programmes is not feasible due to time constraints 

and the high costs of the sequencing procedure. To counteract these problems, a CAPS 
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marker for the detection of this associated polymorphism was developed, which separates 

the alleles upon presence and absence of the InDel. 

For this, the nucleotide sequence of individual alleles was determined via cloning of 

genotypes S3 and S19 (Figure 2.7). A BLAST was performed against the Unigene 

Sequence database of the ‘sol genomics network’ and a match (98% identity) was retrieved 

with Unigene Sequence SGN-U274975. Upon this sequence information, which was 

longer than the original query sequence, it was possible to design a reverse primer further 

downstream on the sequence to obtain an amplicon of an extended region also downstream 

of the InDel. Next, two mismatches were introduced at the end of the forward primer to 

allow cleavage of the more resistant allele with restriction enzyme BsrI 

(5’..ACTGGN▼..3’)(Figure 2.7). The amplicon size of the PCR fragment prior to 

digestion was 660 bp. The sizes of the fragments after digestion were 560 bp for the more 

susceptible allele and 530 bp for the more resistant allele (Figure 2.6). 

The size difference between the susceptible allele and the resistant allele in the reaction 

was 35 bp as expected (Figure 2.6). The 35 bp fragment was not visualized on the 3% gel 

due to size limitations. However, both fragments were 100 bp smaller than expected 

compared to the undigested control of 660 bp. The reason for this is unclear; we suggest 

that the enzyme cuts also at an ACTGAT site at position 591 bp, which is similar to the 

restriction site (ACTGGN).  

 

 

Figure 2.6 PCR products prior of marker 239E4left prior and after digestion. The size 
ladder on the right is a 100 bp ladder (Fermentas, Life Sciences). 
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 Figure 2.7 Alignment between alleles of the 239E4left sequence, the primer sequences 

used, and the resulting CAPS marker sequence of the more susceptible allele. The arrows 
indicate the direction of the PCR primers, the position of the InDel and the two mismatches 
in the forward primer are surrounded by boxes, the restriction site is indicated with a bar 
and two dots, a second putative restriction site is indicated with a box on positions 584 bp-
587 bp. 
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Discussion  

Positional QTL mapping using distantly related potato breeding material 

The main objective of this study was to detect alleles associated with resistance to G. 

pallida. In addition, association with other central agronomic qualities, such as starch 

content, maturity, yield, starch yield and resistance to late blight were included into the 

analysis. Two tetraploid potato populations have been subjected to phenotypic and genetic 

analysis for association mapping of QTL. The analysis showed that 43% of the PCR-based 

marker alleles and 38% SNPs were associated with traits under investigation. These high 

numbers are not surprising when taking the breeding history and pedigree information of 

the populations into account. Hundred years of potato breeding correspond merely to five 

or six meiotic generations which makes the selection of unrelated plant material difficult 

(Gebhardt et al. 2004). The genetic variation among individuals was high (indicated by the 

high level of polymorphisms detected), and linkage disequilibrium (LD) is probably strong 

explaining the high percentage of associated markers detected in this study (see also 

Chapter 4). Several markers on the same chromosomal segment (haplotype) could 

therefore describe the same QTL. 

A significant degree of associations is of advantage for breeding companies, which benefit 

in their selection process from numerous markers associated with favourable traits. 

However, only marker alleles with a frequency > 10% are of interest because otherwise 

tremendous breeding efforts are needed to implement this allele within the breeding 

population (Jens Lübeck, personal comment).  The drawback is that chances are low, that 

identified markers have a causal relationship with the trait, or are actually positioned in a 

gene involved in the expression of a protein shaping this trait. Nevertheless, the selected 

markers identified in this study serve as informative markers in population genetics such as 

this analysis.  

Interaction analysis among various loci, as described by Bormann et al. (2004), would be 

of interest. They should be considered in addition to QTL main effects since phenotypes 

are the end result of a multiplicity of genomic interactions (Lynch and Walsh 1998). 

Molecular interactions in potato were detected for abscisic acid content (Simko et al. 1997) 

where at least three distinct loci on three chromosomes were associated with variation in 

abscisic acid content. One of the QTL was detected only as a main (single locus) effect, and 

two QTL were found through two-locus interaction analysis (epistasis). 
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Clustering of genes involved in the characterization of important agronomic traits 

A number of marker alleles which were associated with different traits as well as a number 

of markers which were found to be associated with more than one trait were detected. 

Interestingly, SNPs of sequencing markers, StPAD4-1, StSGT1-1, 239E4left and 

BA81l15t3 were associated also with traits not previously tagged in this region. Most 

probably the detection of associations was facilitated due to the presence of clusters of 

different agronomic traits on genomic regions in the potato genome, which is in line with 

earlier findings that R genes and/or QTL are organized in clusters (Gebhardt and Valkonen 

2001; Michelmore and Meyers 1998).  Most markers (Figure 2.5) used in this study were 

located on the upper arm of chromosome V where different QTL for agronomic traits have 

previously been mapped. Therefore several markers in this region could be abundant 

detecting the same QTL. SSR marker STM5130 was previously found to be linked to a 

QTL conferring resistance to G. pallida (Bryan et al. 2004) which could be confirmed by 

our findings in the BNA population. In addition association with the trait MCR was found 

in the SaRa population which has not been reported before. 

BA81l15t3 is located near the resistance QTL Gro1.2 to G. rostochiensis on the lower arm 

of chromosome X. In the present study BA81l15t3_SNP219 was associated with resistance 

to G. pallida. Similarly a locus (Grp1) conferring resistance to both potato cyst nematode 

species was previously identified by Rouppe van der Voort et al. (1998). Similarly 

239E4left_SNP211 originating from BAC 239E4left which is closely linked to the H1 gene 

conferring resistance to G. rostochiensis (Bakker et al. 2004) was found to be associated 

also with G. pallida, AUDPC, MCR, maturity and starch.  

StPAD4-1 and StSGT1-1 are both alleles involved in defence-signalling (DS) loci in potato 

and previously found to be linked to markers known to detect resistance to late blight 

(Bormann et al. 2004; Oberhagemann et al. 1999; Leonards-Schippers et al. 1994). In the 

present study StPAD4-1 was found to be associated with starch and starch yield and 

StSGT1-1 was associated with G. pallida and maturity assuming that also in these regions 

on the chromosomes clusters of QTL involved in the characterization of different 

agronomic traits are located. 

A number of markers alleles or nucleotide alleles associated with more than one trait could 

also be explained do to a pleiotropic effect of the same gene(s) or the genes that control the 

different traits are closely linked genes. These reasons have been suggested to be the cause 

for the correlation between the two traits plant maturity and resistance to late blight (Colon 

et al. 1995). 
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Assessment of phenotypic data in two different populations  

The results for both populations are diverse, which could be explained due to diverse 

phenotyping methods and statistical analysis used by the two breeding companies. Also 

differential expression of a phenotypic trait by genotypes across environments (Genotype x 

Environment (GxE) interaction) is of primary importance for quantitative genetics and its 

application in breeding (Eberhard and Russel 1966; Tiret et al. 1993). Therefore it was not 

feasible to compare data of populations which were evaluated in different environments 

approximately 200 km distal from each other. Intriguingly the composition of the 

populations seemed to be comparable regarding the allele frequencies of the selected 

markers in this study. This substantiates the assumption that the large differences in the 

results are due to the diverse phenotype data. In order to counteract this problem data sets 

are currently being adapted and the populations will be analysed again jointly.  

 

Development of an allele-specific marker for Marker assisted selection (MAS)  

Inexpensive and easy-to-use PCR assays for the detection of marker alleles have become a 

common method to score favourable traits (Niewöhner et al. 1995; Zhang and Stommel, 

2001, Marczewski et al. 2001; Sattarzadeh et al. 2006). A CAPS marker was designed 

previously in a diploid mapping population on the basis of the 239E4left sequence that 

mapped to a position 0.8 cM from the H1 resistance gene against G. rostochiensis at the 

centromeric side to the long arm of chromosome V (Bakker et al. 2004).  

Yet, most desirable for potato variety breeding is a combination of high late blight 

resistance with early plant maturity (Gebhardt et al. 2004). We were able to develop a 

PCR-based marker for the rapid detection of a QTL for MCR against P. infestans based on 

the 239E4left sequence. 

This assay in combination with other markers for resistance against P. infestans can add to 

a specific and efficient selection of more resistant individuals to encounter the threat of the 

pathogen and improve the breeding process in the future.  

Marker assisted selection (MAS) is an application in which molecular genetics is 

integrated with traditional methods of artificial selection of phenotypes (Lande and 

Thompson 1990). The use of DNA markers instead of phenotypic assays, which often take 

several years, reduces cost and time and is a much more accurate method to accomplish 

breeding goals. Besides economical factors also environmental issues concerning the 

reduction of toxic pesticides are an important consideration. Association mapping methods 
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that use already existing cultivars provides a highly suitable model for direct testing of 

candidate gene markers with the subsequent development of markers for MAS.  
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Chapter 3 
 
Identification of a PCR-based marker highly 
diagnostic for potato varieties with high 
resistance to Globodera pallida pathotype 
Pa2/3 introgressed from Solanum vernei 
 
___________________________________________ 
 

Abstract 

Globodera pallida is a parasitic root cyst nematode of potato, which causes reduction of 

crop yield and quality in infested fields. Field populations of G. pallida containing 

mixtures of pathotypes Pa2 and Pa3 (Pa2/3) are currently most problematic for potato 

cultivation in middle Europe. Genes for resistance to G. pallida have been introgressed 

into the cultivated potato gene pool from the wild, tuber bearing Solanum species S. 

spegazzinii and S. vernei. Selection of resistant genotypes in breeding programs is 

hampered by the fact that the phenotypic evaluation of resistance to G. pallida is time 

consuming, costly and often ambiguous. DNA-based markers diagnostic for resistance to 

G. pallida would facilitate the development of resistant varieties. A PCR assay ‘HC’, 

linked with high levels of nematode resistance in a diploid mapping population, was 

assessed in tetraploid potato breeding material. Screening with the HC marker 33 potato 

varieties resistant to G. pallida pathotypes Pa2 and/or Pa3, and 21 susceptible varieties 

demonstrated that the HC marker was diagnostic for presence of high levels of resistance 

to G. pallida pathotype Pa2/3. Further it was shown that the HC marker was only present 

in accessions of S. vernei. 

_________________________________________________________________________ 
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Introduction 

Quantitative trait loci (QTL) for resistance to Globodera pallida and Globodera 

rostochiensis have been found in experimental populations originating from different 

Solanum species (Chapter 1). In some cases mapping data can be used for the development 

of PCR-based markers linked to the QTL. However, a diagnostic value of a DNA marker 

beyond a particular QTL mapping population has been demonstrated only for the marker 

SPUD1636 linked to the major quantitative resistance locus (QRL) on chromosome V 

(Bryan et al. 2002). In this case, an allele-specific, 226 base pair amplicon was found in 

accessions of S. vernei and in some highly resistant breeding lines that have S. vernei as 

source of resistance to G. pallida in their pedigree. 

A PCR-based marker (Haplotype C marker) linked to individuals with high resistance to G. 

pallida pathotype Pa2/3 was developed in former work based on Single nucleotide 

polymorphism (SNP) genotyping of a diploid mapping population (Sattarzadeh et al. 

2006). This marker mapped to the upper arm of chromosome V in the vicinity of marker 

SPUD1636 and was found to be significantly associated (p < 0.01) with G. pallida 

pathotype Pa2/3 when testing in two distantly related tetraploid breeding populations 

(Chapter 2).  

Ross (1986) explained that different S. vernei accessions have been attributed to the 

eelworm resistance in potato cultivars. The first screening performed by Ellenby (1948) 

already revealed high resistance of an S. vernei (syn. S. ballsii) accession against G. 

pallida.  

Based on literature and pedigree data (Hutten and van Berloo 2001), the observed 

resistance against G. pallida on the upper arm of chromosome V was likely to originate 

from S. vernei clone VTn 62-33-3 (Ross 1986) (Figure 3.1) or hybrid clone AM 78.3778 

(Rouppe van der Voort et al. 1998). Most likely several genes are responsible for the 

resistance of S. vernei displaying a quantitative character and can be detected via the HC 

marker (Sattarzadeh et al. 2006).  

In the present study the specificity of the marker was assessed in different wild Solanum 

species. Many of which have been reported in early studies to be potential sources of 

resistance to G. pallida (Deshmukh and Weischer 1970; Turner and Stone 1984; Dellaert 

and Hoekstra 1987; Kreike et al. 1994).  
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The idea was to confirm the diagnostic value of the HC marker in commercial varieties 

(Table 3.1) and identify the source of resistance underlying this QTL.  

  

 
Figure 3.1 Pedigree of the highly resistant variety ‘Nomade’. The source of resistance 
cannot be clearly assigned to one parental clone. VTn 62-33-3 was supposed to be the 
source of resistance but was found to be resistant only against pathotype Pa2. 
 

Materials and Methods 

Plant material: Seeds from different S. vernei accessions were obtained from the former 

German-Dutch potato gene bank of the Resource Center in Braunschweig (BGRC) and 

cultivated in the greenhouse.  

Thirty three varieties with resistance to G. pallida pathotypes Pa2 and/or Pa3 (Table 3.1) 

were obtained from Saka-Ragis Pflanzenzucht, Böhm-Nordkartoffel Agrarproduktion 

(BNA), Bavaria Saat (by courtesy of A. von Zwehl), HZPC Holland B.V., Averis Seeds 

B.V.and B.F. Leestemaker & A. Smid (by courtesy of Jan Draaistra). DNA of 21 

susceptible varieties was available (Gebhardt et al. 2004) from the collection maintained 

by the IPK potato germplasm bank at Groß-Lüsewitz (Germany). S. vernei clone 62-33-3 

(Ross 1986) and the interspecific hybrid clone AM78.3778 (Rouppe van der Voort et al. 

1998) were kindly provided by Björn Niere (Institute for Nematology, BBA Münster, 

Germany). Clone AM 78.3778 has been originally provided by Jan Draaistra. 
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DNA of the following Solanum species was available (Gebhardt et al. 2004); the number 

of accessions per species is given in parenthesis: S. acaule (3), S. alandiae (3), S. andigena 

(3), S. berthaultii (3), S. brevicaule (3), S. bukasovii (3), S. canasense (3), S. chacoense (3), 

S. demissum (3), S. dulcamara (1), S. etuberosum (2), S. gourlayi (3), S. hondelmannii (2), 

S. kurtzianum (3), S. leptophyes (3), S. lignicaule (1), S. maglia (1), S. megistacrolobum 

(2), S. microdontum (3), S. morelliforme (1), S. nigrum (1), S. neorossii (1), S. oplocense 

(3), S. phureja (3), S. pinnatisectum (1), S. sparsipilum (3), S. spegazzinii (3), S. 

stenotomum (3), S. stoloniferum (3), S. vernei (3), S. verrucosum (3). See appendix for the 

accession numbers. 

Allele specific PCR of the HC marker: The combination of the forward primer 5’ 

ACACCACCTGTTTGATAAAAAACT 3’ with the reverse primer 5’ 

GCCTTACTTCCCTGCTGAAG 3’ resulted in haplotype c specific amplification of a 276 

base pair DNA fragment using the following protocol: 50 ng template DNA were 

amplified in 15 μl PCR-mix (20 mM Tris-HCl, pH 8.4, 1.5 mM MgCl2, 50 mM KCl, 100 

μM dNTP, 200 nM of each primer, 2% v/v DMSO, 1 unit Taq DNA polymerase) and the 

PCR touchdown conditions: 5 min at 94°C, one cycle of 1 min at 94°C, 1 min at  65°C and 

1 min at 72°C, six cycles of 30 sec at 94°C, 30 sec at 65°C  decreasing the annealing 

temperature to 60°C by 1°C per cycle and 30 sec at 72°C, 30 cycles of 30 sec at 94°C, 30 

sec at 60.5°C and 30 sec at 72°C, finally 5 min at 72°C. PCR products were separated on 

standard agarose gels and visualized with ethidium bromide staining. The marker 

SPUD1636 was amplified as described (Bryan et al. 2002). The BA213c14t7 (snp139 and 

snp 274) primers were as followed f-CAATTGATTCATTTTATGTAGCGAG, r-

TCTTGACGCAAACCTCTGCGAG, the amplicon was sequenced with the following primer: fn- 

AATATAAGATATAACTAAATTAAC. 

 

Results 

Evaluation of potato varieties for markers HC and SPUD 1636 

Thirty three varieties with resistance to G. pallida pathotypes Pa2 or Pa2/Pa3, the 

differential S. vernei clone 62-33-3 (Pa2) (Ross 1986), AM 78.3778 (Pa2/3) (Rouppe van 

der Voort et al.1998) and 21 susceptible varieties as control group were tested for the 

presence of the HC marker. With the exception of cv ‘Karakter’, all varieties with high 

resistance to G. pallida pathotype Pa2/3 and clone AM78.3778 were HC positive. The six 
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varieties with resistance to pathotype Pa2 only, the variety ‘Sante’ with resistance to 

pathotypes Pa1 and Pa2, the S. vernei clone 62-33-3 and all susceptible varieties were HC 

negative. From five varieties with reported intermediate or partial resistance to G. pallida 

(Amado, Kantara, Kardent, Katinka and Pallina), two were HC positive and three were 

negative (Table 3.1). In addition the set of potato varieties and S. vernei differential clones 

were tested for presence or absence of the diagnostic SPUD1636 marker, which is linked 

to a major QRL to G. pallida in the same region on potato chromosome V (Bryan et al. 

2002). All susceptible varieties tested lacked the SPUD1636 marker, but SPUD1636 was 

present in only 12 of the 22 highly resistant varieties, in 8 of the 12 varieties with 

incomplete resistance, and in both S. vernei differential clones (Table 3.1).  

 

 
Table 3.1 Population test of markers HC, BA213c14t7-snp139, BA213c14t7-snp274 and 
SPUD1636 (Bryan et al. 2002) in varieties susceptible or resistant to G. pallida according 
to passport data. 
 

Variety or clone Breeder Resistance to 
G. pallida 
pathotypes1 

HC snp274 snp139 SPUD
1636 

Angela BNA Susceptible 0 AAAA GGGG 0 
Arkula NORIKA Susceptible 0 AAAA GGGG 0 
Assia Uniplanta Susceptible 0 AAAA GGGG 0 
Christa KWS Saat (N: Ragis) Susceptible 0 AAAA GGGG 0 
Clarissa BNA Susceptible 0 AAAA GGAA 0 
Desiree Lange, W. Susceptible 0 AAAA GGGG 0 
Gloria Saatzucht Soltau- Bergen Susceptible 0 AAAA GGGG 0 
Grata Stader Saatzucht Susceptible 0 AAAA GGGG 0 
Hela Vereinigte Saatzuchten Susceptible 0 AAAA GGGG 0 
Karat NORIKA Susceptible 0 AAAA GGAA 0 
Karlena NORIKA Susceptible 0 AAAA GGGG 0 
Koretta NORIKA Susceptible 0 AAAA GGGG 0 
Lyra BNA Susceptible 0 AAAA GGGG 0 
Maxilla NORIKA Susceptible 0 - - 0 
Milva Saatzucht Berding Susceptible 0 AAAA GGGG nt 
Nora BNA Susceptible 0 AAAA GGGG 0 
Selma  Bavaria Saat Susceptible 0 AAAA AAAA 0 
Tempora BNA Susceptible 0 AAAA GGAA 0 
Toccata BNA Susceptible 0 AAAA GGAA 0 
Tomensa BNA Susceptible 0 AAAA GGGG 0 
Ute Bavaria Saat Susceptible 0 AAAA GGGG 0 
Avano Karna Pa2/3 1 TTTT AAAA 0 
Avarna Karna Pa2/3 1 TTTT AAAA 1 
Aveka Karna Pa2/3 1 AATT GGAA 1 
Averia Karna Pa2/3 1 TTTT AAAA 1 
Aviala Karna Pa2/3 1 TTTT AAAA 1 
Brisant Bavaris Saat Pa2/3 1 AATT GGAA 0 
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Variety or clone Breeder Resistance to 
G. pallida 
pathotypes1 

HC snp274 snp139 SPUD
1636 

Festien E.J. Feunekes Pa2/3 1 AAAA AAAA 1 
Florijn Hoiting Pa2/3  1 ATTT GGAA 0 
Goya J. Goosen Pa2/3 1 ATTT GAAA 0 
Innovator HZPC Pa2/3 1 AAAT  AAAA 0 
Karakter Averis Saatzucht Pa2/3 1/0 2 AAAT GGGG 0 
Kartel Karna Pa2/3 1 ATTT GAAA 1 
Melanie H.K.Kroeze & G.M. Bunte Pa2/3 1 AATT GGAA 1 
Menco J.H. Mencke Pa2/3 1 AATT GGAA 1 
Mercator J.H. Mencke Pa2/3 1 AATT GAAA 0 
Mercury J.H. Mencke Pa2/3 1 AATT GGAA 0 
Nomade Matschaap Boerhave VOF Pa2/3 1 AATT GGAA 0 
Seresta R.H. Sloots Pa2/3 1 ATTT GAAA 1 
Siamero Agrico Pa2/3 1 AATT GGAA 1 
Stabilo R.H. Sloots Pa2/3 1 TTTT AAAA 1 
Starga R.H. Sloots Pa2/3 1 AATT GGAA 1 
Valiant H. Kuipers Pa2/3 1 TTTT GAAA 1 
AM78.3778  Pa2/3 1 - - 1 
Elles B.F. Leestemaker & A. Smid Pa2 0 AAAA GGGG 1 
Feska E.J. Feunekes Pa2 0 AAAA AAAA 0 
Karida Karna Pa2 0 AAAA GGGG 0 
Karnico Karna Pa2 0 AAAA GGGG 1 
Producent Kweekbedrijf Prummel Pa2 0 AAAA GGGG 0 
S.vernei 62-33-3  Pa2 0 - - 1 
Sante J. Vegter Pa1/2 0 AAAA GGGG 1 
Amado BNA Pa2/3 partial  1 AATT GGAA 0 
Kantara Karna Pa2/3 partial  0 - - 1 
Kardent Karna Pa2/3 partial 1 AATT GGGA 1 
Katinka Karna Pa2/3 partial  0 AAAA AAAA 1 
Pallina Bavaris Saat Pa2/3 partial  0 AAAA GGGG 1 

 
1Resistance according to ‘81e rassenlijst Landbouwgewassen 2006’ and ‘Beschreibende Sortenliste 
Kartoffeln 2005’. 
2 This variety gave inconsistent results for the HC marker in repeated tests. 
nt: not tested 
 

Evaluation of the diagnostic value of the HC marker 

In an earlier study, a group of SNP markers linked to the resistance QTL were co-

segregating and found to be located on the same haplotype (Sattarzadeh et al. 2006). The 

group included, snp139 and snp274 in amplicon BA213c14t7, and one SNP used to 

develop the HC marker, BA87d17t3 snp212 (Table 3.2). In order to determine the 

diagnostic value of the HC marker, the 54 varieties were scored additionally for the 

markers BA213c14t7 snp139 and snp274 by amplicon sequencing (Table 3.1).  The 

haplotype c specific allele T of snp274 was in nearly complete linkage disequilibrium with 

the HC marker, the only exception being cv ‘Festien’ (Table 3.1). Based on the dosage of 
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snp274 allele T, the G. pallida resistant varieties were mostly duplex, triplex or even 

quadruplex for the resistance allele. In contrast, the haplotype c specific allele A of snp139 

was less diagnostic, as it occurred in all varieties with resistance to G. pallida pathotype 

Pa2/3, but also in five susceptible varieties and in cv  ‘Feska’ being resistant only to 

pathotype Pa2 (Table 3.1).  

 
Table 3.2 Haplotype model deduced from the observed segregation of three SNP markers 
linked to QTL for nematode resistance on chromosome V (after Sattarzadeh et al. 2006). 
Haplotype specific nucleotides are shown in bold letters. 
 

Position ► 
Haplotype▼ 

BA87d17t3 
snp212 

BA213c14t7 
snp274    snp139 

a C A G 
b C A G 
c T T A 
 

Tracking the origin of the HC marker allele 

Initially the specificity of the HC marker was assessed in 76 accessions of 31 different wild 

Solanum species and the results clearly showed the presence of HC exclusively in Solanum 

vernei (data not shown). Further we were interested in the spread of the introgression 

within S. vernei and therefore tested the presence or absence of the marker in a total of six 

different accessions (Table 3.3). Only genotypes of accessions BGRC 17542 and BGRC 

24732 were found positive for the marker and within these two accessions not all 

genotypes were HC positive.  

 

Table 3.3 Test range of Solanum vernei accessions.  

CGN1 BGRC2 Origin in Argentina Total number of plants HC positive 
plants 

18110 24729 ? 27 0 

21315 8241 Province Tucuman 32 0 

17836 15451 Province Jujuy 33 0 

17995 17542 Province Tucuman 32 31 

18111 24732 Province Tucuman 37 35 

17992 17536 Province Jujuy 33 0 
 

1Centre for Genetic Resources, the Netherlands, www.cgn.wur.nl 
 2Braunschweig Genetic Resource Center 
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Discussion 

The results of our study show that SPUD1636 was less diagnostic for high resistance to G. 

pallida pathotype Pa2/3 than the HC marker, BA213c14t7 snp139 and snp274. Physically 

snp274 is closer to HC than snp139 (Table 3.1). The differences in the diagnostic values of 

the two markers infer a possible decrease of the QTL between those two positions. To 

follow up on this hypothesis a fine mapping experiment of this QTL was carried out 

(Chapter 4). 

The HC marker is the most diagnostic DNA marker currently available for high resistance 

to G. pallida. It was detected in almost all tested german or dutch potato varieties with high 

resistance levels to G. pallida pathotype Pa2/3 and most probably derives from the wild 

relative S. vernei. The resistance allele of S. vernei detected by the HC marker on potato 

chromosome V was named RGp5-vrnHC because its position is identical or very similar to 

the major cyst nematode QRL Grp1 and Gpa5 described previously (Rouppe van der 

Voort et al.1998, 2000; Sattarzadeh et al. 2006).  

The present results indicate that the allele RGp5-vrnHC has been widely used in resistance 

breeding in Germany and the Netherlands. The origin of this allele is unknown, as several 

S. vernei clones have been described as resistance sources (Ross 1986), which are not 

available any more for testing. Also parental lines of the varieties tested were not available 

for this analysis. At this point, we can only exclude as a source clone S. vernei 62-33-3, 

which is resistant to G. pallida pathotype Pa2 (Ross 1986) and was accordingly HC 

negative. On the other hand we were able to confirm the presence of the introgression in 

hybrid clone AM 78.3778, which is related by descent to S. vernei. In the future S. vernei 

accessions available in germ plasm collections can easily be screened by PCR with the HC 

marker.  

Some varieties with incomplete resistance such as ‘Amado’ and ‘Kardent’ were HC 

positive. This can result from incomplete dominance of the RGp5-vrnHC allele in certain 

genetic backgrounds or by using G. pallida populations which partially overcome the 

resistance allele RGp5-vrnHC in the resistance assessment (Sattarzadeh et al. 2006).  

Many experiments have been performed to track and characterize the introgressions from 

S. vernei in modern breeding material (Jacobs et al. 1996), and to assess the potential for 

future breeding programmes. In this study we were able to show the diagnostic value of the 

HC marker to detect varieties with high resistance to G. pallida Pa2/Pa3 and to show that 
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the resistance allele from S. vernei detected by the HC marker on potato chromosome V is 

present in two out of six accessions. 

Similarly to this Gebhardt et al. (2004) were able to confirm that marker alleles associated 

with increased resistance to late blight and late plant maturity originated from an 

introgression from the wild species S. demissum.  

For the development of molecular markers through linkage and association studies, the 

investigation of the materials held in potato collections, such as the Commonwealth Potato 

Collection or the IPK Potato Collection at Groß Luesewitz (GLKS), is a feasible starting 

point. 

The two accessions positive for the HC marker originate from the same province in 

Argentina, namely Tucuman. This may be by chance alone or it could be an indication that 

some accessions of the S. vernei population in this area have evolved high levels of 

resistance due to strong selection pressure from the nematode.  

The results of this study also reveal that the pedigree information available for potato 

cultivars is misleading in the sense that it does not clearly name the origin of resistance to 

G. pallida. The clone VTn 62-33-3 was regarded as the origin of Pa2/Pa3 resistance 

according to pedigree information (Figure 3.1) despite the fact that it is only resistant to 

Pa2 (Kort et al. 1977). Due to the lack of the HC marker fragment in the PCR assay we 

could prove that this clone was not the source of resistance. 

 

Conclusions 
The present study intriguingly demonstrates the power and diverse application of DNA 

based molecular markers. The HC marker assay allows a specific selection of individuals 

resistant to G. pallida. The use of DNA markers opposed to phenotypic assays, which 

often take several years, reduces cost and time and is a much more accurate method to 

accomplish breeding goals. PCR-based marker assays for the detection of favourable traits 

will help improving the characteristics of modern potato varieties (see also Chapter 2). 

This strategy is called marker assisted selection (MAS).  
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Fine mapping of a quantitative trait locus 
(QTL) for resistance to Globodera pallida in 
tetraploid potato (Solanum tuberosum) based 
on population genetics 
 
 
_________________________________________________________________________ 

Abstract 

Potato cultivars consist mainly of S. tuberosum ssp. tuberosum clones harbouring few 

introgressions from wild Solanum species, which have been repeatedly crossed with each 

other. To fine map a quantitative trait locus (QTL) for resistance to G. pallida, a collection 

of 38 susceptible and 41 resistant tetraploid breeding clones and varieties related by 

descent were genotyped using Single Nucleotide Polymorphisms (SNPs). SNPs were 

identified at eight loci within the interval between markers GP21-GP179 known to flank 

the QTL and at two loci outside this interval on chromosome V. Based on the SNP data, 

linkage disequilibrium (LD) and marker-trait associations were analyzed. Marker-trait 

associations were identified over a genetic distance > 2 cM due to the LD that exists in this 

region. We were able to delimit the region harbouring the QTL between SNP markers 

GP21_SNP1257 and BA213c14_SNP274 by the deduction of haplotype(s) associated with 

the resistant phenotype.  

_________________________________________________________________________
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Introduction  

A major yield limiting factor in potato cultivation is the potato cyst nematode, Globodera 

pallida (Greco 1988; Marks RJ and Brodie BB 1998). Under poor nematode management, 

crop losses induced by G. pallida can range from 20 to 70%. The propagation of nematode 

resistant crops could counteract this problem and therefore breeding for resistance against 

G. pallida is one of the major goals of breeding companies and research laboratories 

working with the potato crop. Breeding for superior varieties could be facilitated by the 

development of molecular markers, which detect favourable alleles at an early stage and 

thus allow for a precise and fast selection of good breeding material. A PCR-based marker 

(HC marker) diagnostic for potato varieties with high resistance to G. pallida pathotypes 

Pa2/3 was developed based on Single Nucleotide Polymorphisms (SNPs) (Sattarzadeh et 

al. 2006). The HC marker is located on chromosome V in a hot spot for resistance to 

various pathogens between RFLP markers GP21 and GP179 (Leonards-Schippers et al. 

1992, 1994; Caromel et al. 2005; Kreike et al. 1994; Rouppe van der Voort et al. 1997, 

2000; Ritter et al. 1991; de Jong et al. 1997) and tags a major quantitative resistance locus 

(QRL) against the nematode. This interval was shown to have a genetic size of 3 cM 

(Meksem et al. 1995). 

Understanding the mechanisms of resistance requires the cloning and understanding of 

genes involved in the characterization of these traits. Fine mapping of the QTL is a first 

step towards the ultimate goal of identifying the underlying gene or genes. The strength of 

LD in a region can be inferred by the amount of association between single nucleotide 

polymorphism (SNP) markers. Linkage disequilibrium (LD) is the term used for a non-

random association of alleles at two or more loci (Tenesa et al. 2003).  If two loci are in 

LD some combinations of alleles occur more or less frequently in a population than would 

be expected from a random formation of the haplotypes. The potential of association 

mapping depends on the physical size of LD. 

Haplotypes are particular combinations of alleles observed in a population. When a 

mutation arises, it does so on a specific chromosomal haplotype (Gabriel et al. 2002). 

Therefore association between a mutant allele and its ancestral haplotype is only disrupted 

by mutation and recombination in subsequent generations and it should be possible to trace 

each variant allele in the population by identifying the particular ancestral segment from 
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which it arose. However, LD does not necessarily require a physical connection on a 

chromosome resulting in one haplotype; therefore it is not possible to unambiguously 

deduce the number of haplotypes solely from LD information. 

Another caveat using population genetics is the occurrence of population structure, which 

can result in “spurious associations” between a phenotype and markers that are not linked 

to any causative locus (Lander and Schork 1994). Such associations occur when the 

presence of a trait varies across subpopulations, thereby increasing the probability that 

individuals displaying the trait will be sampled from particular subpopulations. Any 

marker allele that is in high frequency in the overrepresented subpopulations will then be 

associated with the trait (Pritchard et al. 2000).  

Combining information about marker-trait associations and LD structure we acquired 

information about the observed region harbouring the QTL. In addition we determined 

haplotype(s) associated with the resistant phenotype. As a result we could map the QTL to 

a genetic interval of 2 cM, which equals a physical distance between 500-1000 kbp 

(Chapter 5). 
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Materials and Methods 

Plant material: Seventy-nine varieties and breeding clones were obtained from Saka-Ragis 

Pflanzenzucht, Böhm-Nordkartoffel Agrarproduktion (BNA), Bavaria Saat (by courtesy of 

A. von Zwehl), HZPC Holland B.V., Averis Seeds B.V., Karna, E.J. Feunekes, 

Kweekbedrijf Prummerl and B.F. Leestemaker & A. Smid (by courtesy of Jan Draaistra). 

The breeding clones obtained from Saka-Ragis Pflanzenzucht and Böhm-Nordkartoffel 

Agrarproduktion (BNA) were encoded with a letter (‘S’ for Saka- Ragis and ‘B’ for Böhm- 

Nordkartoffel) and a number. 

Assessment of resistance to G. pallida: previously described in chapter 2.  

The status of nematode resistance of the varieties was obtained from the variety lists of the 

Netherlands (81e rassenlijst Landbouwgewassen, 2006, ISSN 0168-7484) and Germany 

(Beschreibende Sortenliste Kartoffeln, 2005, ISSN 1430-9777). 

 
 
Table 4.1 Population with presence or absence of the HC marker and the corresponding 
breeding company. 
 

  HC marker positive (resistant) HC marker negative (susceptible) 
Number Genotype Breeder Genotype Breeder 

1 Avano Karna B01 BNA 
2 Avarna Karna B02 BNA 
3 Averia Karna B03 BNA 
4 Aviala Karna B04 BNA 
5 B23 BNA B05 BNA 
6 B24 BNA B06 BNA 
7 B25 BNA B07 BNA 
8 B37 BNA B08 BNA 
9 B39 BNA B09 BNA 

10 B41 BNA B10 BNA 
11 B42 BNA B11 BNA 
12 B43 BNA B12 BNA 
13 B44 BNA B13 BNA 
14 B47 BNA B14 BNA 
15 B48 BNA B15 BNA 
16 B50 BNA B16 BNA 
17 B51 BNA B17 BNA 
18 B52 BNA B18 BNA 
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  HC marker positive (resistant) HC marker negative (susceptible) 
Number Genotype Breeder Genotype Breeder 

19 B55 BNA B19 BNA 
20 B80 BNA B31 BNA 
21 B96 BNA B62 BNA 
22 B108 BNA Elles B.F. Leestemaker & A. Smid 
23 Brisant Bavaris Saat Kantara Karna 
24 Festien E.J. Feunekes Karida Karna 
25 Innovator HZPC Karnico Karna 
26 Karakter Averis Saatzucht Pallina Bavaris Saat 
27 S02 Saka-Ragis Producent Kweekbedrijf Prummel 
28 S03 Saka-Ragis S12 Saka-Ragis 
29 S07 Saka-Ragis S13 Saka-Ragis 
30 S08 Saka-Ragis S14 Saka-Ragis 
31 S09 Saka-Ragis S15 Saka-Ragis 
32 S28 Saka-Ragis S16 Saka-Ragis 
33 S50 Saka-Ragis S17 Saka-Ragis 
34 S61 Saka-Ragis S18 Saka-Ragis 
35 S73 Saka-Ragis S19 Saka-Ragis 
36 S76 Saka-Ragis S20 Saka-Ragis 
37 S83 Saka-Ragis S49 Saka-Ragis 
38 S101 Saka-Ragis S64 Saka-Ragis 
39 S105 Saka-Ragis    
40 S108 Saka-Ragis    
41 Siamero Agrico    

 

DNA isolation: Young, healthy potato leaves were harvested from each individual, freeze 

dried and stored in air-tight containers at -20°C. Total genomic DNA was extracted from 

0.3 g – 0.4 g freeze dried leaf material according to Bormann et al. (2004). 

Concentration measurement of DNA: previously described in chapter 2. 

Genotyping of the population 

Standard PCR reaction: previously described in chapter 2. 

 

Purification of PCR products for sequencing: previously described in chapter 2. 

Sequencing of PCR amplicons: All markers with the exception of GP179 were sequenced 

as previously described in chapter 2. Sequence information which inferred a recombination 
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event (individuals S09, S28, and S61) used for the deduction of the haplotype(s) were 

sequenced forward and reverse. 

Detection of single nucleotide polymorphisms (SNPs): previously described in chapter 2. 

Microsatellite Analysis: Nineteen SSR-markers (Feingold et al. 2005; Milbourne et al. 

1998) distributed on 11 chromosomes were scored for 2-7 different alleles and employed 

to analyze population structure (Figure 4.1, Table 4.2). See chapter 2 for more details on 

the methods. 

 

Figure 4.1 SSR loci StI013 (Feingold et al. 2005) separated on Spreadex Gel for nine 
different varieties, right lane size marker M1 (Elchrom Scientific, Cham, Switzerland). 

Assessment of population structure: Population structure was analyzed using the program 

STRUCTURE version 2.1 (Pritchard et al. 2000).  

Table 4.2 SSR markers scored in the BNA and SARA population to assess population 
structure.  

SSR marker Primer sequence 5'-3' TA°C Size range (bp) LG 
f-gct gct aaa cac tca agc aga a  60 – 54* 78 - 112 VI StI 004 r-caa cta caa gat tcc atc cac ag     
f-cca ctt cct cca ctt cca aa  60 – 54*  240 -340 III StI 013 r-cca tgg ttg cac caa cta ga     
f-gac gca gaa ctc atc ttg ttc a  60 106 - 127 IV StI 020 r-gca aaa ttt gaa aaa cta tgg atg     
f-tct cca att act tga tgg acc c  63 114 - 145 VIIIStI 022 r-caa tgc cat aca cgt ggc ta     
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SSR marker Primer sequence 5'-3' TA°C Size range (bp) LG 
f-gcg aat gac agg aca aga gg  60 – 54* 160 - 280 X StI 023 r-tgc cac tgc tac cat aac ca     
f-cgc cat tct ctc aga tca ctc  60 – 54* 149 - 186 II StI 024 r-gct gca gca gtt gtt gtt gt     
f-ata ccc tcc aat ggg tcc tt  60 170 - 217 XI StI 028 r-ctt gga gat ttg caa gaa gaa     
f-caa tgc gaa tgt tgc tac tgg t  60 – 54* 127 - 140 I StI 043 r-atc cac caa gac ctc cag aa     
f-act gct gtg gtt ggc gtc  60 – 54* 128 - 170 VIIIStI 047 r-acg gca tag att tgg aag cat c     
f-caa gca cgt tac aac aag caa  60 – 54* 77 - 103 V StI 058 r-ttg aag cat cac ata cac aaa ca     
f-aat tta act tag aag att agt ctc  48 75 - 90  XI STM 0037 r-att tgg ttg ggt atg ata     
f-aac tct agc agt att tgc ttc a  54 108 II STM 0038 r-tta ttt agc gtc aaa tgc ata     
f-att tga att gaa gaa ctt aat aga a  53 226 VII STM 1043 r-cac aaa caa aat act gtt aac tca     
f-caa ttt cgt ttt ttc atg tga cac  59 200 - 268  STM 1052 r-atg gcg taa ttt gat tta ata cgt aa     
f-tga ttt agt tgc ttg ttt g  54 90 - 160 VII STM 1097 r-gct ttc gat cct aat aca cc     
f-tga ttc tct tgc cta ctg taa tcg  57 164 - 185 VII STM 1104 r-caa agt ggt gtg aag ctg tga     
f-tcc agc tga ttg gtt agg ttg  60 150 - 200 X STM 1106 r-atg cga atc tac tcg tca tgg     
f-gcg gcc gct tct cag cca a  64 247 X STM 2012 r-tct cgt tca atc cac cag atc     
f-caa ctc aaa cca gaa ggc aaa  57 168 - 213 IX STM 3012 

  r-gag aaa tgg gca caa aaa aca        
*Touch down PCR; StI markers: Feingold et al. 2005; STM markers: Milbourne et al. 1998 

Pyrosequencing  

Pyrosequencing was performed to analyze marker GP179 according to the manufacturer’s 

instructions (Biotage AB, Uppsala, Sweden).  

All oligonucleotides were synthesized and HPLC-purified by SIGMA-Genosys, Germany. 

PCR products were produced using the primer pairs GP179r1pyro-biotin, 5′-(biotin) CCC 

ATG GCT ACA TGC ATT ATG TAT T -3′; and GP179f1pyro, 5′- TCC TCC TTT GAA 

ATA TGT TTC ACT TCT A -3′ .The primer pair produced a 217-bp fragment.  
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PCR conditions: PCR was carried out in a total volume of 25 μl containing 4 mM Tris–

HCl, pH 8.3, 20 mM KCl, 3 mM MgCl2, 0.5 µM each primer, 0.2 mM dNTPs, 1 unit Taq 

DNA Polymerase (Invitrogen Life Technologies, Freiburg, Germany). After initial 

denaturation at 94 °C for 2 min, 50 cycles of amplification were carried out starting at 93 

°C for 45 s, followed by 45 s at 57 °C and 1 min at 72 °C, with a final extension at 75 °C 

for 10 min. PCR products were quantified by 1.5% gel electrophoresis.  

Solid-phase template preparation for single-stranded DNA template: Fifteen microliters of 

biotinylated PCR product was immobilized onto 5 μl streptavidin-coated Super 

Paramagnetic beads (Streptavidin Sepharose™ High Performance, Amersham Biosciences, 

Sweden) in Binding buffer (10 mM Tris–HCl, 2 M NaCl, 1 mM EDTA, 0.1% Tween 20; 

pH 7.6) for 15 min while on a shaker. The Streptavidinbead–template complex was 

captured using a PSQ96 Sample Prep tool (Biotage AB, Uppsala, Sweden) and single-

stranded template was generated by washing in 0.5 M NaOH for 1 min followed by 

washing in 100 μl washing buffer (20 mM Tris acetate, and 5 mM Mg acetate). One 

microliters of the sequencing primer (0.25 mM) was annealed to the immobilized template 

in 40 μl of annealing buffer and heated at 80 °C for 2 min followed by slow cooling to 

room temperature. 

Pyrosequencing: The sequencing reaction was performed automatically with a PSQ 96 

system (Biotage AB, Uppsala, Sweden) using a SNP reagent kit according to the 

manufacturer’s instructions and the sequencing primer GP179seq1, 5′- 

ACTTCTAAGTGATAATCTTGA -3′.  

Pyrosequencing was performed at 28 °C in a volume of 40 μl on an automated PSQ96 

instrument (Biotage AB, Uppsala, Sweden). A four-enzyme mixture of DNA polymerase, 

ATP sulfurase, firefly luciferase, and nucleotide-degrading apyrase; the substrate luciferin; 

and the four separate deoxynucleoside triphosphates were loaded into the reagent cartridge 

(PSQ96 SNP Reagent Kit; Biotage AB, Uppsala, Sweden). The sequencing procedure was 

carried out by a stepwise elongation of the primer strand upon sequential addition of the 

different deoxynucleoside triphosphates and simultaneous degradation of nucleotides by 

apyrase. 
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Statistical analysis 

Marker-trait association: Detecting a significant association (p < 0.01) between resistance 

and SNP markers was accomplished with the Chi-square test of independence using SPSS 

(SPSS 13 for Windows, SPSS Inc. Chicago, IL, USA).  

 

Linkage Disequilibrium: The statistical analysis of LD was carried out in collaboration 

with Dr. Joao Paulo. The amount of LD among SNPs was calculated using the Exact Test 

available in SAS Proc Freq (SAS Institute Inc. 2004), performed on contingency tables. 

The tests of independence were based on genotype frequencies for each SNP marker 

combination. Genotype classes were defined upon the observed combinations of 4 

nucleotides (corresponding to the 4 homologous chromosomes) to form the contingency 

table (Table 4.3).  

 

Table 4.3 Contingency table to test association of two loci. 

locus 2 ► TTTT TTTC TTCC total no. genotypes 
▼locus 1 

     
CCCC 6 1 2 9 
CCCT 9 4 1 14 
CCTT 9 4 2 15 
CTTT 13 2 0 15 

total no. genotypes 37 11 5 53 
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Results 

Association analysis using the HC marker: The molecular HC marker linked to the 

resistance QTL was used to screen tetraploid individuals to define the sample population. 

41 HC positive genotypes displaying high resistance to G. pallida and 38 HC negative 

genotypes susceptible to the nematode were used.  

SNPs were identified at eight loci including the interval markers GP21-GP179 known to 

flank the QTL and at two loci outside this interval on chromosome V. The loci involved 

are spanning a genetic interval of 38 cM on an integrated genetic map (Meksem et al. 

1995; Meyer et al. 2005). SNPs of markers BA87d17t3 and BA213c14t7 were successfully 

tested for resistance to G. pallida in prior linkage investigations (Sattarzadeh 2003). 

A total of 151 SNPs were scored. 55 SNPs, located within and between markers GP21 and 

BA213c14t7, were significantly associated with resistance to G. pallida (Table 4.4). 

 

Table 4.4 Markers used in this study, number of SNPs and number of significantly 
associated SNPs. Association was assessed with the Chi-square test at p < 0.01. 
 
Marker name Total 

SNPs  
Associated 
SNPs 

GP21 18 13 
Hypothetical 
protein (ORF3) 

33 17 

Hypothetical 
protein (ORF12) 

8 1 

ATPase (ORF20) 24 5 
BA87d17t3 12 6 
BA213c14t7 21 13 
Protein kinase 9 - 
GP179 5 - 
StPto 14 - 
239E4left 10 - 
 

LD between SNP markers: Information about the genetic structure in this region was 

obtained through LD analysis. The q-values of the pairwise associations are shown in 

figure 4.2. SNPs are plotted on both axes (SNP data from ORF3 is missing in this analysis 

due to technical constraints). The associations which were significant at a q < 0.05 are 

indicated in blue colour. Patterns of LD can be observed, regions with strong LD 
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surrounded by regions with weak LD. Strong LD persists mainly in the 3 cM region 

between RFLP markers GP21 and GP179. Associations reveal the presence of blocks with 

strong LD, mainly around the diagonal. This indicates a high degree of LD among SNPs 

within the sequenced amplicons (500-600 bp). In general LD becomes less pronounced as 

the distance between SNPs increases (Figure 4.2). LD decreases between markers GP179 

and StPto and remains weak regarding the most distal marker 239E4left.  

 

Figure 4.2 Scheme showing the linkage disequilibrium matrix and the position of the SNP 
markers on the genetic map. (A) Linkage disequilibrium matrix based on SNPdata; SNP 
positions are plotted on both axes. Associations which were significant at a q-value < 0.05 
are indicated in blue colour. Columns highlighted in violet mark SNP positions which were 
associated with resistance. (B) Refined region of the resistance QRL. The loci involved are 
spanning a genetic segment of 38 cM on an integrated genetic map from (Meksem et al. 
1995) and mapping experiments summarized in the PoMaMo database (http://gabi.rzpd.de, 
Meyer et al. 2005). 
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Fine-mapping of the QTL  

The HC marker was developed using allele-specific primers based on SNP loci 

BA87d17t3_SNP212 and BA87d17t3_SNP444 (Sattarzadeh et al. 2006). SNP markers 

associated with the HC marker (Figure 4.2, highlighted violet columns) were analyzed for 

the fine mapping of the QTL. For this we examined solely the SNP positions displaying 

nucleotides which clearly correlate with the more resistant phenotype, e.g. ORF3_SNP142 

(C/T), position ‘C’ is associated with the resistant individuals because only resistant 

individuals have a ‘C’ at this position. Table 4.5 gives an example for sixteen SNP 

positions for six resistant (1) and six susceptible (0) individuals. For these sixteen SNP 

positions, the nucleotides which are associated with resistance are displayed in the second 

row of table 4.5. The HC positive individuals S09 at position GP21_SNP1257, and S21 

and S61 at position BA213c14t7_SNP274 don’t harbour the nucleotide associated with 

resistance (indicated with an asterisk). Consequently we propose that recombination events 

must have occurred resulting in GP21_SNP1257 and BA213c14t7_SNP274 to be the two 

most distal positions flanking the QTL.  
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Table 4.5 SNP data of associated, informative markers: (1) HC positive; (0) HC negative genotypes. The second row displays nucleotides 
present in the resistant haplotype(s); SNP data with asterisks (*) mark the positions which differ from the SNP data of the other resistant 
individuals 
 

1 Pheno 
type 

Geno 
type 

GP21_ 
SNP 
1090 

GP21_ 
SNP 
1165 

GP21_ 
SNP 
1170 

GP21_ 
SNP 
1257 

ORF3_ 
SNP  
92 

ORF3_  
SNP 
142 

ORF3_  
SNP 
332 

ORF3_ 
SNP 
337 

ORF3_ 
SNP 
371 

ORF3_ 
SNP 
419 

ORF3_ 
SNP 
497 

ORF20
_ SNP 
449 

BA87d
17t3_  
SNP 
212 

BA87d
17t3_  
SNP 
444 

BA213c1
4t7_ SNP 
274 

BA213
c14t7_ 
SNP 
139 

2  Haplotype (s) 
  

C C C G T C C C T G A C T C T A 

3 1 S08 AAAC CGGG CTTT GTTT CCCT CTTT AAAC CGGG AAAT AAGG ATTT CCGG CCCT CCTT AAAT AGGG 
4 1 S09 AAAA* CCGG CCTT TTTT* CCCT CTTT AAAC CGGG AAAT AAGG ATTT CCCG CTTT CCCC ATTT AAAG 
5 1 S28 AAAC CCGG CCTT GTTT CCCT CTTT AAAC CGGG AAAT AAGG ATTT CCCC CCTT CCCC AAAA* AAAA 
6 1 S61 AAAC CGGG CTTT GTTT CCCT CTTT AAAC CGGG AATT AAGG ATTT CCGG CCTT CCCC AAAA* AAAA 
7 1 B48 AAAC CGGG CTTT GTTT CCCT CTTT AAAC CGGG AAAT AAAG ATTT CCGG CCTT CCTT AATT AAGG 
8 1 S73 AAAC CCGG CCTT GTTT CCCT CTTT AAAC CGGG AAAT AAGG ATTT CGGG CCTT CCTT AAAT AGGG 
9 0 S14 AAAA GGGG TTTT TTTT CCCC TTTT AAAA GGGG AAAA AAAA TTTT CCGG CCTT TTTT AAAA GGGG 

10 0 S15 AAAA GGGG TTTT TTTT CCCC TTTT AAAA GGGG AAAA AAAA TTTT CGGG CCTT CCTT AAAA GGGG 
11 0 S16 AAAA GGGG TTTT TTTT CCCC TTTT AAAA GGGG AAAA AAAA TTTT GGGG CCCC CTTT AAAA AGGG 
12 0 S17 AAAA CGGG CTTT TTTT CCCC TTTT AAAA GGGG AAAA AAAA TTTT GGGG CCCC TTTT AAAA GGGG 
13 0 S18 AAAA GGGG TTTT TTTT CCCC TTTT AAAA GGGG AAAA AAAA TTTT GGGG CCCC CCCC AAAA GGGG 
14 0 S19 AAAA GGGG TTTT TTTT CCCC TTTT AAAA GGGG AAAA AAAA TTTT GGGG CCCC CCCC AAAA GGGG 
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Table 4.6 Markers genotyped in this study. 

 

Marker 
name           

 BAC   
clone 

Primer sequence ( 5'- 3') Amplicon 
size (bp) 

TA  
(C°)

GP21 BC256o1 f-CCC TGA ACC TCC TTA TCC CC4 754 61 

  r-ACT ATT ATG TCT ATG AGG AAG TGG TC4   
ORF31 BA47f2 f-TTG CTT GAA CAT GAT CCA CAC4 750 59 
  r-GCT TAG TTT CCT CTG GCA CC   
  fn-CGA GAA GAG GAA AAA GAT GTC   
  rn-GCT ATG AAC TTC ATC AAC ATG   
ORF121 BA27c1 f-CGA TGA ATA TGA AGA TGA AGC4 426 57 
  r-ACC TTT TTA GCT TTG ATA CGT TG4   
ORF201 BA122p13 f-ACA AGT ACA GCT AAT AGA CCC4 560 55 
  r-GGC TTA TCG TCT TCA CTA CC4   
BA87d17t31 BA87d17 f-GTA GTA CAT CAA CAT ACA TTT TGC GG 510 56 
  r-CTC AGA ATT CAG AGC TTC AAC TGA TG   
  fn-AAC AGG CTT AAT CCT CAT CCG C   
BA213c14t71  BA213c14 f-CAA TTG ATT CAT TTT ATG TAG CGA G 650 56 
  r-CT TGA CGC AAA CCT CTG CGA G   
Protein 
kinase 

BA151m86 f-ACT TGA AAT GAT AAC AGG TAG GAG 550 58 

  r-CCC TTT TGC CAG TTC ATC C   
GP1792,5 BA151m8 f-TCC TCC TTT GAA ATA TGT TTC ACT TCT A 188 56 
  r-(BIO7 )CCC ATG GCT ACA TGC ATT ATG TAT T   
  s-ACT TCT AAG TGA TAA TCT TGA   
239E4left3  239E4 f-GGC CCC ACA AAC AAG AAA AC 340 56 
  r-AGG TAC CTC CAT CTC CAT TTT GTA AG   
StPto2 BC76f14 f-TCA CAT TGG ATT GGG TGG C4 670 55 
    r-CGA GTC CAC TGC CCA TTC4     

(f) forward primer, (r) reverse primer, (fn, rn) nested primers used for the sequencing reaction 
Primers were designed upon sequence information deduced from: 1Ballvora et al. 2007; 2 PoMaMo database 
(Meyer et al. 2005);  
Primers were designed from: 3Bakker et al. 2004; 4 Ilarionova 2005;  
5 SNPs scored using pyrosequencing 
6 BAC was sequenced, accession number AY 730335 
7 biotinylated 
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Statistical analysis 
 
Population structure: 
 

Nineteen simple sequence repeats (SSRs) or microsatellite markers were used as 

underlying markers for random genotyping of the population.  

The bar plot in figure 4.3 illustrates the distribution of fractions (vertical bar) adding to 

100% (1.00) of each single individual (horizontal line), if 5 subpopulations were present. 

The observation of the distribution of individual genotypes over the subpopulations shows 

that all individuals are strongly admixed, containing loci originating from all the 

subpopulations. This suggests the absence of population substructure; hence the remaining 

analysis was performed as for a single population (Joao Paulo, personal comment). 

 

 
Figure 4.3 Bar plot. Each individual is represented by a single vertical line broken into 5 
coloured segments. The numbers on the y-axis are the parts of the 5 groups in percent. All 
79 individuals examined are plotted on the x-axis. 
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Discussion 

Marker-trait associations, analysis of LD structure and haplotyping were used to increase 

the mapping resolution of the QTL for resistance to G. pallida. 

The diagnostic value of the HC marker with high resistance to the nematode suggests that 

the trait can be traced back to an allele or a few alleles at one single locus which was 

introgressed from Solanum vernei (Chapter 3). When genotyping numerous markers in the 

vicinity of this PCR marker, markers at a genetic distance of 2 cM corresponding to a 

physical distance between 500 and 1000 kb (Chapter 5) were found associated with the HC 

marker. This suggests that several alleles or haplotypes in this region might be physically 

linked. Apparently, since the time point of the introgression of the allele(s), insufficient 

recombination events have occurred to reduce linkage in this region. The assessment of LD 

in this region confirmed this assumption. The LD matrix (Figure 4.2) shows the LD 

between polymorphic sites of SNP marker loci along chromosome V. For a more 

comprehensive picture of LD in this section on chromosome V, more SNP data is needed 

between markers GP179 and 239E4left. 

Haplotypes are defined as a set of closely linked genetic markers present on one 

chromosome which tend to be inherited together. The potato population used in this study 

comprised of tetraploid breeding clones and varieties, which are separated by a few 

generations according to information in the ‘Potato Pedigree database’ (Hutten & van 

Berloo 2004). Therefore a relatively small number of haplotypes may be present reflected 

by the overall strong LD. We were able to assign haplotypes to the resistant phenotype. 

The number of haplotypes cannot be defined because several haplotypes could be present 

which are identical at the SNP positions we examined. Variation of SNP data in the 

susceptible group on the other hand could be explained by the fact that more diverse 

haplotypes which are not associated with resistance are present in the genome, which are 

not associated with resistance. 
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However divergences in SNP data of resistant individuals infer that a recombination event 

must have occurred separating the haplotype(s) present in the resistant group. A possible 

event is illustrated in figure 4.4. A part of chromosome V is shown, blue chromsomes 

represent S. tuberosum and the red chromosome originates from the donor of the resistant 

haplotype, S. vernei; the letters indicate the haplotypes which derived from table 4.5. A 

double recombination event could have occurred resulting in an introgression between 

marker loci GP21_SNP1257 and BA213c14t7_SNP274 harbouring the QTL conferring the 

resistance to G. pallida. 

Scoring of additional SNPs in the vicinity of the HC marker are required to further narrow 

down the region of the QTL.  

 

 
Figure 4.4 Scheme of a possible meiotic recombination event on chromosome V. Blue 
chromosomes originate from S. tuberosum and the red chromosome originates from S. 
vernei. The black letters are different haplotypes derived from the SNP data.  
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Regarding our results it appears that large segments of the chromosome were subjected to 

recombination, spanning a genetic region of > 3 cM (Figure 4.2). Solanum vernei, the 

species from which this QTL was originally introgressed, should be included in the 

analysis. A population segregating for this QTL could display enough polymorphism to 

facilitate the fine mapping. A similar approach was followed by Kaloshian et al. (1998) 

who combined data from the cultivated tomato (L. esculentum) and the wild relative (L. 

peruvianum) to localize the root-knot nematode resistance gene Mi to a region spanning 

less than 65 kb. 

Many factors, such as population mating patterns and admixture, can strongly influence 

LD. Generally, LD decays more rapidly in outcrossing species as compared to selfing 

species (Nordborg et al. 2000). Apparently recombination is less effective in selfing 

species, where individuals are more likely to be homozygous, than in outcrossing species. 

Nevertheless, reduction in recombination at our interval could be correlated to the presence 

of an alien segment derived from the introgression of the wild relative S. vernei. Studies of 

the tomato clearly show the suppression of recombination depending on the source and 

size of the introgression (Liharska et al. 1996, Kaloshian et al. 1998). Admixture is gene 

flow between individuals of genetically distinct populations as result of intermating. It 

results in the introduction of chromosomes of different ancestry and allele frequencies. 

Often the resulting LD extends to unlinked sites, even on different chromosomes, but 

breaks down rapidly with random mating (Pritchard et al. 1999). This aspect could also 

explain a similar observation in our data where LD extends partly even as much as 38 cM. 

Moreover selection for or against a phenotype controlled by two unlinked loci (epistasis) 

may result in LD despite the fact that the loci are not physically linked (Flint-Garcia et al. 

2003). However it should be noted that the appearance of LD between distant loci may also 

be due to statistical limitations or by chance alone.  

A higher reduction in recombination could also be assigned to the underlying chromosome 

structure. Recombination in the heterocentromeric region is known to be suppressed as 

opposed to the eurchromatic regions. In order to exclude this as the prevailing reason for 

our observations a Fluorescent in situ experiment was carried out and the segment was 

clearly located in the euchromatic region (Chapter 5). 

Linkage disequilibrium may vary between and within different species (Reich et al. 2001, 

Long et al. 1998). Sugarcane exhibits extensive long-range LD, approximately 10 cM 
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(Jannoo et al. 1999) which is comparable to potato chromosome V with a minimum of 3 

cM between markers GP21 and GP179 (Figure 4.2). There are several explanations. Firstly 

sugarcane and the potato are both outcrossing mating types but are propagated in a 

vegetative manner restricting crosses solely to the breeding process of new varieties 

(Jannoo et al. 1999). The majority of modern sugarcane cultivars were derived from the 

interspecific cross between Saccharum officinarum and S. spontaneum, followed by 

multiple backcrosses to S. officinarum. The resulting cultivars generally originated from 

fewer than 10 meioses since the first interspecific cross. Similarly, modern potato varieties 

were derived from Solanum tuberosum ssp. tuberosum harbouring few introgressions from 

wild Solanum species producing 5-6 meiotic generations within the past 100 years 

(Gebhardt et al. 2004).  

Simko et al. (2006) assessed LD in Solanum tuberosum and surveyed both coding and 

noncoding regions of 66 DNA fragments from 47 accessions for SNPs. The estimate from 

their data indicates that LD, measured as r2, declines below 0.10 at a distance of ∼10 cM 

but fragments show relatively fast decay of LD in the short range (r2 = 0.208 at 1 kb). In 

the present study all loci are located on the same chromosome spanning a region of 

approximately 38 cM. As opposed to the results of Simko et al. (2006), our results show 

strong LD in the short range of the sequenced amplicon (500-600 bp). This divergence 

shows that LD is highly influenced by the origin of the population. Simko et al. (2006) 

used different accessions of diploid and tetraploid S. tuberosum together with accessions of 

other Solanum species. In the present study solely tetraploid breeding material was 

included and thus the larger extent of LD could be expected. Hyten (2005) made a similar 

observation when comparing four different soybean populations on level of LD decline. In 

the domesticated Asian Glycine max population LD did not decline along the 500 kb 

sequenced region but the wild G. soja population had large LD decline averaging 12 kb. 

 

R1.3 as a candidate for a QTL conferring resistance to G. pallida 

Ballvora et al. (2007) identified 48 ORFs on a 417 kb contig within our region of interest 

including plant-specific leucine-rich repeat proteins highly similar to the potato R1 

resistance gene for Phytophthora infestans. This results in an average of 1 ORF every 9 

kbp. Accordingly we can expect about 55 to 111 ORFs in the 500 – 1000 kb region under 

investigation. The RGp5-vrnHC allele, detected with the HC marker, is defined through the 
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SNPs BA87d17t3_SNP212 and BA87d17t3_SNP444 (Sattarzadeh et al. 2006). These SNPs 

are located in the R1 homologue R1.3 displaying 74.7% identity to the R1 gene. R1.3 is a 

member of the leucine zipper/NBS/LRR class of plant resistance genes and it was shown to 

represent a putative functional resistance gene (Ballvora et al. 2007). It was felt that the 

diagnostic marker positioned on a putative resistance gene is strong circumstantial 

evidence for R1.3 as a candidate for the resistance QTL. Currently transgenic knock-out 

plants for the entire R1 resistance gene family are assessed for their resistance to G. pallida 

Pa2/3. For this, varieties highly resistant to Globodera pallida were transformed using 

Agrobacterium mediated transformation. 

This experiment serves to identify a gene involved in the resistance. The analysis of 

resistance gene homologues as candidates at QTLs for resistance to plant diseases has been 

used in several earlier studies (Pfleger et al. 2001; Geffroy et al. 2000).  

 

Statistical constraints  

The basic component of all LD statistics is the difference between the observed and 

expected haplotype frequencies. With our data the calculation was limited due to the lack 

of information about the gametal phase of the SNPs. The calculation of association was 

based on genotype combinations, each genotype consisting of 4-nucleotides. There are 

software packages available able to analyze the LD for tetraploids (Buckler 2003; 

Schneider et al. 1997). However they assume that the gametic phase is known or they use 

methods that assume random mating to compute LD. In this study we worked with a highly 

heterozygous population due to inbreeding of wild accessions and asexual reproduction in 

local areas. To address this limitation a method was developed to analyze SNPs at the 

tetraploid level that does not make any assumption on random mating (Joao Paulo, 

personal comment). However the difficulty, when applying the Exact test, is that there are 

many possible genotypic arrays (9025 pairwise comparisons) to consider. In the case of 

ORF12 we might observe that the detection of rare haplotypes is not in LD with more 

abundant haplotypes in the other region. However for this ORF, 30% of the data could not 

be evaluated due to technical reasons, which could be a simple reason for the lack of LD at 

this locus. 

The successful construction of an LD map on chromosome V revealed no sufficiently 

distinct region of LD to fine map the QTL detected by the HC marker.  
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Future prospects  

Linkage disequilibrium plays an integral role in association mapping, and determines the 

resolution of an association study (Flint-Garcia et al. 2003). LD-based approaches of 

association mapping will be used extensively also in Solanum populations when the 

genome-wide sequences become available. First sequence information about the tomato 

via the International Tomato sequencing project 

(http://www.sgn.cornell.edu/about/tomato_sequencing.pl) is already available. Information 

about the potato will become accessible via the Potato Genome Sequencing Consortium 

(http://www.potatogenome.net/). With the availability of whole genome sequences in the 

Solanaceae family we will be able to exploit further the structures of the potato genome.  

 

 

http://www.sgn.cornell.edu/about/tomato_sequencing.pl
http://www.potatogenome.net/
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Chapter 5 
Fluorescent in situ hybridization (FISH) 
mapping of the GP21 - GP179 region on 
chromosome V of potato (Solanum 
tuberosum) 
 
___________________________________________ 
 
Abstract 

The upper arm of chromosome five is known to harbour genes involved in the 

characterization of important agronomic traits, such as resistance to Globodera pallida and 

Phytophthora infestans. This interesting region is located between RFLP markers GP21 

and GP179. In the present study we aimed at defining the physical size of this segment 

using Fluorescent in situ hybridization (FISH) on pachytene chromosomes. FISH is a 

powerful cytogenetic mapping tool which allows reliable determination of physical 

distances between regions of interest. Three BAC clones, corresponding to marker loci 

GP21, GP179 and StPto, were selected and labelled as probes for FISH. The markers were 

discovered in the euchromatic region on the long arm of chromosome V spanning a region 

of approximately 5.8 µm, which was estimated to correspond to 3.5 Mb.  

_________________________________________________________________________ 
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Introduction 

New cultivars are being developed in Europe by more than 300 potato breeders growing 

about eleven million first year seedlings each year (Swiezynski 1987).  The breeding 

objectives are diverse. Cultivars have to be adapted for various types of utilization: direct 

human consumption; industrial processing; or animal feeding. Of major importance is 

resistance to nematodes, viruses, late blight, and storage diseases (Swiezynski 1987). 

Knowledge of the number and genomic position of factors controlling resistance has been 

obtained through analysis of diploid mapping populations using DNA-based markers 

(reviewed in Gebhardt and Valkonen 2001). One major objective in potato production is 

the establishment of resistance to the potato cyst nematode, Globodera pallida. This 

resistance trait shows a continuous variation and is assumed to be controlled by several 

genetic loci which act collectively on the expression of resistance (Meyer et al. 1998). 

These loci are referred to as quantitative trait loci (QTL). However, information on the 

extent and the molecular basis of these QTL is far from complete. The genetic distance 

between the RFLP markers GP21 and GP179 flanking one major QTL for resistance 

against G. pallida was estimated to be 3 centi Morgan (Meksem et al. 1995; Ballvora et al. 

2002).  

In early reports about the construction of genetic linkage maps between the potato and the 

tomato, the close relationship between the tomato and the potato was shown (Bonierbale et 

al. 1988). For seven chromosomes, the order of loci appears to be identical in tomato and 

potato, while for the other five - including chromosome V - intrachromosomal 

rearrangements are apparent. These rearrangements are paracentric inversions with one 

breakpoint at or near the centromere (Bonierbale et al. 1988, Tanksley et al. 1992). 

According to these findings markers GP21 and GP179 are included in an inversion that 

differentiates the tomato from the potato whereas marker Pto was placed distal on 

chromosome V on the opposite side of the centromere (Pillen et al. 1996). However, 

comprehensive physical data to confirm these findings is lacking to date. Work on the 

construction of a close contig in this region could not yet answer the question about the 

size of the complete region (Ballvora et al. 2007; Kuang et al. 2005).  

In situ hybridization is a technique that allows highly sensitive detection of specific nucleic 

acid sequences on chromosomes fixed on a microscope slide. Use of fluorescent labels for 

in situ hybridization is referred to as Fluorescence in situ hybridization (FISH) (for review 
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see de Jong et al. 1999; Jiang and Gill 1994, 2006). It is an effective and accurate 

cytogenetic tool for mapping single copy and repetitive DNA sequences on chromosomes. 

The hybridization of Bacterial Artificial Chromosomes (BACs) on pachytene bivalents has 

become a frequent tool to facilitate physical mapping in many different plant species, such 

as rice (Cheng et al. 2001a; 2001b, 2006), Medicago (Schnabel et al. 2003), tomato (Zhong 

et al. 1999), maize (Saddler et al. 2000; Wang et al. 2006), and Arabidopsis (Lysal et al. 

2001). The pachytene chromosome-based FISH mapping shows a superior resolving power 

compared to the somatic metaphase chromosome-based methods. The length of the 

chromosomes at meiotic pachytene is longer than at mitotic metaphase; for the tomato it 

was found to be about 15-times larger (de Jong et al. 2000). Pachytene chromosomes of the 

potato are quite comparable to tomato chromosomes indicating a close evolutionary 

relationship of these plants (Brown 1949; Barton 1950; Yeh and Peloquin 1965).  

Especially the digital imaging system using CCD (charged coupled device) cameras now 

enables cytogeneticists to collect and process large amounts of FISH data, thus allowing 

application of the FISH technique to large-scale physical mapping projects (Jiang and Gill 

2006). Using pachytene bivalents has the other advantage that the chromosome structure, 

such as euchromatin and heterochromatin, can be distinguished. In the potato the 

heterochromatic regions are confined to the regions around the centromere; telomeres are 

not characterized through distinct heterochromatic blocks (Ramanna and Wagenvoort 

1976).  

 

Also chromosome identification of S. tuberosum is generally based on pachytene analysis. 

Ramanna and Wagenvoort (1976) described chromosome V with a median centromere 

position and the chromatic part on the long arm being 1.5-2 times that of the short arm 

using dihaploid S. tuberosum ssp. tuberosum derived from cv. ‘Gineke’.  

We present data on the physical localization of the molecular markers GP21, GP179 and 

StPto located on chromosome V of the potato. Marker StPto was included in the 

experiment since previous experiments indicated the presence of additional QTL in this 

region beyond the interval GP21-GP179. In addition we wanted to position the markers 

with respect to the centromere and the telomere. Eventually, we aim to obtain valuable 

complementary information regarding size and chromosomal position of the marker loci to 

assist the map-based cloning efforts regarding QTL in this region. 
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We aimed to determine the physical size of a region on chromosome V which has been 

shown to harbour resistance factors (see chapter 4 for more details).  

 

Materials and Methods 

Plant material, BACs and primers: The diploid genotype P6/210 used for constructing the 

BAC libraries (Ballvora et al. 2002, 2007) was used for the in situ hybridization 

experiments. The BAC BA151m8 for marker GP179 was obtained from A. Ballvora 

(unpublished results). Primer sequences of the probes from markers GP21 and GP179 and 

BAC names are summarised below (Table 5.1). 

Table 5.1 Markers and their corresponding BAC, sizes, and primer sequences of the 
probes used for filter hybridization. 
 

Marker 
(BAC) 

Reference 
primers  Primer sequence ( 5'- 3') 

Amplicon 
size (bp) 

TA 
(C°) 

GP21 Ilarionova 2005 f-CCC TGA ACC TCC TTA TCC CC 754 61 
(BC256o1)  r-ACT ATT ATG TCT ATG AGG AAG TGG TC 
StPto Ilarionova 2005 f-TCA CAT TGG ATT GGG TGG C 670 55 
(BC76f14)   r-CGA GTC CAC TGC CCA TTC   
 

Standard PCR reaction: previously described in chapter 2. 

Purification of PCR products for sequencing: previously described in chapter 2. 

Sequencing of PCR amplicons: previously described in chapter 2. 

 

Detection of BACs for FISH: Filter hybridization was performed using a standard protocol 

(Sambrook et al. 1989). Radioactive labelled [a-32PdATP] (Amersham Biosciences) probes 

for markers GP21 and StPto were prepared using nick translation according to the 

description of the manufacturer (Invitrogen Life Technologies, Freiburg, Germany). 

Probes for filter hybridization were generated by PCR from 50 ng genomic DNA template 

of S. tuberosum in 20 μl buffer (20 mM Tris-HCl, pH 8.4, 2.5 mM MgCl2, 50 mM KCl), 

including 200 nM of each primer (Table 5.1), 100 μM of dNTP and 1.0 unit Taq DNA 

polymerase (Invitrogen Life Technologies, Freiburg, Germany). Standard cycling 

conditions were: 3 min initial denaturation at 94°C, followed by 40 cycles of 45 sec 

denaturation at 94°C, 45 sec annealing at the 56°C and 1 min extension at 72°C. Reactions 
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were finished by 8 min incubation at 72°C. PCR products were examined for quality on 

1.5% ethidium bromide stained agarose gels. 

DNA labelling for filter hybridization: 200 ng of PCR product was added to 2.5 µl buffer 

including pre-mixed nucleotide solutions (dNTP Mix (minus dATP): 0.2 mM each of  

dCTP, dGTP, dTTP, 500 mM Tris-HCl (pH 7.8), 50 mM MgCl2, 100 mM 2-

mercaptoethanol) (Invitrogen Life Technologies, Freiburg, Germany); 2.5 µl DNA 

Polymerase I/DNase I (Invitrogen Life Technologies, Freiburg, Germany) and 30 µCi α-

32PdATP] filled with sterile water to a final volume of 25 µl and incubate for 1h at 16°C. 

Purification of labelled DNA: A Sephadex™ G-50 column (Amersham Biosciences) was 

used to clean unincorporated radiolabelled nucleotides from the probe using gravity-flow 

chromatography. The probe and 400 µl TE buffer were added to the column and the flow-

through was discarded. 400 µl TE buffer were added and the purified probe was collected 

in a 1.5 ml Eppendorf tube and incubated for 5 min at 95°C.  

Filter hybridization:  High-density colony filters of the S. tuberosum P6/210 BAC library 

were pre-hybridized at 65°C for 1 h in glass tubes containing hybridization buffer (5 x 

SSPE, 5 x Denhardts’ solution (100 x Denhardts’: 2 g BSA (Bovine serum albumin), 2 g 

Ficoll® 400; 2 g PVP Poly-Vinyl-Pyrrolidon) and 0.08% SDS) adding 5 mg Herring 

Sperm DNA as a blocking agent to minimize non-specific binding of hybridization probe 

to the filter. The hot probe was added to the tubes and hybridized over night at 65°C. 

Washing and detection: Filters were washed three times for approx. 10 min at 65°C in 2x 

SSPE+ 0.1%SDS, 1x  SSPE+ 0.1%SDS and 0.2%SSPE+ 0.1%SDS respectively. 

Following 10 min in Southern wash buffer (50 mM NaH2PO4*2 H2O, pH 7; 10 mM EDTA 

Na2* 2 H2O; 2% SDS) at room temperature and they were then exposed for one day to 

filter (Kodak X-OMAT AR FILM). 

Potato genomic libraries: BA library: The BA BAC library was supplied by LION 

Bioscience AG (Heidelberg, Germany). The library was constructed from HindIII partially 

digested high-molecular-weight genomic DNA of the diploid potato genotype P6/210 in 

the binary vector pCLD04541 (Jones et al. 1992). The BAC library consists of 

approximately 100,000 clones with an average insert size of 70 kb. The colonies were 

stored in 264 384-microtitre plates (Genetix, Oxford, UK) in 2YT medium (Sambrook 
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et al. 1989) with freezing buffer (5.5% w/v glycine, 7 mM (NH4) SO4, 1.5 mM sodium 

citrate, 0.3 mM MgSO4, 13 mM KH2PO4, 27 mM K2HPO4). 

BC library: The potato S. tuberosum P6/210 genotype was used for the BC BAC library 

using the pECBAC1 vector (Fijter et al. 1997). The library is composed of 100,608 BAC 

clones with an average insert size of 80 kb, equivalent to ten times the genome coverage of 

the haploid S. tuberosum genome. 

Plant Material: S. tuberosum, P6/210 were grown in the greenhouse at 20°C with 16 h 

light until flowers started to develop.  

Preparation of pachytene chromosomes: We used essentially the method of Zhong et al. 

(1996) with small modifications. Immature flower buds of 1.5–1.8 mm in length were 

fixed in ethanol/acetic acid (3:1) for at least 3 h and stored in this fixative at −20°C for 

several months. For cell-wall digestion the buds were rinsed three times for 1 min in 

deionised water and transferred to a pectolytic enzyme mixture [0.3% (w/v) pectolyase 

Y23 (Sigma-Aldrich, St. Louis, MO, USA), 0.3% (w/v) cytohelicase (Sepracor, Jaures, 

France) and 0.3% (w/v) cellulase RS (Sigma) in citrate buffer (10 mM sodium citrate 

buffer pH 4.5)] at 37°C for 2 h. After digestion the anthers were rinsed with deionised 

water, and each flower bud was transferred to a droplet of water on a microscope slide. 

Anthers were dissected from flower buds with fine needles and transferred to a grease-free 

slide. The resulting cell suspension was spread on a clean glass slide with 30 µl 60% acetic 

acid at 45°C for 1 min. Finally, 1 ml ice-cold ethanol/acetic acid (3:1) was added in a circle 

around the suspension before leaving the slides to dry. 

Fluorescence in situ hybridization: FISH experiments were carried out in the Laboratory of 

Genetics in the group of Hans de Jong at Wageningen University, The Netherlands. BAC 

DNAs were isolated using the QIAGEN Plasmid Midi Kit according to the manufacturer’s 

instructions (QIAGEN GmbH, Hilden, Germany). BACs were labelled with biotin-16-

dUTP and/or digoxygenin-11-dUTP (Roche Diagnostics, USA) by standard nick 

translation, based on the replicational incorporation of modified nucleotides. The BAC 

clones were labelled using the manufacturer’s protocol (Roche Diagnostics, USA). 1 µg of 

DNA was labelled as follows: BC256o1 with biotin, BC76f14 with digoxigenin and 

BA151m8 with biotin as well as digoxigenin. Selected BACs were poor in repeats and no 
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Cot100 (a fraction of excess amount of unlabeled repetitive DNA) was needed to block the 

hybridization of repetitive DNA. Slides were incubated with RNase (100 µg/ml in 2x SSC) 

for 1 h and subsequently with Pepsin for 7 min (5 µg/ml in 0.01 M HCl). After each 

treatment slides were rinsed in 2x SSC three times for 5 min. The preparations were then 

fixed in 1% formaldehyde in PBS for 10 min washed again in 2x SSC three times for 5 

min, and dehydrated in ethanol series (70%, 90%, 100%, each 3 min) and air dried. The 

hybridization mix (20 µl/ per slide) contained labelled probes (2 ng each) in 50% (v/v) 

formamide, 2x SSC, 10% (w/v) sodium dextran sulphate and 50 mM phosphate buffer. The 

probe mix was denatured for 10 min at 100°C, chilled on ice and applied to the microscope 

slides. The slides were covered with a coverslip 23 x 50 mm and baked at 80°C for 2 min. 

Then preparations were incubated in a moist chamber at 37°C over night. Post 

hybridization washes were performed in 50% formamide, 2x  SSC for 5 min at 42°C 

followed by washing in 2 x SSC for 5 min. Before the detection and amplification the 

slides were washed in 4T buffer (4 x SSC, 0.05% Tween 20) for 5 min. Then 100 µl of 

TNB (0.1 M Tris- HCl pH 7.0, 0.15 M NaCl, 0.5% blocking reagent (Roche Diagnostics, 

USA) was added, covered with a coverslide (24 x 50) and incubated at 37°C for 30 min. 

Between all further incubation steps coverslides were removed in 4T buffer and slides 

washed 3-times in TNT buffer (0.1 M Tris- HCl pH 7.0, 0.15 M NaCl, 0.05% Tween 20) 

for 5 min. The first detection step was carried out with Texas Red conjugate avidin (2 

µg/ml, Roche) in TNB. The second detection step was performed with biotynilated anti-

avidin in TNB and sheep anti-dig-FITC in TNB. The third detection step was carried out 

with Texas Red conjugate avidin (2 µg/ml, Roche) in TNB and rabbit anti-sheep-Alexa 

488 in TNB. All detection steps were incubated in a moist chamber at 37°C for 1 h. 

Subsequently slides were washed twice in 2x SSC for 5 min and dehydrated in an ethanol 

series (70%, 90%, 100%, 3 min each).  

 

Imaging: Chromosomes were counterstained with 5 µg/ml DAPI in Vectashield anti-fade 

(Vector Laboratories). Slides were examined under a Zeiss Axioplan 2 Photomicroscope 

equipped with epi-fluorescence illumination, filter sets for DAPI, FITC and Texas-

Red/Cy3.5 fluorescence. Selected images were captured by a Photometrics Sensys 

1,305×1,024 pixel CCD camera and processed with Genus Image Analysis Workstation 

software V 2.7 (Applied Imaging Corporation). Fluorescence images were displayed in 

 77



Chapter 5 
 
 

grey value (DAPI) or pseudo-coloured and further improved for optimal brightness and 

contrast with Adobe Photoshop image processing software. 

 

Results 
 
Isolation of loci-specific BAC clones 

Specific probes for markers GP21 and StPto were used to identify corresponding BAC 

clones through filter hybridization in the available BAC libraries. In total we observed ten 

putative positive filter hybridization signals for marker GP21 and 19 putative positive 

signals for marker StPto. The BAC for marker GP179 was supplied by Agim Ballvora. 

Several selected BAC clones were confirmed via PCR and sequencing of the amplicons. 

One BAC for each marker was selected and used for the FISH experiment.  

 

Fluorescent in situ hybridization 

Plasmid DNA was isolated and hybridized to pachytene chromosomes. Hybridization 

signals of digoxigenin-dUTP-labelled BAC BC76f14 (StPto), biotin-dUTP-labelled BAC 

BC256o1 (GP21) and digoxigenin/biotin-dUTP-labelled BAC BA151m8 (GP179) were 

detected using  

sheep anti-dig-FITC and rabbit-anti-sheep Alexa 488 for the digoxigenin labeled BAC; 

Avidin Texas Red and biotynilated anti-avidin for the biotin- labeled BAC and together for 

the digoxigenin/biotin-labeled BAC. The three BACs appeared as green (StPto), red 

(GP21) and yellow (GP179) fluorescent dots on the chromosomes. The yellow signal is 

visible as a yellow-green-red dotted pattern probably due to a suboptimal transparency 

setting in Applied Imaging software (Hans de Jong, personal comment). BACs can 

produce multiple foci and even big ones as target sequences may contain local tandem 

arrays or duplicated single copy sequences.  

Signals with varying intensity and size could be observed among several chromosomes in 

different preparations. However, the pattern of three strong BAC signals on chromosome V 

co-localized in numerous nuclei in the euchromatic region. Two representative 

hybridization results are shown in figure 5.1.  
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Physical mapping on chromosome V 

In addition to the position of the markers, in situ hybridization also reveals the approximate 

position of the target region relative to the centromere and the physical distance between 

markers GP21, GP179 and StPto. Clear pachytene hybridizations were selected and 

photographed for further analysis. The distances between the centres of hybridization 

signals were measured in micrometers (µm) using the software program Image J, version 

1.36 (freely available on the internet at http://rsb.info.nih.gov/ij/). The values shown in 

table 5.2 are the average of measurements of four to six nuclei. At pachytene chromosome 

V has an average length of approximately 41 µm. The distance between GP21 and GP179 

was measured to be 1.6 µm and the region between GP179 and StPto to have a size of 4.2 

µm (Table 5.2).  

 

Table 5.2 Cytogenetic, genetic and physical distances on chromosome V. 
 

Segment Number of 
observations 

Length of the 
segment (SD) [µm] 

Molecular size based 
on FISH (SD) [Mb] 

Genetic 
size [cM] 

Complete 
chromosome V 4 41.0 ± 4.2 - 70 
telomer-GP21 6 4.6 ± 0.6 2.76 ± 0.36 15 
GP21-GP179 6 1.6 ± 0.4 0.96 ± 0.24 3 
GP179-StPto 6 4.2 ± 0.5 2.52 ± 0.3 5 
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Figure 5.1 Mapping of BAC clones on pachytene chromosomes, each BAC is anchored by 
a genetically mapped marker. The three colours show the BACs hybridized to chromosome 
V, BC256o1 (GP21) in red, BC76f14 (StPto) in green, and BA151m8 (GP179) in yellow. 
The yellow signal is visible as a yellow-green-red dotted pattern. Scale bar 5 µm. 

 

We estimated the ratio between physical distance and cytogenetic distance according to 

Zhong et al. (1999) with 0.6 Mb/µm in the euchromatic region (table 5.2). The genetic 

distances were obtained from the potato function map published online in the Gabi Primary 

Database (Meyer et al. 2005).  
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Figure 5.2 (A) Genetic map of potato chromosome V; (B) An integrated physical and 
cytogenetic map with an illustration of the FISH results. Marker loci GP21, GP179 and 
StPto are shown in red, yellow and green colour, respectively. 

 81



Chapter 5 
 
 

Discussion 

The appearance and length of the chromosomes vary during pachytene and the amount of 

stretching in the preparation of the slides adds to this variation (Yeh and Peloquin 1965). 

The size of chromosome V was described as ranging from 33-40 µm in S. tuberosum ssp. 

andigena (Yeh and Peloquin 1965) which is comparable to our finding of approximately 

41 µm in S. tuberosum ssp. tuberosum. Using pachytene chromosomes as targets for FISH 

we were able to distinguish euchromatic regions from the heterochromatic regions. 

However, we were not able to locate clearly the centromere within the heterochromatic 

region.   

 

Localization of Pto on chromosome V 

Pachytene FISH revealed the correct position of StPto on the long arm of chromosome V 

approximately 4 µm from GP179. We observed the three markers located on the same 

chromosome arm with markers GP21 and GP179 in an inverse orientation compared to 

tomato chromosome V (Figure 5.3). Tanksley et al. (1992) hypothesized that the inversion 

resulted a breakpoint near or at the centromere of the chromosome, resulting in the 

inversion of the entire chromosome arm. This is not in accordance with our results and we 

could show that the inversion on chromosome V did not affect the entire arm but occurred 

between GP179 and close to Pto. Further evidence for this hypothesis would be the 

physical distances between telomere and GP21 and the two markers GP179 and StPto, 

which are almost identical (2.5 Mb and 2.8 Mb) (Figure 5.2). Consequently an inversion 

would not result in differences in distances between markers when comparing the potato 

and the tomato chromosome V. 

Nevertheless the order of the genetic loci remains identical and genetic maps may be 

considered as frameworks for the analysis of interesting loci. 

In general, the distances between loci differ greatly between chromosome maps and 

genetic maps, which is a result of the non-random distribution of crossover events along 

the chromosome (de Jong et al. 1999; Saddler et al. 2000). Despite the mapping of the two 

loci GP21 and GP179 15 years ago (Leonards-Schippers et al. 1992) and the improved 

characterization of the region, no knowledge on the physical distance was available prior to 

this study. Our study shows the necessity of using cytogenetic tools, such as BAC FISH, to 
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unambiguously determine the position of markers on chromosomes and to obtain 

information about the approximate physical distance between loci. 

 

 
Figure 5.3 The genetic linkage maps of the tomato (C) and the potato (B) together with the 
potato chromosome map (A). The centromere is indicated with a circle. Markers GP21, 
GP179 and Pto are shown on the left next to the chromosome.  
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Markers GP21, GP179 and StPto map on the long arm of chromosome V 

In our experiment, the three markers GP21, GP179, and StPto were mapped on the long 

arm of chromosome V (Figures 5.1, 5.2). This result is opposed to the work of Dong et al. 

(2000) who hybridized a BAC harbouring the RFLP marker GP22 at the distal end on the 

long arm of chromosome V using somatic metaphase chromosomes via FISH. This 

discrepancy can be explained due to the fact that mitotic metaphase chromosomes of the 

potato are about 1-3.5 µm in size (Dong et al. 2000) and with a maximum optical 

resolution of the light microscope of about 0.2 µm too small for precise chromosome 

mapping. 

Regarding the genetic linkage map (Figure 5.2), marker GP22 is located on the opposite 

arm of markers GP21 and GP179 and thus, according to our results, is located on the short 

arm. 

 

Outlook 

The tomato FISH map is being generated as part of the Tomato Genome Sequencing 

project (www.sgn.cornell.edu/about/tomato_sequencing.pl). The aim is to verify the 

genetic and physical maps and to locate more precisely the euchromatin / heterochromatin 

boundary on tomato chromosomes. 

The potato has not yet been subject to elaborate cytogenetic studies and comprehensive 

sequencing information is not available. But several cytogenetic studies on the potato are 

being carried out currently. Among these a Fibre FISH experiment using BACs in the 

region investigated in this study is in progress. The aim is to anchor the physical contig 

available from a segment in this region (Ballvora et al. 2007) to the exact position on the 

chromosome relative to the markers used in this study. In parallel, the potato BACs will be 

cross-hybridized on tomato chromosomes for direct comparison of the positions of the 

three marker loci between both species. 
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Conclusions 
 

The work for this thesis was done in the department of plant breeding and genetics in the 

Max Planck Institute for Plant Breeding Research. The experiments were carried out in the 

potato genome analysis group in collaboration with two potato breeding companies.  

 

The potato (Solanum tuberosum) is one of the most important food crops worldwide with 

major production areas in middle and Eastern Europe, Russia, India, China and the USA 

(Graf 2003). In Europe the infestations with the root cyst nematode Globodera pallida lead 

to severe yield reductions. Therefore high levels of genetic resistance to nematodes are an 

important goal in breeding new potato varieties. We were interested in the identification 

and characterization of quantitative trait loci (QTL) for resistance. The polygenic nature of 

QTL impedes the adaptation of the pathogen. Therefore this type of resistance is claimed 

to be more durable (Alemayehu and Parlevliet 1996; Wastie 1991) and consequently of 

greater interest to the potato community.  

The basis of the study was the current knowledge on genomic positions of candidate genes 

having putative functions in pathogen recognition, defence signalling and defence 

responses as summarized in the 'SOLanaceae Function Map for Pathogen Resistance' 

(http://gabi.rzpd.de/projects/Pomamo/SolFunctionMap.html).  

Starting point of this work were results obtained during the preceding project. In this 

project 1498 Single Nucleotide Polymorphisms (SNPs) and 127 Insertion-Deletion (InDel) 

markers were identified that are physically linked to candidate genes for pathogen 

resistance (NBS-LRR type genes). The markers tag most regions of the potato genome 

known to harbour resistance QTL (Rickert et al. 2003). Furthermore a physical contig of 

413 kb was constructed and the genomic sequence was obtained (Ballvora et al. 2007). The 

contig was located in a resistance hot spot on chromosome V, where a major QTL for 

resistance to G. pallida as well as QTL for other important agronomic traits are located 

(Ballvora et al. 2007). SNPs located on the contig were found to be linked to a QTL for 

resistance to the potato cyst nematode G. pallida and two of them were used to develop a 

haplotype specific marker (HC marker) assay (Sattarzadeh et al. 2006). 

 

In the present project screening 33 potato varieties resistant to G. pallida pathotypes Pa2 

and/or Pa3 and 21 susceptible varieties with the HC marker demonstrated that the HC 
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marker was diagnostic for presence of high levels of resistance to G. pallida pathotype 

Pa2/Pa3. Further it was shown that the HC marker was exclusively present in accessions of 

S. vernei. 

 
Identification and characterization of genes controlling quantitative pathogen resistance 

combined the application of different genotyping methods and extensive phenotyping, 

followed by association mapping. Association mapping for QTL analysis is a more 

powerful tool to study complex traits due to its capability to more precisely locate them on 

the genetic map as compared to linkage studies (Risch and Merikangas 1996). We 

discovered 43% of PCR-based marker alleles and 38% of SNPs significantly associated 

with different agronomic traits, focussing mainly on chromosome V. After collecting 

related data from previous studies, we were able not only to confirm known QTL but also 

to detect new loci of interest and develop a PCR-based marker for applied research and 

breeding purposes. This is a valuable achievement and serves the purposes of marker 

assisted selection (MAS) of the collaborating breeding companies.  

The information obtained during this part of the study is compiled in the PoMaMo 

database which enables future studies to validate our findings, as well as to continue with 

additional molecular analysis of the present breeding material. 

 

Based on the SNP data, linkage disequilibrium (LD) and marker-trait associations were 

analyzed. Marker-trait associations were identified over a genetic distance > 2 cM assisted 

by strong LD that exists in this region. The strong LD found on the upper arm of 

chromosome V explains the difficulties in increasing the mapping resolution of the QTL in 

this region and is thought to be responsible for similar difficulties in other regions. One 

explanation for the strong LD is the fact that the potato population used in this study is 

separated only by a few generations according to information which we were able to obtain 

via the ‘Potato Pedigree database’ (Hutten and van Berloo 2004). 

 

As our next step, we inferred haplotypes by comparison of susceptible and resistant 

genotypes homozygous at defined SNP positions. But due to the lack of the complete 

sequence information and the heterozygous state of the potato, we could not determine the 

number of haplotypes present in this region. For future studies the first software program 

(Pothap) is available for haplotype identification in autotetraploids (Walaschewski 2005). 

This software was verified experimentally using nineteen tetraploid potato breeding clones 
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(Gyetvai 2007). Information on number and extent of haplotypes in the genome could 

increase the efficiency of association mapping studies to avoid tagging numerous markers 

to the same QTL.  

 

In order to determine the physical size of the QTL region on chromosome V, we used 

Fluorescent in situ hybridization (FISH). The application of FISH in potato research is rare 

to date and we were able to demonstrate the potential of this technique in precisely locating 

genetic markers on chromosomes. Three BAC clones, corresponding to marker loci GP21, 

GP179 and StPto, were selected and labelled as probes for FISH. The markers were found 

to be located in the euchromatic region on the long arm of chromosome V spanning a 

region of approximately 5.8 µm, which was estimated to correspond to 3.5 Mb. Markers 

flanking the QTL span a physical region of approximately 1000 kbp. 

Cross-hybridization experiments using the potato BACs on tomato chromosomes is 

expected to confirm the present results and allow a more reliable comparison between 

molecular markers located on tomato and potato chromosome V. At present also BAC 

hybridizations on potato fibres are carried out with the goal to determine the position of the 

contig within the interval GP21 – GP179. 

 

The present association study constitutes part of a genome-wide approach, intended to 

genotype markers that cover the whole genome at regular intervals.  

This information is valuable for population genetics and will assist future map-based 

cloning efforts. 

To date the majority of QTL cloned in plants has been identified using a positional cloning 

approach where candidate genes were selected for further evaluation (reviewed in Salvi 

and Tuberosa 2005). By means of QTL mapping, the position of each QTL is initially 

assigned to a genetic interval of 10 to 30 cM which usually includes several hundred genes 

(Salvi and Tuberosa 2005). In the potato, the question remains as to how we find candidate 

genes if QTL fine mapping is restricted to a size of several hundred kilo base pairs, a 

segment, which is very expensive to sequence. 

However first sequence information about the tomato via the International Tomato 

sequencing project (http://www.sgn.cornell.edu/about/tomato_sequencing.pl) is public. 

Information about the potato will become accessible via the Potato Genome Sequencing 

Consortium (http://www.potatogenome.net/). With the availability of whole genome 
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sequences in the Solanaceae family we will be able to accelerate our efforts to determine 

genes underlying QTL.  

The use of DNA markers instead of phenotypic assays, which often take several years, can 

reduce cost and time and is a much more accurate method to accomplish breeding goals. At 

present MAS in the potato is progressing slowly due to the lack of applicable PCR assays. 

The HC marker (Sattarzadeh et al. 2006) diagnostic for high resistance against G. pallida 

Pa2/3 is applied in current breeding programs.  

 

The ultimate goal is ‘Breeding by Design’, a concept that aims to control all allelic 

variation for all genes of agronomic importance (Pelemann and van der Voort 2003). This 

work is a step in that direction, providing a first DNA based molecular marker for 

improving potato varieties which have been assessed in tetraploid breeding material. This 

achievement and future knowledge gained from unravelling research in the potato genome 

will enable breeders to develop a continually more sustainable agriculture. 
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APPENDIX A 
 
Solanaceae species, Nicotianum, Capsicum and Petunia tested for the HC marker study 
(Chapter 3). 
 
Abbrev. Species Accession  Accession  
acl a acaule BGRC 018627 EBS 2664 
acl b acaule BGRC 016835 EBS 3052 
acl c acaule BGRC 024555  
aln A1 alandiae BGRC 018521 EBS 3090 
aln E2 alandiae BGRC 031187  
aln 028489 alandiae BGRC 028489  
adg A3 andigena BGRC 007464  
adg B3 andigena BGRC 007506  
adg 007768 andigena BGRC 007768  
ber a berthaultii BGRC 010063 EBS 1846 
ber b berthaultii BGRC 018548 EBS 1271x1288 
ber D2 berthaultii BGRC 028033  
brc A1 brevicaule BGRC 008207  
brc B3 brevicaule BGRC 024571  
brc D3 brevicaule BGRC 028023  
buk A1 bukasovii BGRC 007993  
buk C1 bukasovii BGRC 015424 EBS 2152 
can 007165 canasense BGRC 007165 EBS 1896 
can 024572 canasense BGRC 024572  
can 7166 canasense BGRC 007166 EBS 1921 
chc A3 chacoense  BGRC 008025  
chc b chacoense BGRC 016979  
chc C3 chacoense  BGRC 027357  
dms a demissum BGRC 010022  
dems 256 demissum  GLKS 256 
dems 325 demissum  GLKS 325 
dul 2 dulcamara   
tomato esculentum   
tomato esculentum (Heir fein)   
etb a etuberosum BGRC 28476  
etb b etuberosum BGRC 53007  
grl 007185 gourlayi BGRC 007185  
grl 024600 gourlayi BGRC 024600  
grl a gourlayi BGRC 007180 EBS 3048 
hdm B3 hondelmannii BGRC 024710  
hdm D1 hondelmannii BGRC 027317  
kur b kurtzianum BGRC 017585  
ktz B3 kurtzianum BGRC 017580  
ktz 017620 kurtzianum BGRC 017620  
lph D1 leptophyes BGRC 027269  
lph E3 leptophyes BGRC 008211  
lph 018582 leptophyes BGRC 018582 EBS 3096 
lignica A2 lignicaule BGRC 008106  
maglia A3 maglia BGRC 023571 EBS 1059 
meg a megistacrolobum BGRC 008113  
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Abbrev. Species Accession  Accession  
meg b megistacrolobum BGRC 027262  
eggplant melongena   

mcd 027354 
microdontum var. 
gigantophyllum BGRC 027354  

mcd A3 microdontum BGRC 024644  
mcd C3 microdontum BGRC 007197 EBS 3202 
morelli A1 morelliforme BGRC 007200 EBS 3026 
ngr nigrum   
nrs B2 neorossii BGRC 050197  
opl A2 oplocense BGRC 016868  
opl C1 oplocense BGRC 024650  
opl 027345 oplocense BGRC 027345  
phu 7907 phureja BGRC 007907  
phu 7915 phureja BGRC 007915  
phu 51240 phureja BGRC 051240  
pnt a pinnatisectum BGRC 008168  
sis sisymbrifolium   
spl B1 sparsipilum BGRC 024678  
spl 018595 sparsipilum BGRC 018595 EBS 3089 
spl 027229 sparsipilum BGRC 027229  
spg b spegazzinii BGRC 016929  
spg D3 spegazzinii BGRC 024694  
spg 8220 spegazzinii BGRC 008220  
stn A3 stenotomum BGRC 051242  
stn C2 stenotomum BGRC 053633  
stn 027167 stenotomum BGRC 027167  
sto a/2 stoloniferum BGRC 007229 EBS 2942 
sto b stoloniferum BGRC 007230 EBS 2626 
sto 55189 stoloniferum BGRC 055189  
vrn A1 vernei BGRC 008241  
vrn C1 vernei BGRC 024729  
vrn D3 vernei BGRC 017536  
verru B2 verrucosum BGRC 008250  
verru C3  verrucosum BGRC 008255 EBS 2664? 
verru 008245 verrucosum BGRC 008245  
tobacco N. tabaccum   
pepper C. annuum   
petunia P. blau   
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APPENDIX B 
 
Sequences of markers scored for SNPs in:  
1Chapter 4 (significantly associated SNPs are indicated with yellow background)  
2Chapter 2 
Primer sequences are indicated in blue, sequencing primer is underlined, 
SNPs are marked blue, bold and underlined. 
 
 
GP211 
AAGACGACAT TGTCTATGAT TGCAGCCGGC TCTTCCCTGA ACCTCCTTAT CCCCGAGAGG  660    
TAAAATTTTG TGTGCACCAT TAAAATAGAT CATTTGTCTA TGCATATTAT AAATTTCTTT  720       
TTGTTTTTTA CCTGCATGGG CTCCATTTTG TGAAATGACT CAGCTGAATA TACTCTGAAG  780       
GAAACAATTC AATGTCAATT GATACTCAAA CTTGTTAAAT GACAAATTCA TATATACAGC  840       
AAGTGCAGGT GGTTGGTGTG AGTGATAGAG TATGTTTAAT CTTGTTGCCT TCTATGGGTG  900       
ATGCTTCGAC CACCACGTTA TGAAGTAAAT TAGGCTGACT TGAGCTGATA TAAGCTATGC  960       
TATCTGTTAA ATCTTTCATA TACTAAGACA CTTGCTGTTT TAAATTTCTT ATTAGTCTTT 1020      
TCTATTCATA ATCTCTGACT GAAAGTAACA TGTATTATCA GCAACGGAGT AACAAATTCA 1080       
TCAGTAGTTT AATACCCTAT ATTTCTTTTG CAGGTTGAAT CTATTTTTTG TCTCTCTCAT 1140       
TTGATTTATA CTAGTAAACG TAAACTTTCA TACTTAATTT AAGTATAAGT GACTTCAGTG 1200       
ATACTCGTCA AAAAACAAAC TTCAGTGTGT CAAATTTACA GATTTCTGAT ACTATTAGAG 1260       
CAGTGCATTT TAATTCAGTT CTTTCTATCA AATACGTGGC CATTTAGAAA GTCAATGAGC 1320       
AAGCAAGTAA TGCTATGCTG GCTCACTAAT GTGGTGAACT ATGACCACTT CCTCATAGAC 1380       
ATAATAGTAT GAGTTTTAAA AGCTGGAGGT AAAAACACTT GACCAATTGA AAACCTTCCG 1440       
 
 
ORF3 (REVERSE)1 
GCTTAGTTTC CTCTGGCACC AAACCAAATG ATCTCTCCTT AATCTTGGTA AACTTAGCAC   40 
TCTTGATACC AATTTTAGCT CCACGAGTGA CGCGAATAAT GAATGACTCA ATCGACGTTC  100 
TTGTTGTTTT TGGAACTTCT TCACTATGCA ATTGCCACTT CTTTGTACAT CTTTCAACTT  160 
CCTCTCCTTC TGCATAGAGA ATATCAAGTG ATTCACAAAG TTTAGAAACT AAAATCGCTA  220 
CAAAAAAACT GGAATTAGCT AAAAACTTCA TCAACATGTT GTTGTTGTTG TGAAAGGCGT  280 
GGCATATCTA TGAATAAAGA TAGACTAACC TTTTGAAGGT CTAACTTGAC ATTCATGAAA  340 
AGCTCGATTT CTGCATTGTC CATTTGAGTT CTTTGAACAC CCTTTAAGGC CAAATTAGCT  400 
TCACGTTTAT CAGCACGAAG AAACTCCCAG AAAACTTGCA TTGTCTCCTT AATAACTTCC  460 
CCCAATTTCA CAATGGAAAT GACATCTTTT TCCTCTTCTC GTCCGCCCTT CTTTCCCTTA  520 
AAACGATCAT CTGCTAGAAA GTCAAAGAAT TCCTCGTTAC AGTGAGTCAA GGTATTTTAA  580 
TAACAACTCA ATGAAAAAAT GCATACCTCT TATGCTCGGG ACTTGAAAAA AGATACCGAG  640 
AATGCACCTC TTCCTGACAT AATTTTGGAC TCGTGGTCCT TGAAATGGCT CATCCTCGAC  700 
AAATCTTTGT AAAAGTACTT GAAATTGCTG ATATTCTCCG GCCACTTGGT TATATGTGTG  760 
ATACTCGTGT GGATCATGTT CAAGCAA 
 
 
ORF121  
CGATGAATAT GAAGATGAAG CTAGTCATGG ACCTAATGCG CCTACTGAAG AAGCTGAAAA   39  
TACTGATACA AGACATAATT TTACTCAAAC AACTGAAAAT GAATATGCTC GAGGATCTCC   99 
TCGTGAACAT ACTGGACCAT CTGAAAAGCA AGGTGAATAT GCTAAAACAT CTTCTTCTAG  159 
TGTCAATGAA AAAGAAAAAG GCAAGAAAAG AAAGAGGGTT GTGGAAGATG TTAATGAAAC  219  
ATTTCTCAAG AGTATGGCGG AAGTTATGAA AATTTTTACT GAAAGCCAAG ATAAAAGAAT  279 
TGGTTCCTTG ATCGAAAAGA TTGGAAATCG TGACCACTCT GATATGCGTG GTCAAATTTA  339 

ATT GAATCTCCTA CATTTGATTT GTACACCATA GAGCAACGTA TCACAGCTAA  399 TTCCATC
AAAGGT 
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ORF201    
ACAAGTACAG CTAATAGACC CAATATTGTA GAAAACATAA AAGCTAAAAC ACCCCTAAGT   39 
AACTTTCATA TATGTGTGTT CATCAATCTT TGCTAACATC ACCATTTTCC TTAACACCAT   99 
TATCTTTTTC GTTTACACCG TCAGCATTCT TGGCTTCTTC AGTAGCTGTT ACTTCTTTCT  159  
TTTCCTCGCG ATCTTTCTCT TCCTTCTCCT TTTCAGCCGC CTTTGCTCTC TCTTCTTCCT  219 
CAGCCTTCAG TTTCGCTTCC TCTTTTGCAG TTTCAAGAGC TTTAATCAAT CTCTCCAAAC  279 
AAGTGTCTGC ATTTTCCTTT GAAGACTTAG GCATCAAATT CTCAGCAATA TCAGCAGGAG  339 
TCATATTAGT TTCCTCCAAT AAACGACGAA TCTCAGGAAA GTGAACATGA GATTCAACGA  399 
CGTCAAGATA GTTATGTGCA AGAACTTTGA ATGACTCAAA GCAACAGTAG GATAGGACAA  459 
TATGTTTATC CATCCTCCCC CTCCTAATTA GAGCAGGATC AAGCTTTTCC ACGTAGTTGG  519 
TAGTGAAGAC GATAAGCC 
 
 
BA87d17t31   
GTAGTACATC AACATACATT TTGCGG 
ATGCACGGAA TAACAGGCTT AATCCTCATC CGCACGAGAT AAGAAAGCAA GAAATTCATC  60         
TCACCAGGAA CCAAATCCTG ATCTCTGTTA TTGTCATAGC TGGGCATGTA CAACCAGACA 120        
ACCATTGCTG CAAACCCAGC CACAACTAGA ACATGACNGA AGAAAGTACG TACGCTCTGA 180        
GGCTCAGCAC ACCACCTGTT TGATAAAAAG CCTACAAGAC TCTTCAACAA CTTCAGCTCT 240        
TTTAAAACCT CCTGTATTTC GCGAGAACAG AGATCATCAA TCTCTGCTAA CTCGTGAAGA 300        
TTCTGTACAA CACCATTGAT GAATTTCATT ACAAACTTGG AATTATCAAC CCCACTCTTT 360        
TCGAGCGAAG GCAATTTCAA TGAAATTCCG GAGAAGAAGG AGTAATTAGC TCTGATTTCC 420        
ATCTTAGTCA CCCGAATTTT GTTCTGCAGC AGGGAAGTAA GGCGATTGAG ATTTTGATAT 480        
ATTTTTGATA CATCAAATGC GGAATCTTGA AACAGAGCAT GAACTTTCTG AGTGACAGTT 520                
AGCATGTTGG GTTCATCAGT TGAAGCTCTG AATTCTGAG 
 
 
BA213c14t71,2 
CAATTG ATTCATTTTA TGTAGCGAG 
TTTATGCAAT GACTAGAAAA TATAACATAT AACTAAATTA ACAAGAACGC CGAAGACATA  60         
CTTACATACT TTGACCGCTT TCTGAGAAAC TCAAATAGCT AACTGATGTA TAATGAGAAC 120        
CTTATAGGTC ATGCATATAT TAATTAGTAT GTACCAGGTA AATTTATGTC ACGGCAAAAC 180        
AGCAATAAGC AGAATATACT ATTGAATGAA TAACGTCCAC ATTACGATAT CCAAACTAAT 240        
AGGTTGAGTT CCTACATGTA CTTTATGTGC AAGAAATATG CAAGTATTGG AGATTAAACG 300        
TCTGCATATA AGGATAATCT AACCTGGGCA GTCAGAGACT TGATTACGTG TTTCGCAGCT 360        
CTTCTTTTCT CTGCTTCAAC AGCTGCTTTT GCAGTTGCAT CCATCAGCTG CTTTGTCTTT 420        
CTCCCAAGTT CAGCTTCTAG AAGTTGAGAT TTGCTTGCAA GCTCTTCCAG CTACAAATAA 480 
TTTTTGAGTC AAGCTTAGCA GTGTGAAACT TTTGTGATCA CTTTACTTAG TTGCTCGCAG 520 
AGGTTTGCGT CAAG                   
                
 
Protein kinase1 
ACTTGAAATG ATAACAGGTA GGAGATCGAT GGACAAGAAC CGACCAAATG GGGAACACAA  39  
TCTTGTTGAA TGGGCACGAC CTCATCTTGG TGAAAGAAGA AGGTTTTACA GATTGGTAGA  99 
TCCTAGACTT GAAGGCCATT TTTCAATAAA AGGTGCTCAG AAAGCTGCAC AGTTGGCCGC 159  
TCGTTGCCTT AGCCGTGATC CCAAAGCTAG ACCTATGATG AGTGATGTGG TTGAAGCCTT 219 
GAAGCCATTA CCAAATCTTA AAGACATGGC CAGCTCATCC TACTATTTCC AGACAATGCA 279  
AGCAGACCGA GTTGGATCAA GTCCAAGTAC CAAAAATGGC GTTAGAACAC AGGGATCGTT 339 
CTCGAGGAAT GGACAACAAC ATCCTAGAAG TCTTTCAATC CCAAATGGTT CTCATGCTTC 399 
TCCATACCAT CAGCAATTTC CCTCAGAACT CACCAAAACC AAACGGCAAA ACTTAGTATT 459 
ATTGGATTGA CAAGTAATCT GTTTCTACCA TTCTTTTCGT TTTCTCCCCA GCTATGAATA 519 
TATTTTGTTG GCCACCTCCC GTTTTGTCGT TGGATGAACT GGCAAAAGGG            579 
 
 
GP1791 
CTGCAGTGGT TTTAGTGATT GTGCTGCTCT TTCTCTTGTT TTGGTTTTTC TCTTTAAAAC  60         
ATTTCAATGG TGTATCAAGT CAAATGTGGT TCTTTAGAGT ATCAACTGCC TGCAAACCAA 120        
GTACAA GATAA TGCTTAAATA GTGAGAC TA CTAGATGTTC CTCCTTTGAA ATATGTTTCA 180        
CTTCTAAGTG ATAATCTTGA TAAGTGATGA TGTTTGCTGT ATATAACTCA AAACTTCAGG 240        
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TTCAACTTCT GTTTTTTTGG GAGATTGTAC TAATTTGAGC TCGGCCCTGA CCCCAGGCAT 300        
CCAGATTCTC TACTACACAA TACATAATGC ATGTAGCCAT GGGCTGGAAA GATGAAAGTG 360        
 
 
StPto1 
TCACATTGGA TTGGGTGGCT TTGGGAAAGT TTACAGGGGT GTTTTGCGTG ATGGGACAAG  41 
GTGGCCCTGA AGAGGTGTAA GCGTGAGTCC TCACAAGGTA TTGAAGAGGT TCCAAACAGA 101  
AATTGAGATT CTCTCTTTTT GCAGCCATCC GCATTTGGTT TCATTGATAG GATACTGTGA 161 
TGAAAGAAAT GAGATGATTC TANTTTATGA CTACATTGAG AATGGGAACC TCAGGAGCCA 221 
TTTGTATGGG TCAGATCTAC CAAGTATGAG CTGGGAGCAG AGGCTGGAGA TATGCATCGG 281 
GGCAGCCAGA GGTCTGCATT ATCTTCATAC TAGCGCAGTT ATACATCGTG ATGTCAAGTT 341 
TATAAACATA TTGCTTGATG AGAATTTTGT GGCAAAAATG ACTGATTTTG GACTATCCAA 401 
GAAAGGGACT GAGCTTGATC AAACCCATCT TAGCACCCTT GTGCAAGGAA CTATAGGCTA 461 
CCTTGACCCT GAATATTTTA ANAGGGGACA ACTGACAGAA AAATCTGATG TTTATTCTTT 521 
CGGTGTTGTT TTATTCGAAG TTCTTTGTGC TAGGCCTGCC ATAGTTCAAT CTCTTCCAAG 581 
GGAGATGGTT AGTTTAGCTG AATGGGCAGT GGACTCG               641 
 
 
239E4Left1,2 
GGCCCCACAA ACAAGAAAAC AGAGAAAGGA AACTTAAGAG ATAGAGAGAG ACCACATTAT  40 
TCGCCCATTT CAATATGAAA TTGTTATGCT GAAAGAATCT TTTTATATTT ATTTGAAGTC 100 
CTCTGAGGAG GGTTTCCTGG GAAGGGTACC TCGTCGAACA AGAATGTCCC ATTTGGATAT 160  
TGCTCTTGTT TCAAGTAGTT GAGGAATTTT ATCTCATTGT TTGAACTTTT TGGGGAGCAT 220 
ACGAGTGTTT GTTGATCCTG ACACTGCAAG AAATCTGTTT TTTTCC 280AGGA ATTGGTGCAA  
GGATTTGATC AAGAGACTGC TGCAGTTGTA GTGGCTAGAT TAGCTTCTTA CAAAATGGAG 340 
ATGGAGGTAC CT                             400  
 
 
StPAD4-12 
ATGGAATCGG AAGCTTCATC GTTCGTAAAC ACTAACTTTT CAACAACTTT ATTAGAATTT  60 
TATGCAATTT GAATTTTCTT TCACTTAATT AAAGGGAACT CATGATGCCT GCAGGTTCGA 120 
GTCTAGTGAG ACTTTGGCAG CTCTTGTGGC ATCGACGCCG TTGCTGGAGG AGTCATGGAA 180  
GGTTTGTGGC GTCGCCGATG CATCGGTCGA TAGCAATTTC GCCGTCAATC GAGTTGGTGG 240 
GACAGCCTAT GTGGGATTCT CCGGCGTAAA ATTGGGCGCC GGAGTGGACC AAAGTTGCCG 300 
GAATTTAGTG CCGCTTCCGG ATGAACTTTT CTCTTCGTTG TGCTTGGATG GGGCGGATCC 360 
GGCAATGGTC CATGCCG        400  
 
 
StSGT1-12 
ATGGCGTCCG ATCTGGAGAC TAGGGCTAAA GAGGCGTTCA TCGACGACCA CTTTGAACTC  60 
GCCGTTGACC TCTACACTCA AGCCATAACG ATGAGCCCTA AGAACCCTGA ACTTTTCGCC 120 
GACCGTGCTC AGGCCAATAT CAAACTCAAC TACTTCACTG GTATCATCTT TTTTTAAACC 180 
TAGTTAATCC GTTAATTTGA TTATTTGTAA GAAACGGCGC TGATTGTATT ATTTTGCTAT 240 
GTTATTGCGT TCCGCGATTT ATAGAATTGG TTAAAGGTTT TGTGGATTTG TGCTTAGCTT 300 
TATGCTTTTG GCATACTTGT TCTGTGCTTG GTTACGAAAG TTAACAACCG CTATCTGCTA 360 
CTTGACTGCG TGGGTTTTTG GTGAATAGTT TGTTAAGCCT TTTTTGGATT ACGATTTTAA 420 
TGTGTCGTTG GTACACTTTT ATTAGATCCG GTGTTTTTTT TAGGTCCTGT GTTTCTGTTA 480 
ATTGGT 
 
 
BA81l15t32 
TTTAAAATCT GTTGGGTCTT CCTATAAGTT GGCCTTTTGT CGTATAAGGT GTCCCTTAGA  60        
TTTCGATGGT ATAAGTGATG AAACTGGGGC ACATTCATTC TATCTCCAGT TTGTAAGTTG 120        
TTATTTATGC TGGCTTGGTG GATATCATCT TTGGACTCGT CGTCCTTGTT CTTTCCCAAT 180        
CTCTCTTTTT CGTTTTTTCA TACAGTGCAG AACGACTATC CATTGATAAT TTTAAAAAAA 240        
AGAAAAACAA AATGTCATGT TTAGTGGTTT CA                               260                
 
 

http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31364
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31365
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31366
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31367
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31368
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31369
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31370
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31371
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31372
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31373
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31374
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31375
http://gabi.rzpd.de/database/cgi-bin/GreenCards.pl.cgi?Mode=ShowSNP&SnpId=31376
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