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Iconic, threatened, but largely unknown: Biogeography of the
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Abstract The genus Dracaena in Macaronesia comprises two threatened species of arborescent monocots that are often associated
with one of the most intriguing biogeographic disjunctions: the Rand Flora pattern. Molecular information is, however, largely miss-
ing for the Macaronesian Dracaena taxa (“MDT”, hereafter), and the biogeographic or population genetic patterns of this lineage
have not yet been thoroughly assessed. To fill this gap, we generated plastid DNA sequence data of 14 Dracaena populations repre-
senting the entire natural distribution of MDT (including mainland Morocco and all recognized subspecies), 9 additional populations
of subspontaneous origin, and a set of related species of the genus. We performed phylogenetic, biogeographic, and population
genetic analyses at different spatial scales and conducted a comparative review on plant haplotype diversity in Macaronesian plants.
The results of our phylogenetic analyses indicated the monophyly of the MDT and an origin separate from a clade of geographically
distant species that so far were postulated as their closest living relatives (D. cinnabari, D. ombet, D. schizantha, D. serrulata). The
results of our phylogeographic analyses indicated that diversification within D. draco occurred throughout the Pleistocene and that
wild peripheral populations (Madeira, mainland Morocco) may have a recent origin from Canarian source populations. Recent dis-
persals, coupled with remarkably low levels of haplotype diversity, probably account for the weak phylogeographic signal observed
across wild populations. However, our results suggested that human-assisted expansion of Dracaena inflates the extant phylogeo-
graphic signal by non-random translocation of a specific subset of haplotypes. Our study demonstrates that many of the previous bio-
geographic scenarios on MDT are not supported by molecular data. Instead, our results highlight (i) the impact that human activity
may have on the phylogeographic pattern of island plants, and (ii) the need of a deeper taxonomic sampling in future investigations
on MDT and close relatives.

Keywords biogeographic disjunction; Dracaena draco; haplotype diversity; human-mediated dispersal; island biogeography;
Rand Flora
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Bl INTRODUCTION “dragon’s blood”) led it to become an emblematic symbol of
Macaronesia (Lyons, 1974; Gupta & al., 2007; Marrero,

The Macaronesian islands in the Atlantic Ocean are home  2010; Sanchez-Pinto & Zarate, 2010). Since the 20th century,

to one of the most iconic plant species in the region: the the species is found across the globe, primarily due to human
dragon tree (Dracaena draco (L.) L., Asparagaceae). Peculiar  cultivation (e.g., Anonymous, 1905). The dragon tree is of
features such as its arborescent, pachycaulous growth form  interest not only due to its ethnobotanical and ornamental
(Fig. 1) and the production of valuable resin (known as  value, but also due to its intriguing evolutionary history. Thus,
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striking similarities between D. draco and several congeneric
species inhabiting the opposite margin of the African conti-
nent and Arabia exist, and have led to the description of
Dracaena as a premier example of the enigmatic Rand
Flora distribution pattern (Quézel, 1978; Bramwell, 1985;
Marrero & al., 1998; Sanmartin & al., 2010).

Research on Dracaena has recently focused on the fields
of comparative physiology and anatomy (Jura-Morawiec
& Tulik, 2016; Nadezhdina & Nadezhdin, 2017; Klimko
& al., 2018). In addition, relatively recent taxonomic work
revealed that the genus not only inhabits the Macaronesian
islands, but also neighbouring mainland areas (Benabid
& Cuzin, 1997; Médail & Quézel, 1999). Today, the Macaro-
nesian lineage of Dracaena (collectively called “MDT” here-
after) is known to comprise D. tamaranae Marrero Rodr.
& al., a species endemic to the island of Gran Canaria
(Marrero & al., 1998), and three subspecies of D. draco. These
subspecies naturally occur in the Macaronesian enclave of
mainland SW Morocco (D. draco subsp. ajgal Benabid
& Cuzin; Benabid & Cuzin, 1997), the Cape Verde Islands
(D. draco subsp. caboverdeana Marrero Rodr. & R.S.
Almeida; Marrero & Almeida Perez, 2012), and the Canary
Islands and Madeira (D. draco subsp. draco; Almeida Pérez
& Beech, 2017). Despite this enigmatic geographic distribu-
tion, the evolutionary history of the MDT and their biogeo-
graphic diversification have remained largely unexplored. In
particular, the idea that the MDT display a close evolutionary
affinity with their East African and Arabian congeners has
never been thoroughly examined using molecular data.

The hypothesis of common ancestry of the Macaronesian
and the East African and Arabian species of Dracaena was
first presented in early biogeographic and morphological
investigations (Meusel, 1965 [cited in Marrero & al., 1998];
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Axelrod, 1975; Quézel, 1978; Sunding, 1979; Bramwell,
1985). According to these studies, the dragon tree group
would include arborescent Dracaena taxa inhabiting xerophi-
lous habitats in East Africa (D. ombet Heuglin ex Kotschy
& Peyr, D. schizantha Baker), Arabia (D. serrulata Baker)
and the islands of Socotra (D. cinnabari Balf.f.) and Macaro-
nesia (D. draco). Despite some discrepancies concerning the
precise species composition of the group (e.g., Bramwell,
1985, included D. ellenbeckiana Engl., a species inhabiting
mountain areas of East Africa, while Quézel, 1978, excluded
D. ombet), the hypothesis of a common ancestry of the MDT
and the East African and Arabian species of Dracaena has
been reiterated by several recent investigations (Marrero
& al., 1998; Sanmartin & al., 2010; Nadezhdina & Nadezhdin,
2017; Del Arco Aguilar & Rodriguez Delgado, 2018). How-
ever, the description of a new Macaronesian species of
Dracaena also led to a re-evaluation of the original hypothesis
(Marrero & al., 1998). Based on morphological and ecological
traits, Marrero & al. (1998) suggested that D. famaranae may
be closely related to the group of species found in the Horn of
Africa and Arabia (D. ombet, D. schizantha, D. serrulata),
whereas the second Macaronesian species (D. draco) would
show closer affinities with the Socotran species D. cinnabari.
Recent taxonomic assessments have broadened the circum-
scription of the Macaronesian lineage of Dracaena to include
several Southeast Asian species (Wilkin & al., 2012), whereas
paleobotanical records relate the MDT to an extinct species
from the East Mediterranean region rather than to East African
taxa (Denk & al., 2014). Molecular phylogenetic reconstruc-
tions could therefore shed some light on the conflicting bio-
geographic patterns described by previous studies.

As island species with restricted geographic distributions,
the relevance of the MDT for biogeographic research is

Fig. 1. Growth habit of Dracaena
draco (A) and D. tamaranae (B), the
two Dracaena species naturally
occurring in Macaronesia. —
Photographs: A. Marrero.
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paralleled by the challenges that this plant group poses to bio-
diversity conservation. Dracaena individuals of wild origin
are extremely rare in Macaronesia, occupy areas with very
limited accessibility, and show a declining trend in effective
population size (Almeida Pérez, 2003; Marrero, 2010). As a
consequence, recent conservation assessments consider both
Macaronesian species of Dracaena as threatened (Almeida
Pérez & Beech, 2017; Marrero Rodriguez & al., 2017). The
small population sizes of the MDT also raise the question of
effective conservation strategies, particularly if levels of
genetic diversity are low in the island habitats (e.g., Garcia-
Verdugo & al., 2015). The low abundance of the MDT in
the wild sharply contrasts with the occurrence of D. draco in
human-inhabited areas of the islands where, due to its
emblematic status, the species has been frequently propagated
for traditional or ornamental purposes (Marrero & Almeida
Perez, 2012; Almeida Pérez & Beech, 2017). Being a com-
monly cultivated plant, animal-mediated dispersal has also
promoted the establishment of several subspontaneous popu-
lations throughout the general distribution area (Almeida
Pérez & Beech, 2017). Therefore, human-assisted expansion
of Dracaena in the Macaronesian region also proves useful
for testing emergent patterns in biogeography. There is rising
concern that island biogeography is profoundly impacted by
human-mediated translocations (Helmus & al., 2014; Graham
& al., 2017; Hofman & Rick, 2017), yet the effect of anthropo-
genic impacts on the phylogeographic pattern of island
endemic plants is poorly understood (Hofman & Rick, 2017).

The current lack of molecular information on the MDT
also precludes the assessment of the levels of genetic structure
as well as a detailed evaluation of the biogeographic diversifi-
cation of this lineage (e.g., Quézel, 1978; Médail & Quézel,
1999). This lack of information can be partially explained
by the relatively recent taxonomic delimitation of the MDT
from the rest of the genus, and because previous molecular
phylogenetic analyses on Dracaena employed only a few
accessions (e.g., Bogler & Simpson, 1996). The only molecu-
lar phylogenetic investigation with a taxon sampling sufficient
to partly evaluate the hypothesis of a Rand Flora distribution
pattern was performed by Lu & Morden (2014). However,
D. tamaranae and most of the subspecies of D. draco were
not included in their analysis, thus leaving the biogeographic
hypotheses untested.

In the present investigation, we aim to evaluate the genetic
variability, the phylogeographic structure, and the biogeo-
graphic diversification of the MDT using DNA sequence data
of the plastid genome. Specifically, we aim to answer the
following questions: (i) Is each of the two Macaronesian
Dracaena species (i.e., D. draco and D. tamaranae) phyloge-
netically closer to different Dracaena taxa, as suggested by
previous biogeographic hypotheses? (ii)) When did Dracaena
populations diverge within Macaronesia and which are the
geographic areas of origin of the extant taxa? (iii) How is
genetic (haplotype) diversity spatially distributed in the
remaining wild populations, and how does human-aided
expansion affect the natural pattern? By answering these
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questions, we will be able to postulate more refined hypothe-
ses on the biogeographic history of this iconic plant group.

B MATERIALS AND METHODS

Study taxa and sampling approach. — The Macarone-
sian members of Dracaena are currently represented by only
a small number of wild populations. The most threatened of
these taxa, D. tamaranae, exclusively occurs on a few escarp-
ments at the SW sector of the island of Gran Canaria (Canary
Islands). It is estimated to comprise as few as 12 mature indi-
viduals in the wild, which has led the IUCN to consider this
species as critically endangered (CR) (Marrero Rodriguez
& al., 2017). Dracaena draco subsp. draco only occurs natu-
rally in two locations on the island of Gran Canaria and three
massifs of the island of Tenerife (Canary Islands) (Almeida
Pérez, 2003; Almeida Pérez & Beech, 2017). This taxon is
regarded as endangered (EN) by recent conservation assess-
ments, with an estimated total population of 674 mature indi-
viduals showing a decreasing trend (Almeida Pérez & Beech,
2017). For D. draco subsp. caboverdeana, wild populations
can be currently found on three of the ten main Cape Verde
islands, namely Santo Antdo, Sao Nicoldu and Fogo
(Marrero & Almeida Perez, 2012), whereas D. draco subsp.
ajgal only occurs within an area of a few square kilometers in
the Anti-Atlas mountains (SW Morocco) (Benabid & Cuzin,
1997). However, all of the current distribution areas of the
subspecies of D. draco have been affected by human translo-
cation, either through the transport of individuals within
archipelagos from natural populations to other islands or
by moving them to other Macaronesian archipelagos and
continental areas (“subspontaneous populations”, hereafter;
Marrero & Almeida Perez, 2012; Almeida Pérez & Beech, 2017).

Population-level sampling. — For the present investiga-
tion, we sampled all known natural populations of the MDT.
In each population, leaves were collected from one to five
individuals, depending on population size and the accessibil-
ity of mature plants. Thus, in each of the D. draco populations
on the islands of Madeira and Gran Canaria, we collected a
sample from the only remaining individual considered to be
of natural origin (Almeida Pérez & Beech, 2017). Leaves of
D. tamaranae were collected from individuals propagated
from seeds that were collected in the field and grown at the
Jardin Botanico Canario “Viera y Clavijo” (Gran Canaria).
In total, 30 individuals representing 14 populations of wild
origin were included in our study (see Table 1). In order to
appropriately represent the distribution areas of Dracaena that
originated from human introduction, we additionally sampled
individuals from a set of subspontaneous populations. These
populations were selected based on the most updated [UCN
assessment of the species (Almeida Pérez & Beech, 2017),
in which populations are identified as non-natural if individ-
uals occupy anthropogenic habitats or historical records indi-
cate human-mediated introductions. These areas included
atypical locations such as the Azores archipelago (island of
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Pico) and the Iberian Peninsula (Gibraltar, Cadiz, Lisbon), as
well as new populations within the areas previously repre-
sented by samples of wild origin (Madeira, Canary Islands,
Cape Verde, mainland Morocco). A total of 18 individuals
were sampled to represent 9 subspontaneous populations
(Table 1).

Sampling of Macaronesian taxa and putative sister
species. — To perform phylogenetic reconstructions of the
target MDT in an ample taxonomic context, we aimed to com-
bine our new DNA sequence data with the dataset of
Dracaena and other closely related species (N = 101) as
compiled by Lu & Morden (2014). To that end, we focused
our taxon sampling on the core dragon tree group, with one
specimen representative of each of the MDT previously
collected in the field and one specimen of those Dracaena
taxa hypothesized to be their closest relatives (D. cinnabari,
D. ombet, D. schizantha, D. serrulata; Marrero & al., 1998).
The African and Asian taxa of Dracaena that were either
suggested to be members of the core dragon tree group
(D. cochinchinensis (Lour.) S.C.Chen, D. ellenbeckiana;
Bramwell, 1985; Wilkin & al., 2012) or recovered as sister
to D. draco (D. aubryana Brongn. ex E.Morren; Lu &
Morden, 2014) by previous investigations were also included
in our taxon sampling. With the exception of the subspecies
of D. draco, leaf material for molecular phylogenetic analy-
sis was obtained from plants grown in botanic gardens
(Appendix 1).

DNA extraction. — Most species of Dracaena display
thick, leathery leaves that retain water for long time periods,
which affects plant tissue conservation even if placed in silica
gel. To desiccate leaf samples for subsequent DNA extraction,
we cut two or three leaves of each individual into pieces of
2 cm? and dried them on a laboratory bench for approximately
one week before storing them in a bag of silica gel until DNA
extraction. Between 30 and 50 mg of dried leaf material was
ground in a MM200 mixer mill (Retsch, Haan, Germany),
and genomic DNA was extracted from the leaf powder using
the protocol described in Dellaporta & al. (1983). In a second
step, DNA extractions were purified using the UltraClean
PCR Clean-up kit (MoBio Laboratories Carlsbad, California,
U.S.A)). The final DNA concentration and quality of the iso-
lations were confirmed with a Nanodrop 2000 spectropho-
tometer (Thermo Fisher Scientific, Wilmington, Delaware,
U.S.A)). Aliquots with a concentration of 50 ng/ul were stored
for further processing.

Phylogenetic analysis: DNA marker selection, sequenc-
ing and combination with published data. — We aimed to
generate new DNA sequences and combine them with previ-
ously generated sequence data in order to compile datasets
suitable for the phylogenetic reconstruction of the MDT.
Specific emphasis was hereby placed on the integration of
high-quality DNA sequences of previous studies while simul-
taneously exercising caution regarding sequence misidentifi-
cation. A cautious approach was particularly warranted due
to concerns regarding the misidentification of the sequences
generated by Lu & Morden (2014). Their investigation
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generated a great number of DNA sequences of Dracaena
species, yet some of them were found to be dissimilar to those
generated in this and other studies, despite representing the
same taxa. Given the observed discrepancies, we confirmed
the validity of our own sequences by repeating the DNA
sequencing for selected taxa while starting from new DNA
extractions. We obtained DNA sequences that were consistent
with our previous sequence data, yet were dissimilar to those
of Lu & Morden (2014). A potential confusion in taxon iden-
tity among the sequences of Lu & Morden (2014) is also indi-
cated by conflicts of their results with the current taxonomic
classification of Dracaena, as species considered to be close
relatives (e.g., D. ombet and D. schizantha [syn. D. ombet
subsp. schizantha (Baker) Bos; see Klimko & al., 2018]) were
recovered in distantly related clades in their analyses. Other
investigations (Jankalski, 2015; Takawira-Nyenya & al.,
2018) have also reported concerns regarding potential species
misidentification and sequence errors by Lu & Morden
(2014). Based on these observations, we forewent the combi-
nation of our sequences with those generated by Lu &
Morden (2014).

As an alternative approach, we amplified and sequenced
four plastid DNA markers that appeared unaffected by species
misidentification and low sequence quality in previous inves-
tigations. Specifically, we focused on the intergenic spacers
trnQ-rps16 and rpl32-trnL, as well as the genes rbcL and
matK of the plastid genome. For each sequence sample, for-
ward and reverse chromatograms were assembled to a consen-
sus sequence using Bioedit v.7.2.5 (Hall, 1999). Final DNA
sequences were inspected by eye and then submitted to the
European Nucleotide Archive (http://www.ebi.ac.uk/ena/) upon
conversion to checklist files using the software tool EMBL2-
checklists (Gruenstacudl & Hartmaring, 2019) (see Table 1).

Corresponding sequences of Dracaena of the same DNA
markers from other studies were obtained from the European
Nucleotide Archive (https://www.ebi.ac.uk/ena) and com-
bined with our newly generated sequences in two different
datasets. The combined matrix of the two plastid genes (rbcL,
matK) was used to build the “Phylogen-1" dataset (N = 38
accessions, 22 taxa; Appendix 1), and the combined matrix
of all four plastid DNA markers (rbcL, matK, trnQ-rpsl6,
rpl32-trnL) constituted the “Phylogen-2” dataset (N = 12
accessions, 12 taxa; Appendix 1). In both datasets, DNA
sequences of Liriope muscari (Decne.) L.H.Bailey
(Asparagaceae) were included, which acted as an outgroup
taxon in accordance with previous results on phylogenetic
relationships among the Asparagaceae (e.g., Bogler &
Simpson, 1996).

All sequences of the same plastid marker were trimmed to
the same length and then aligned using MAFFT v.7.304b
(Katoh & Standley, 2013) under default settings. Upon align-
ment, the individual plastid markers were concatenated into
the datasets Phylogen-1 and Phylogen-2, respectively. During
concatenation, information on marker length was maintained
and written into the resulting NEXUS files, thus generating
partitioned DNA matrices (suppl. Appendices S1 & S2).
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Phylogenetic analysis: statistical methods. — Phylo-
genetic reconstructions were performed on both datasets via
maximum likelihood (ML) and Bayesian phylogenetic infer-
ence (BI), using one data partition per DNA marker.
Analyses via ML were conducted with RAXML v.8.2.9
(Stamatakis, 2014), using the nucleotide substitution model
GTRGAMMALI for both partitions and the thorough ML opti-
mization option. Branch support for ML analyses was calcu-
lated via 1000 bootstrap (BS) replicates. Analyses via BI
were conducted with MrBayes v.3.2.5 (Ronquist & Huelsen-
beck, 2003) under model GTR +1+ I for both partitions,
using four parallel Markov chain Monte Carlo (MCMC) runs
and collecting a total of 50 million MCMC generations. Inde-
pendent sampling of generations and convergence of Markov
chains were confirmed via Tracer v.1.7 (Rambaut & al.,
2018). The initial 50% of all MCMC trees were discarded as
burn-in, and post burn-in trees were summarized as a maxi-
mum clade credibility tree, with branch support given as pos-
terior probability (PP) values.

Phylogeographic analysis: DNA marker selection and
sequencing. — To analyze the patterns of molecular diversity
within Macaronesia, we initially screened 10 plastid regions
following Shaw & al. (2007) by sequencing a subset of sam-
ples that included at least one specimen of each Macaronesian
taxon. Most tested markers revealed genetic differentiation
between D. tamaranae and D. draco s.l., but polymorphism
was far less frequent among the subspecies of D. draco. In
order to perform a phylogeographic analysis, we selected three
plastid regions (psbJ-petA, rpl32-trnL, psbD-trnT) that dis-
played genetic variation within D. draco (suppl. Table S1).
One specimen of Dracaena that represented an appropriate
outgroup for the clade composed of the Macaronesian taxa
(D. ellenbeckiana) was also sequenced. Forward and reverse
contigs for each plastid region and sample were assembled
into a consensus sequence using Bioedit v.7.2.5 (Hall,
1999). The concatenated sequences of the three plastid
regions were employed to build the “Phylogeog-1” dataset
(N =31 accessions).

Phylogeographic analysis: estimates of genetic vari-
ability and human impact. — To infer the genetic relation-
ships between the haplotypes contained in the Phylogeog-1
dataset, we constructed a maximum parsimony network based
on the median joining algorithm implemented in the software
Network v.4.5.1.0 (Bandelt & al., 1999). Genetic diversity
estimates at both the population and island scales were
calculated via Nei’s unbiased haplotype diversity (#) (Nei,
1978) and the total number of haplotypes (H). Due to our
interest in providing a comparative framework for assessing
the levels of genetic diversity observed in the threatened
MDT, we additionally performed a bibliographic search via
the Web of Science (https://apps.webofknowledge.com, Clar-
ivate Analytics). Different combinations of the terms “hap-
lotyp* diversity”, “gen* diversity”, “plastid”, “chloroplast”,
“phylogeogr*”, “plant”, “Macaronesia*”, “island”, “Cape
Verde”, and “Canar*” were employed in the search. Only
those publications in which (i) the population sampling
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covered the entire distribution of the study species, and
(ii) the number of plastid DNA markers assayed was equal
or higher than three were retained for extracting data of inter-
est such as haplotype frequency, number of plastid markers,
and sample sizes.

The impact of human-mediated translocations on the pat-
terns of genetic structure and phylogeographic signal in
Dracaena was tested by comparing the results obtained for
the Phylogeog-1 dataset with those obtained for an expanded
data matrix which included the sequences generated for sub-
spontaneous populations (“Phylogeog-2” dataset, N = 49
accessions). Our expectation was that human-mediated trans-
location of haplotypes should have blurred any biogeographic
signal associated with geographic island isolation across the
natural distribution of MDT (Helmus & al., 2014): i.e., low
phylogeographic structure when subspontaneous populations
are considered.

To test this expectation, we first conducted an AMOVA
with the software Arlequin v.3.5.2 (Excoffier & Lischer,
2010) to examine how haplotype diversity was hierarchically
structured within regions, among islands (within regions)
and within islands. Three (Canary Islands + Madeira, Cape
Verde islands, and mainland Morocco) or four (all the previ-
ous + the Iberian Peninsula) regions were considered for the
analysis of “wild” or “wild + subspontaneous” populations,
respectively. The AMOVA was performed in two independent
runs using each of the datasets. Similarly, two independent
runs of the software PERMUT v.1.2.1 (Pons & Petit, 1996)
with input files extracted from both datasets were used to
compare the effect of subspontaneous populations on the phy-
logeographic signal of Dracaena in Macaronesia. This soft-
ware calculates two parameters: GST, as a measure of
genetic differentiation based on haplotype frequencies, and
NST, which additionally accounts for phylogenetic distance
between haplotypes. A phylogeographic signal was detected
if NST > GST, following 1000 permutation tests (Pons
& Petit, 1996).

Temporal framework and ancestral area reconstruc-
tions at different geographic scales. — Since we were inter-
ested in examining the inferred patterns of genetic divergence
in Dracaena within an explicit temporal framework, we ran
dating analyses using BEAST v.1.8.4 (Drummond & al.,
2012). The analyses were conducted at broad and regional
geographic scales using the Phylogen-2 and Phylogeog-1
datasets, respectively. In both cases, we merged identical
sequences into unique haplotypes using the online fasta
sequence toolbox FaBox v.1.4 (Villesen, 2007) before all sub-
sequent analyses because inclusion of identical sequences
results in many zero length branches at the tip of the tree and
can cause the model to oversplit the dataset (Reid & Carstens,
2012). Then, each dataset was analyzed with PartitionFinder
vl.1.1 (Lanfear & al., 2012) to select the best partitioning
scheme, using the greedy algorithm with linked branch
lengths under the Bayesian information criterion. One
partition was defined for each dataset, with the four plastid
regions of the Phylogen-2 dataset distributed into two
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partitions (rbcL: K80, matK + rpl32-trnl + trnQ-rpsl6:
HKY +I), and three plastid regions of the Phylogeog-1 data-
set combined (HKY).

We then ran BEAST analyses for four independent chains
of 50 million generations each, sampling every 10* genera-
tions. While each plastid partition was assigned to a strict
and uncorrelated lognormal relaxed clock model for the
Phylogen-2 dataset, a strict clock model was applied to the
Phylogeog-1 dataset. Under the different clock models, a
mean rate of 5.0 x 10~ substitutions/site/Myr with a standard
deviation of 1.0 x 10~*, sampled from a normal distribution
(Palmer, 1991), was considered. Bayesian reconstructions
were conducted under four different tree priors, including spe-
ciation models defined by Yule and birth—death Process
priors, as well as coalescent models implemented by constant
size and Bayesian skyline priors. Convergence and mixing of
the four chains were assessed by checking that all parameters
had reached stationarity and sufficient (>200) effective sam-
ple sizes using Tracer v.1.7 (Rambaut & al., 2018), and 10%
trees were discarded as burn-in. Finally, we compared the pos-
terior distributions of each combination of clock and tree
priors using the marginal likelihood estimate (MLE) of each
model, estimated from stepping-stone sampling and path sam-
pling. We estimated MLE with 150 path steps, each with a
chain length of one million iterations, and the other parame-
ters were set by default. We directly calculated the log-Bayes
factors (BF) from MLEs and used BF to compare the support
of all the models tested. We considered BF values above 2 to
indicate that one model was significantly favored over
another. Based on BF, the uncorrelated lognormal relaxed
clock (Phylogen-2; suppl. Table S2) and the strict clock
(Phylogeog-1; suppl. Table S3) models were selected, in both
cases under a coalescent constant size tree model. The two
resulting maximum clade credibility (MCC) trees were
employed in the subsequent analyses.

To estimate the geographic origin of the MDT, we used
the package BioGeoBEARS v1.1 (BioGeography with Bayes-
ian Evolutionary Analysis in R Scripts; Matzke, 2014) imple-
mented in R v.3.5.1 (R Core Team, 2017). Since different
approaches to estimate ancestral areas are based on different
assumptions and can produce variable results (Matzke, 2013,
2014), we tested the likelihood of the three biogeographic
models available in BioGeoBEARS: DEC (dispersal-
extinction-cladogenesis), DIVALIKE (dispersal-cicariance)
and BAYAREALIKE (Bayesian BayArea). BioGeoBEARS
allows the use of the model that includes dispersal and extinc-
tion as free parameters and a model (DEC + J) that includes an
additional parameter J taking founder event speciation into
account (Matzke, 2014, and references therein). However,
Ree & Sanmartin (2018) recently reported that “the DEC+J
is a poor model of founder event speciation, and statistical
comparisons of its likelihood with DEC are inappropriate”.
They suggested that, for simple inference of ancestral ranges
on a fixed phylogeny, “a DEC-based model may be defensible
if statistical model selection is not used to justify the choice”,
and we therefore refrained from using the DEC + J in our
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study. Depending on the dataset, we considered the following
geographical regions: West Africa, East Africa, Asia and
Macaronesia for Phylogen-2 and, following Marrero & al.
(1998), Cape Verde, Canary Islands, Madeira, Morocco and
East Africa for Phylogeog-1. Lineage distributions were
coded as present or absent in each of the four or five areas,
respectively. We set the maximum number of areas to three,
as none of the taxa is distributed over more than two of the
defined areas. Finally, we estimated ancestral areas on internal
nodes of each Dracaena MCC tree from the divergence time
analysis, and the likelihood values of each of the three Bio-
GeoBEARS models were subsequently compared using the
Akaike information criterion corrected for small sample size
(AICc; Matzke, 2013, 2014). The analyses showed that
DIVALIKE was the best model for both datasets (suppl.
Tables S4, S5).

B RESULTS

Molecular analysis of the core dragon tree taxa. — Our
analyses using the Phylogen-1 dataset did not recover strongly
supported clades by either ML or BI methods that may help
elucidate the phylogenetic relationships of the Macaronesian
taxa (suppl. Fig. S1). The largest, best-supported clade
(BS = 0.94) from this analysis encompassed mostly African
Dracaena species in a derived position within the phyloge-
netic tree. The tree topology generally suggested the mono-
phyly of MDT (D. tamaranae sister to D. draco s.;
BS = 0.76) and a substantial phylogenetic distance between
MDT and the congeneric taxa hypothesized to be their closest
relatives (D. cinnabari, D. ombet, D. schizantha, D. serrulata;
suppl. Fig. S1).

The pattern weakly supported by the former dataset was
reinforced by the results of the phylogenetic analyses per-
formed on the Phylogen-2 dataset (Fig. 2). In this case,
D. tamaranae was recovered as sister to all D. draco taxa with
strong support (BS = 100, PP = 1.0), whereas D. serrulata,
D. schizantha and D. ombet constituted a phylogenetically dis-
tant subclade (BS = 98, PP = 1.0). The relationship of
D. cinnabari as sister to this latter subclade was weakly sup-
ported (BS = 76, PP = 0.89). Our analyses, however, did not
clearly identify the closest relative of the D. tamaranae—
D. draco subclade: the sister position of the Asian D. cochin-
chinensis received poor statistical support (BS = 0.56, PP =
0.60). Furthermore, all these latter taxa plus the African
D. aubryana—D. ellenbeckiana constituted a clade (BS = 87,
PP = 1.0) clearly differentiated from the putative East
African—Arabian relatives of the MDT (Fig. 2).

BioGeoBEARS results showed that deep nodes in our
phylogenetic reconstructions were subjected to high biogeo-
graphic uncertainty (Fig. 2). However, a Macaronesian origin
for the D. tamaranae—D. draco subclade (including the main-
land taxon D. draco subsp. ajgal) and an East African—
Arabian origin for the D. serrulata—D. ombet s.1. subclade
were strongly supported. Dating analyses suggested that
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diversification in the East African—Arabian subclade probably
started before (i.c., around the late Miocene) diversification in
the MDT subclade (Fig. 2).

Regional-scale analyses of Macaronesian Dracaena
taxa. — Sequencing of 2600 bp of plastid DNA revealed eight
haplotypes among MDT samples (suppl. Table S1, Fig. 3A).
Haplotype distribution was generally restricted to specific tax-
onomic groups: the three sampled individuals of D. tamaranae
displayed one private haplotype; D. draco subsp. cabover-
deana, three private haplotypes; and D. draco subsp. draco,
four haplotypes, but one of these (haplotype H2) was shared
with D. draco subsp. ajgal (Table 1, Fig. 3B). In contrast, geo-
graphic structure of haplotypes was less evident within
D. draco, as half of these showed widespread distributions.
Thus, haplotype H6 was found on three islands of the Cape
Verde archipelago (Fig. 3D), haplotype H4 on Tenerife and
Madeira (Fig. 3C), and haplotype H2 on Gran Canaria and
mainland Morocco (Fig. 3B,C).

Considering the number of taxa sampled and their geo-
graphic distribution, our results suggested that levels of

G
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genetic diversity were low for MDT (Fig. 3B). This observa-
tion was reinforced by our literature review. We found
that Macaronesian species with large distribution areas
(i.e., those occurring on more than tree islands such as Olea,
Kleinia, Cistus or Periploca) displayed the highest levels of
plastid DNA diversity (Table 2). In contrast, our focal taxa
(D. draco subsp. draco, D. draco subsp. caboverdeana) were
ranked among the Macaronesian island taxa with the lowest
intra-population and total haplotype diversity analyzed thus
far (Table 2).

In line with the results obtained with the Phylogen-2 data-
set, BioGeoBEARS revealed a high probability of a Canarian
origin for the D.tamaranae—D. draco clade based on the anal-
ysis of sequence data generated at the regional scale (Fig. 4).
However, the results showed a low probability of a single
ancestral range for the D. draco subclade: node C received
combined support for the Cape Verde and Canary Islands
(Fig. 4). Dating analyses suggested that the split between
D. tamaranae and D. draco may have started in the Plio-
Pleistocene (node B: 2.3 [0.7— 5.8] Myr; Table 3), whereas
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Fig. 2. Phylogenetic reconstructions based on maximum likelihood and Bayesian inference, and estimation of ancestral distributions based on Bio-
GeoBEARS using the Phylogen-2 Dracaena dataset. Numbers next to branches indicate statistical (above = bootstrap, below = posterior probabil-
ity) support. Pie charts on each node depict the relative probabilities of ancestral ranges, which are represented by colors. The map in the inset shows
the distribution of the African and Arabian taxa of Dracaena included in the analyses. Main parameters: d = 0.0042; e = 1.00E-12; LnL = —18.74.
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Fig. 3. Parsimony haplotype network (A) based on three plastid (psbJ-petA, rpl32-trnL, psbD-trnT) regions and distribution of haplotypes across
wild populations of Dracaena taxa in Macaronesia (B), Canary Islands (C) and Cape Verde islands (D). The size of each pie chart corresponds with
the sample size of each population or geographic area.

Table 2. Levels of plastid genetic diversity (2 = unbiased haplotype diversity; H = number of haplotypes) of Macaronesian plant taxa at different

spatial scales (POP = population, ISL = island, TOT = total) following a literature review.

#pops. freg.
Taxon Area  (ind.) (bp) hpop Hpop st Hisp. Hror Ref.
Olea cerasiformis CI 9(101) 5(1.5K) 0.55(0.05) 3.3(0.3) 0.71(0.04) 53(1.1) 11 1
Kleinia neriifolia CI 18 (80) 3(2.5K) 0.54(0.07) 24(0.2) 0.52(0.11) 3.3(0.6) 16 2
Cistus monspeliensis CI 25 (90) 3(19K) 0.40(0.08) 1.7(0.2) 0.67(0.05) 4.0(0.7) 16 3
Periploca laevigata CI 16 (80) 3(2.8K) 0.23(0.09) 1.6(0.3) 0.17(0.09)0 2.8(l.1) 14 4
Canarina canariensis CI 16 (144)  3(22K) 0.22(0.07) 1.8(0.2) 0.30(0.11) 2.8(1.1) 10 5
Euphorbia lamarckii CI 6 (32) 3(2.0K) 021(0.15 1.7(0.5) 0.32(0.18) 2.3(09) 8 6
Periploca laevigata CvV 3(15) 3(2.8K) 020(0.20) 1.3(03) 047(0.23) 15(0.5) 3 4
Euphorbia regis-jubae CI 4 (23) 4(2.0K) 0.15(0.14) 13(03) 0.11(0.10)0 1.3(0.3) 2 6
Umbilicus schmidtii CvV 7 (20) 3(1.4K) 0.09(0.08) 1.1(0.1) 0.45(0.15 15(0.3) 5 7
Dracaena draco subsp. caboverdeana ~ CV 6 (13) 3(2.6K) 0.00(0.00) 1.0(0.0) 0.42(0.21) 1.7(0.3) 3 8
Dracaena draco subsp. draco CI 5(11) 3(2.6K) 0.00(0.000 1.0(0.0) 0.32(0.31) 2.0(l.0) 4 8
Echium stenosiphon (0% 9 (15) 5(2.7K) 0.00 (0.00) 1.0(0.0) 0.00(0.00) 1.0(0.0) 3 9

Number of populations and individuals, number of plastid regions analyzed, and geographic area (CI = Canary Islands, CV = Cape Verde Islands)
are detailed for each case. Diversity indexes are expressed as mean values with standard errors in parentheses. Taxa are ranked according to decreas-
ing levels of haplotype diversity. References: (1) Garcia-Verdugo & al., 2010; (2) Garcia-Verdugo & al., 2019a; (3) Coello & al., 2020; (4) Garcia-
Verdugo & al., 2017; (5) Mairal & al., 2015; (6) Sun & al., 2016; (7) Romeiras & al., 2015; (8) This study; (9) Romeiras & al., 2011
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diversification within D. draco was placed within the Pleisto-
cene (node C: 1.4 [0.4-3.6] Myr; Table 3).

Effect of human-mediated translocation of Dracaena
draco within Macaronesia. — As expected, sequencing of
individuals from subspontaneous populations did not render
any new haplotype (Table 1). The AMOVA conducted with
the Phylogeog-1 dataset (i.e., wild populations alone) revealed
subtle, albeit significant, genetic structure among geographic
areas (11% of total genetic variance), but this hierarchical
level was no longer significant when subspontaneous popula-
tions (Phylogeog-2 dataset) were included in the analysis
(Table 4). Subspontaneous populations thus favored genetic
homogenization of D. draco across spatial scales by increas-
ing the component of within-island haplotype diversity (from
44.3% of explained variance for Phylogeog-1 to 55.6% for the
Phylogeog-2 dataset; AMOVA results, Table 4). As a result,
inclusion of these populations caused an overall weak genetic
structure (GST), but contrary to our expectation, the recurrent
translocation of the same haplotypes resulted in a similar NST
between both datasets (PERMUT results, Table 4). This
pattern ultimately prompted a significant phylogeographic

Duran & al. « Biogeography of Macaronesian Dracaena

signal (NST > GST) that was not detected when wild popula-
tions were considered alone (Table 4).

Our results indicated that only two of the eight haplotypes
detected in MDT have been extensively spread by human
intervention: haplotype H6, originally private to the Cape
Verde Islands, has been introduced to the island of Santiago

Table 3. Mean and 95% high posterior density (HPD) of divergence
time estimates for each of the clades with high (PP > 0.9) statistical
support, as inferred from BEAST analysis of Macaronesian Dracaena
haplotypes.

‘ Canary Islands + Madeira

O Canary Islands + Morocco

Ao

Clade Mean (Myr) 95% HPD (Myr)
A 11.8 4.9-16.3
B 2.3 0.7-5.8
C 14 0.4-3.6
D 0.5 0.1-1.5
E 0.1 0.0-0.7
Definition of clades follows Fig. 4.
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Fig. 4. BioGeoBEARS estimation of ancestral distributions of the Macaronesian Dracaena taxa based on the MCC tree resulting from BEAST
analysis of the Phylogeogr-1 dataset. Numbers at nodes indicate posterior probabilities. Pie charts on each node depict the relative probabilities
of ancestral ranges, which are represented by colors. C: Canary Islands; M: Madeira; V: Cape Verde; W: Morocco; E: East Africa. Main parameters:

three areas maximum; d = 0.091; e = 0.062; LnL =—16.57.
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Table 4. Results of the AMOVA and PERMUT analysis considering haplotype composition of wild populations alone (Phylogeog-1 dataset) and

wild + subspontaneous populations together (Phylogeog-2).

AMOVA PERMUT
Dataset Source of variation Df Var Comp %VAR Fixation index NST GST NST > GST
Phylogeog-1 Among regions 2 0.27 11.5 0.127%* 0.637 0.608 No™
Among islands (regions) 4 1.02 44.2 0.56%#%*
Within islands 23 1.02 443 0507
Phylogeog-2 Among regions 3 0.11 6.6 0.07™ 0.491 0.340 Yes*
Among islands (regions) 6 0.64 37.8 0.447%**
Within islands 34 0.95 55.6 0.4 1555k

The hierarchical level “Region” includes the Canary Islands, Cape Verde, mainland Morocco (Phylogeog-1) and the Iberian Peninsula
(Phylogeog-2). Df = degrees of freedom, VarComp = variance component, % VAR = percentage of explained genetic variance, NST = genetic dif-
ferentiation considering genetic distances among haplotypes; GST = genetic differentiation based on allele frequencies (i.e., assuming that all hap-

lotypes are equally divergent)
* P <0.05; # P<0.01; *** P <0.001; ns = non significant

(Cape Verde), Madeira, Azores (island of Pico), and mainland
Iberian Peninsula (Lisbon); haplotype H4, most frequently
found in NW Tenerife, has been introduced to other Canary
Islands where it does not naturally occur (La Palma, Gran
Canaria), in addition to two locations sampled in the mainland
(SW Morocco, Cadiz) (suppl. Fig. S2).

H DISCUSSION

Biogeographic connections of the Macaronesian
Dracaena taxa. — Our phylogenetic and biogeographic
results consistently rejected the long-held idea that the East
African—Arabian Dracaena species (D. cinnabari, D. ombet,
D. schizantha, D. serrulata) represent the closest relatives of
the MDT (Quézel, 1978; Marrero & al., 1998; Sanmartin
& al., 2010; Del Arco Aguilar & Rodriguez Delgado,
2018). None of our molecular reconstructions confidently
recovered the sister-group relationship of Macaronesian
and East African lineages that has sustained the Rand Flora
pattern in other study cases (e.g., Thiv & al., 2010; Pokorny
& al., 2015; Villaverde & al., 2018). Rather, the results of the
first molecular analysis jointly considering the two Macaro-
nesian species, D. tamaranae and D. draco, strongly sup-
ported (i) their sister relationship and (ii) a Macaronesian
origin for the lineage that they both constitute. Our findings
are at odds with previous interpretations of independent bio-
geographic connections of D. tamaranae and D. draco
(Marrero & al., 1998), but are in line with the notable similar-
ities recently reported in leaf anatomy between both species
when compared to the rest of taxa included in the dragon tree
group (Klimko & al., 2018).

Our study therefore represents a new case of lack of
molecular support to early proposals regarding Rand Flora
disjunctions (see Andrus & al., 2004). Divergence time esti-
mates for the MDT, in addition, suggested a younger origin
of their recent common ancestor (Plio-Pleistocene; Table 3)

than the most comprehensive age estimates of the Sahara
desert (Zhang & al., 2014). Although continental aridifica-
tion may thus have played a minor role in the differentiation
of the MDT lineage (cf. Sanmartin & al., 2010), its geo-
graphic link remains elusive. Hence, the closest living
relative(s) of this species pair could not be identified with
confidence by our molecular reconstructions. However, in
keeping with recent morphological (Wilkin & al., 2012;
Klimko & al., 2018) and phylogenetic (Takawira-Nyenya
& al., 2018) studies, our results pointed to a Dracaena clade
composed of taxa with disparate geographic distributions
(including Asian species and, to a lesser extent, the African
D. ellenbeckiana) that could qualify as potential sister spe-
cies. Increased taxon and molecular sampling in future phy-
logenetic analyses, coupled with in-depth paleobotanic
investigations (Denk & al., 2014), are needed to shed more
light on the biogeographic connections of the Macaronesian
dragon tree lineage. Concerning extended taxon sampling in
forthcoming studies, the SE Asian group deserves particular
consideration since our sampling considered only one out of
the five species described (Wilkin & al., 2012).
Biogeographic history of Dracaena within Macarone-
sia. — Our analyses suggested a complex biogeogeographic
scenario to satisfactorily explain the observed genetic pattern
of Dracaena across Macaronesian populations. Thus, based
on the higher levels of genetic diversity detected in the insular
populations than in the mainland, we found support for the
idea that the Atlantic islands might have served as a refuge
for this plant lineage (Marrero & al., 1998). Additionally,
our results highlighted the role of the Canary Islands as a rel-
atively recent source of biodiversity to other Macaronesian
areas, including the neighboring mainland (Carine & al.,
2004; Caujapé-Castells & al., 2017). The Canarian refuge
hypothesis for Dracaena is further suggested by two addi-
tional lines of evidence. Our biogeographic analyses (Fig. 2)
and the central position of Canarian haplotypes in the parsi-
mony network (Fig. 3A) identified these island populations
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as ancestral, whereas the concentration of haplotype diversity
(five haplotypes) within this area may be indicative of longer
residence times than in the rest of the extant distribution range
(Mairal & al., 2015; Coello & al., 2020).

Considering the crown age of the Macaronesian lineage and
its associated uncertainty (node C; Fig. 4, Table 3) (Garcia-
Verdugo & al., 2019b), dating analyses suggested a period of
island residence for Dracaena since the Plio-Pleistocene. Such
an estimate agrees well with the discovery of fossil dragon tree
imprints dating back to the late Pliocene (Marrero, 2013). Under
the temporal framework depicted by fossil and molecular data, it
is quite probable that, following successful dispersal, the islands
provided Dracaena with habitat suitability throughout episodes
of widespread extinction, such as those derived from Quater-
nary climatic oscillations (reviewed in Garcia-Verdugo & al.,
2019c; see also Schiiler & al., 2019).

In turn, extant populations outside the putative source
area represented by the Canarian islands (Cape Verde,
Madeira, mainland Morocco) may have been the result of dif-
ferent episodes of dispersal during the Quaternary. Hence, dat-
ing analyses suggested that diversification of D. draco subsp.
caboverdeana started in the middle Pleistocene (Fig. 4,
Table 3), i.e., much later than the inferred primary coloniza-
tion of Macaronesia. This result, in addition to limited mor-
phological (Marrero & Almeida Perez, 2012) and genetic
(Fig. 3A, suppl. Table S1) divergence from D. draco subsp.
draco, is indicative of ongoing allopatric differentiation
between both taxa. Although the exact geographic origin of
Cape Verde populations remains unclear (i.e., a combined
ancestral area for the most recent common ancestor of
D. draco s.1., Canary Islands + Cape Verde in Fig. 4), our bio-
geographic analyses found strong support for a Canarian ori-
gin for the shared common ancestor (i.e., stem branch) of
the D. draco and D. tamaranae populations. Alternatively,
our results are compatible with a scenario of independent epi-
sodes of archipelago colonization from the mainland (i.e., the
Canaries in the Plio-Pleistocene, Cape Verde in the Pleisto-
cene), but extinction on the mainland should be invoked.
Sunding (1979), for instance, cited Dracaena as an example
of colonization of the Cape Verde archipelago by African
source populations already extinct in the mainland; he
regarded as unlikely the alternative of dispersal from an area
located 1400 km away to the north (i.e., direct dispersal from
the Canarian archipelago). The impact of extinction on main-
land and easternmost island populations of Dracaena during
the Pleistocene probably limits the accuracy of our biogeo-
graphic reconstructions at regional scales (Garcia-Verdugo
& al., 2019¢), but what the information available to date
clearly rules out is the possibility that the extant mainland pop-
ulation could have acted as a direct source of Cape Verde col-
onizers (Figs. 3B, 4).

The two other populations geographically peripheral to
the Canary Islands were inferred as the youngest. The rela-
tively recent split between the only Dracaena haplotype that
naturally occurs on Madeira (plus Tenerife; haplotype H4)
and haplotype H3 (private to Tenerife), provides another
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example of the colonization route that links the central Canar-
ies with this latter archipelago (e.g., Jones & al., 2014;
Valtuefia & al., 2017). In addition, our results are in sharp con-
trast with the view of SW Morocco as a refuge area for
D. draco subsp. ajgal (Médail & Quézel, 1999). Lack of pri-
vate haplotypes and the BioGeoBears results suggesting a
Canarian origin for D. draco s.1. both coincide with Marrero
& al.’s (1998) contention that subspecies ajgal may be a taxon
at early stages of speciation, i.e., in light of our results, a sub-
population experiencing recent allopatric differentiation from
the island source area.

Extant genetic patterns of Dracaena in Macaronesia:
implications for conservation. — Our literature review evi-
denced that levels of haplotype diversity in extant Macaronesian
populations of Dracaena are remarkably low. While our results
may be an underestimation due to small within-population sam-
ple sizes or other sampling biases (Waples & Yokota, 2007), the
first assessment of genetic diversity in this lineage strongly
relates extinction threat due to population decline (Almeida
Pérez & Beech, 2017; Marrero Rodriguez & al., 2017) to limited
genetic variability. Furthermore, our preliminary results
revealed a marked population-specific haplotype composition,
particularly among wild Canarian populations (Fig. 3C), but-
more variable markers are needed to better characterize the
levels of population genetic diversity and identify provenances
for genetic reinforcement (Breed & al., 2013).

Implementing a rigorous assessment of genetic prove-
nance in conservation plans is particularly important in the
case of Macaronesian dragon trees. Our analyses showed that
the translocation of non-native haplotypes has enhanced
genetic diversity within islands, thus causing an artificial phy-
logeographic signal across distribution areas. Such an expan-
sion of Dracaena haplotypes is far from being random. The
widespread occurrence of a subset of haplotypes among sub-
spontaneous populations reflects the impact of human activity
on the genetic structure of the Macaronesian Dracaena taxa.
For instance, the most frequent haplotype of subspecies cabo-
verdeana (haplotype H6) was the only genetic variant found in
introduced areas that belong to Portugal (Lisbon, Madeira,
Azores), apart from its natural area of origin in the Cape Verde
Islands (a former colony of the Portuguese overseas empire for
nearly 500 years). In addition to previous studies in the region
(De laRua & al., 2001; Saro & al., 2015), our results illustrate
that anthropogenic translocation of commercially valuable
species may obscure our inferences on island biogeographic
patterns.

Conclusions. — Our molecular reconstructions sug-
gested a close genetic relationship between the two extant
Macaronesian Dracaena species, but they ruled out previous
biogeographic hypotheses that postulated a close relationship
between this lineage and some geographically distant species.
Extinction, however, coupled with limited taxonomic sam-
pling of putative sister species, probably hinders accurate
inference on biogeographic patterns in our study group
depending on the spatial scale. Thus, broad-scale reconstruc-
tions could benefit from a more complete sampling of SE
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Asian species, although accurate inferences could be addition-
ally constrained by the loss of putative closely related species
(Denk & al., 2014). In turn, haplotype reconstructions at
regional scales are probably impacted by extinction of key
populations (Garcia-Verdugo & al., 2019c). Despite these
limitations, our analyses suggested a Canary Island origin
for the MDT lineage, followed by Pleistocene expansion
of D. draco across Macaronesia that triggered allopatric differ-
entiation (e.g., D. draco subsp. caboverdeana). However,
human-mediated expansion of haplotypes arises as a con-
founding factor that may be interfering with natural processes
of dispersal and differentiation.
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Appendix 1. Sequence information for the Dracaena samples used for the construction of Phylogen-1 (38 accessions; matK + rbcL markers) and Phylogen-2
(12 accessions; matK + rbcL + rpl32-trnL + trnQ-rps16 markers) datasets.

Taxon, accession numbers (matK, rbcL, rpl32-trnL, trnQ-rps16), publication or source.

Dracaena aletriformis (Haw.) Bos 1, JX517850, AFV48994, —, —, Maurin & al., unpub.; Dracaena aletriformis (Haw.) Bos 2, JX903540, —, —, —, Chen & al.,
2013; Dracaena aletriformis (Haw.) Bos 3,—, ADZ61821, —, —, Yessoufou & al., 2013; Dracaena angustifolia (Medik.) Roxb. 1, AB029802, —, —, —, Yamashita
& Tamura, 2000; Dracaena angustifolia (Medik.) Roxb. 2, AB924769, BAO72419, —, —, Toyama & al., 2015; Dracaena angustifolia (Medik.) Roxb. 3, —,
AER29281, —, —, Miller & al., 2013; Dracaena angustifolia (Medik.) Roxb. 4, —, AER29361, —, —, Miller & al., 2013; Dracaena angustifolia (Medik.)
Roxb. 5,—, AER29622, —, —, Miller & al., 2013; Dracaena angustifolia (Medik.) Roxb. 6,—, AER29701, —, —, Miller & al., 2013; Dracaena aubryana Brongn.
ex E.Morren 1, AB088791, AB088823, —, —, Tamura & al., 2004; Dracaena aubryana Brongn. ex E.Morren 2, HM640583, HM640470, —, —, Kim & al., 2010;
Dracaena aubryana Brongn. ex E.Morren 3, LT934268*, L'T934244*, 1. T934256%*, LT934280%*, This study: Waimea Valley Arboretum and Botanical Garden
(ex horto); Dracaena aubryana Brongn. ex E.Morren 4, —, 277270, —, —, Rudall & al., 1997; Dracaena cinnabari Balf.f., LT934269*, 1. T934245%, L. T934257*,
LT934281%*, This study: Jardin Botanico Viera y Clavijo (ex horto) — LPA18513; Dracaena cochinchinensis (Lour.) S.C.Chen, LT934270%, LT934246%*,
LT934258%*, LT934282*, This study: Waimea Valley Arboretum and Botanical Garden (ex horto); Dracaena deremensis Engl. 1 (syn. D. fragrans),
JX903539, —, —, —, Chen & al., 2013; Dracaena deremensis Engl. 2 (syn. D. fragrans), KX783666, ART88308, —, —, Elansary & al., 2017; Dracaena draco
subsp. ajgal Benabid & Cuzin, LT934271%*, LT934247*, L T934259%, LT934283*, This study: LPA22512; Dracaena draco subsp. caboverdeana Marrero
Rodr. & Almeida, LT934272*, 1.T934248%*, LT934260%*, LT934284*, This study: LPA28912; Dracaena draco (L.) L. subsp. draco 1, AB029803,
AB029848, —, —, Yamashita & Tamura, 2000; Dracaena draco (L.) L. subsp. draco 2, HM850497, HM849958, —, —, Schaefer & al., 2011; Dracaena draco
(L.) L. subsp. draco 3, 1X495705, JX571820, —, —, Elansary, 2013; Dracaena draco (L.) L. subsp. draco 4, LT934273*, 1LT934249%, LT934261%,
LT934285%*, This study: LPA37286; Dracaena ellenbeckiana Engl., 1 T934274*, 1. T934250%, LT934262*, LT934286*, This study: Jardin Botanico Viera
y Clavijo (ex horto) — LPA19404; Dracaena fragrans (L.) Ker Gawl. 1, —, AFG32688, —, —, Kalyankar & al., unpub.; Dracaena firagrans (L.) Ker Gawl. 2,
KX783667, ART88309, —, —, Elansary & al., 2017; Dracaena laxissima Engl., KC627876, AGI76159, —, —, Parmentier & al., 2013; Dracaena mannii Baker,
JX517338, AFV48995, —, —, Maurin & al., unpub.; Dracaena marginata Lam. (syn. Dracaena reflexa var. angustifolia), KX783668, ART88310, —, —, Elansary
& al., 2017; Dracaena ombet Heuglin ex Kotschy & Peyr., LT934275%, LT934251%, LT934263*, LT934287*, This study: Jardin Botanico Viera y Clavijo
(ex horto) — LPA18515; Dracaena reflexa Lam., KX783669, ART88311, —, —, Elansary & al., 2017; Dracaena schizantha Baker 1, LT934276%,
LT934252%*, 1T934264*, LT934288*, This study: Meise Botanic Garden (ex horto); Dracaena schizantha Baker 2, HM640582, HM640469, —, —, Kim
& al., 2010; Dracaena serrulata Baker, LT934277*, L'T934253*, LT934265%*, LT934289*, This study: Jardin Botanico Viera y Clavijo (ex horto) — 146/03;
Dracaena steudneri Engl., KX146227, AOP18845, —, —, Charles-Dominique & al., 2016; Dracaena tamaranae Marrero Rodr., Almeida & Gonzalez,
LT934278%*, LT934254%*, LT934266%*, LT934290*, This study: Jardin Botanico Viera y Clavijo (ex horto) — LPA34717; Dracaena transvaalensis Baker,
JX517732, AFV48996, —, —, Maurin & al., unpub.; Liriope muscari (Decne.) L.H.Bailey, LT934279%, LT934255%, LT934267*, LT934291*, This study: Meise
Botanic Garden (ex horto).
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