WELCOME

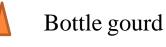
Advances in Production and Breeding of Important Cucurbits

DR. SUBHRAJÝOTI CHATTERJEE

ASST. PROF, MSSSOA, CUTM

TAXONOMIC POSITIONS

KINGDOM: Plantae PHYLLUM: Angiosperms DIVISION: Magnoliophyta CLASS: Magnoliopsida ORDER: Cucurbitales FAMILY: Cucurbitaceae


Common name	Botanical name	2n chromosome no.
Muskmelon	Cucumis melo L.	24
Cucumber	Cucumis sativus L.	14
Watermelon	Citrullus lanatus Thunb.	22
Bottle gourd	Lagenaria siceraria (Mol.) Standl.	22
Bitter gourd	Momordica charantia L.	22
Pumpkin	Cucurbita moschata Duch. Ex Poir.	40
Summer squash	Cucurbita pepo L.	40
Winter squash	Cucurbita maxima L.	40

Origin

Crop	Origin		
Muskmelon	Western Africa		
Cucumber	Himalayan foothills (India)		
Watermelon	Central and South Africa		
Bottle gourd	Tropical Africa		
Bitter gourd	South Asia (Eastern India and Southern China)		
Pumpkin and squashes	Mexico and South America		

÷

- Bitter gourd
- Pumpkin and squashes

INTRODUCTION

Cucurbits are the largest group of summer vegetable grown almost in all states of the country

These belong to family Cucurbitaceae, comprising of 120 genera and about 800 species

(Rubatazky and Yamaguchi, 1999)

Сгор	Area ('000 ha)	Production (* 000 MT)	Productivity (t/ha)
Muskmelon	36.70	760.81	20.73
Cucumber	43.28	678.15	15.67
Watermelon	74.64	1809.83	24.25
Bottle gourd	103.23	1818.86	17.62
Bitter gourd	78.89	807.47	10.24
Pumpkin	19.76	416.11	21.06

NHB Database, 2014

MEDICINAL VALUE

Сгор	Medicinal properties
Muskmelon	Cures chronic eczema, diuretic and aphrodisiac
Cucumber	Cooling effects on body, diuretic, lowers blood sugar and prevents constipation
Watermelon	Diuretic, purgative, cooling effect on body and aphrodisiac
Bottle gourd	Purgative, prevents jaundice and application for burns
Bitter gourd	Antihelmintic, anti septic, lowers down blood sugar and antidote to snake poison
Pumpkin	Antihelmintic, diuretic and effective against nervous disorders

Seshadri and More, 2009

NUTRITIONAL COMPOSITION (per 100 g edible portion)

	Energy (kcal)	Carbo- hydrate(g)	Protein (g)	Carotene (mg)	Calcium (mg)	Phosphorus (mg)	Iron (mg)
Muskmelon	17	3.5	0.2	169	32	14	1.4
Cucumber	13	2.5	0.4	7	10	25	1.5
Watermelon	26	6.4	0.5		7	10	0.5
Bottle gourd	12	2.5	0.2			10	0.7
Bitter gourd	25	4.2	1.6	126	20	70	1.8
Pumpkin	25	4.6	1.4	50	20	30	0.7

Hazra and Som, 2014

ECONOMICAL USES

• Fruits:

- Salad: Cucumber and Long melon
- ✓ Cooked: All gourds and chow chow
- Dessert fruit: Muskmelon and Watermelon
- Pickle: Cucumber and Gherkin
- ✓ Sweets: Ash gourd and Bottle gourd

• Leaves:

 Cooked vegetable: Bottle gourd and Pumpkin (East and South India)

• Flowers:

- Fried: Pumpkin
- Dried shell of bottle gourd: Novelty container, bottle, musical instruments

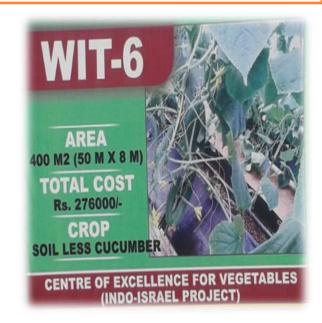
ADVANCES IN PRODUCTION TECHNOLOGIES

• Mulching

tunnels

• Protected cultivation

• Harvesting indices


• Seed production

• Production in low poly

- o Soil
- Climate
- Time of planting
- Propagation and nursery raising
- Propagation through stemo Harvesting and storage cuttings
 Plant protection measures
- Grafting
- Training
- Pruning
- Pollination
- Nutrient management
- Irrigation management

SOIL

- Well drained loamy soil is preferred for all cucurbits
- Grown in **light soil where earliness is** prerequisite
- In heavy soils fruits mature late due to heavy initial vegetative growth
- Sandy soil, supplied with organic matter is also suitable (riverbed cultivation)
- Majority of cucurbits thrive best around soil **pH 6.5-7.0**
- Watermelon can be grown in pH around 5.0
- Soil less culture can also be followed with growing media like **perlite**, **vermiculite**, **sawdust**, **rock wool** or mixture of these

CLIMATE

- Warm season vegetables
- Susceptible to frost
- Photo insensitive for flowering
- Photoperiod affects sex expression

Warm dry	Warm humid	Low warm humid
30-35 ⁰ C	25-30 ⁰ C	<25 ⁰ C
< 50% RH	50-65% RH	>65% RH
Watermelon	Bitter gourd	Ivy gourd
Muskmelon	Bottle gourd	Chow chow
Pumpkin	Sponge gourd	Pointed gourd
Squashes	Ash gourd	

- Cucumber requires relatively cooler humid climate falls between warm dry and warm humid
- Accordingly planting time is adjusted keeping in view the climatic requirements of the crops

TIME OF PLANTING

Watermelon and Muskmelon:

- February-March (spring summer crop)
- October-November in North India with frost protection in polyhouse or poly-tunnels
- > Planting is adjusted in such a way that maturation phase coincides with rain free day with ample sunshine and cooler nights

Bitter gourd and bottle gourd:

- February-March (spring summer crop)
- June-July (rainy season crop)
- October- November sowing is only followed for riverbed cultivation Cucumber:
- February-March in plains (spring summer crop)
- May-July in hills (rainy season crop)

Pumpkin and Squashes:

- February- March (spring summer crop)
- October-November with frost protection (to catch early market)

PROPAGATION AND NURSERY RAISING TECHNIQUES

- Monoecious annual cucurbits: Seeds
- Monoecious perennial (chow chow): Sprouted fruits
- Dioecious perennial: Vegetative means (vine cuttings) during
 October- November when plants go under dormancy
- Nursery raising in plug trays (50 celled) permits early production and lowers the seed rate
- Coco peat, vermiculite and perlite @ 3:1:1 (v/v/v) ratio is recommended for cucurbits (Singh, 2012)

CUCUMBER PROPAGATION THROUGH VINE CUTTING

Why to go for stem cutting?

- > Produces disease free, uniform and elite propagules
- Produce early flowers and same yield as seedling
- > Form a single plant, several cuttings can be produced

GRAFTING

- This is a mode of propagation where a desired shoot (scion) is placed and allowed to unite on another plant (rootstock)
- Commercial vegetable grafting is followed in Japan, Korea, Phillipines, Grece, USA etc.

Advantages of grafting in cucurbits (Hazra and Som, 2014):

- Changes the sex expression when grafted on different rootstocks having differential sensitivity to endogenous ethylene production
- Avoids soil borne diseases (*Fusarium* wilt in cucumber, watermelon, muskmelon and bitter gourd) on *Cucurbita ficifolia*
- Avoidance of nematode infestation on rootstock Sicyos angulatus
- Avoidance of auto toxicity that affects ion uptake, membrane permeability, photosynthesis and phytohormone balance in cucumber, muskmelon and watermelon
- Provides cold hardiness, ensure early growth and yield in cucumber on *Cucurbita ficifolia* which enables survival at 20^o C/12^o C day/night temperature

PROMISING ROOTSTOCKS

Crop	Rootstocks
Muskmelon (open field)	Cucurbita moschata, C. moschata x C. maxima
Muskmelon (protected)	Benincasa hispida, C. moschata x C. maxima
Cucumber	Cucurbita moschata, C. ficifolia, C. maxima, Sicyos angulatus, Lagenaria siceraria
Watermelon	C. moschata x C. maxima, Lagenaria siceraria, Citrullus sp.
Bitter gourd	Luffa aegyptica, Cucurbita moschata, Laginaria siceraria

(Hazra and Som, 2014)

TRAINING

- Training is very essential due to their viney nature (except summer squash)
- Watermelon and muskmelon are generally not trained owing to their lager fruit size
- In homestead farming, these are trailed on thatched huts or walls

Training systems

- Bower system
- Bower system of training gave significantly higher yield and less fruit damage in bottle gourd cv. Samrat under Rahuri condition (Thamburaj and Singh, 2014)

Kniffin system

Ridge gourd and sponge gourd are commercially trained on kniffin system (Thamburaj and Singh, 2014)

Plant Training and Spatial Arrangement for Yield Improvements in Greenhouse Cucumber (*Cucumis sativus* L.) Varieties

M.G.S. Premalatha¹, K.B. Wahundeniya², W.A.P. Weerakkody¹ and C.K. Wicramathunga²

Three training systems viz. **Umbrella** system at spacing of 60 cm \times 60 cm, **V** system at 60 cm \times 60 cm and coiling of stem around growing bag at 45 cm \times 45 cm were carried out in three varieties Thunder, Sakura and Efadal in Srilanka.

RESULTS

- □ Umbrella system recorded highest fruits : flower ratio (0.5) as compared to other two (0.33) and highest per plant yield (2.82 kg)
- □ Both umbrella and V system showed higher ratio of fertile node to total node (0.40) as compared to other new system (0.25)
- New system recorded highest LAI, highest total yield (9.75 kg per m²) and highest marketable yield (9.2 kg per m²)
- □ They concluded that highest total and marketable yield per unit area was attributed to the more plant density
- □ Therefore the new system i.e. coiling the stem around growing bag may be followed in cucumber

Pruning

- Whenever the plants are trained in any systems, side shoots are pruned until vine reaches the top
- When the vines reach top of the system, prune the main vine to promote axillary branches
- Pruning gives higher TSS, ascorbic acid, reducing sugar and better pulp thickness in muskmelon and watermelon (Thamburaj and Singh, 2014)
- Pruning promotes more lateral branches and has positive significant correlation with yield as this narrow down the male : female sex ratio by auxin translocation in cucumber

World Journal of Agricultural Sciences 9 (3): 220-226, 2013 ISSN 1817-3047 © IDOSI Publications, 2013 DOI: 10.5829/idosi.wjas.2013.9.3.1728

Phytohormones Content in Cucumber Leaves by Using Pruning as a Mechanical Stress

¹Hidayatullah, ²Asghari Bano and ¹Mansab Ali Khokhar

Studied the effect of mechanical stress caused by pruning of lateral branches on yield and sex expression of cucumber cv. Shialkot Selection in Pakistan

Treatment code	Treatment	
T_0	Un-pruned plants	
T_1	Main stem without any laterals	
T_2	Main stem + 1 laterals	
T_3	Main stem + 2 laterals	
T_4	Main stem + 3 laterals	
T_5	Main stem + 4 laterals	
T_6	Main stem + 5 laterals	

RESULTS

- □ T₄ recorded greatest increase in female flower production, lowest male : female sex ratio, highest number of fruits per plant and highest yield as compared to control
- □ It was attributed to increase in IAA level and decrease in GA level at flower initiation, blooming and fruiting stages

It was concluded that mechanical stress by pruning treatment of main stem with 3 laterals (T_4) was best for higher yield in cucumber

POLLINATION

- Pollination in cucurbits is of utmost importance as they are multi seeded (except chow-chow)
- One or more pollens are necessary for a single seed development
- Improper pollination leads to poor fruit set and crook necked unmarketable fruits that ultimately results in poor yield
- Cucurbits are cross pollinated and entomophillus
- Major pollinating agents are honey bees and beetles like *Conpophilus* sp. and moths like *Pygargonia* sp. and *Planidia* sp.

Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens

Iris Motzke^{1,2*}, Teja Tscharntke¹, Thomas C. Wanger^{3,4} and Alexandra-Maria Klein^{2,3}

The study was conducted in 13 Results:

traditional home gardens of Indonesia

Treatments

- Weed control v/s no weed control
- Fertilizer application v/s no fertilizer
- Herbivore control v/s no herbivore control
- Each of the 3 treatments were combined wind pollination in cage v/s open insect pollination

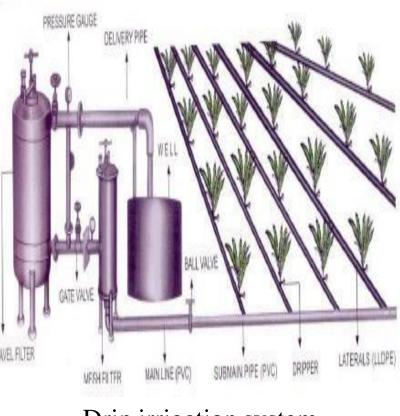
- ✓ Strongest negative effect on fruit set was caused by exclusion of insect pollinators (86%) followed by no weed control (20%)
- ✓ No fertilizer application and herbivore control did not significantly reduce fruit set
 - Recorded yield reduction of 75% in wind pollination, 45% in no weed control and 18% in no fertilizer application
 - Operational cost exceeded the net income when pollinators were excluded
 - ✓ Net income was highest in treatment insect pollination, with weed control and fertilizer application

Although positive effect of ferltizer application and weed control was recorded on yield, that could not compensate negative effects of absence of pollinators

STRATEGIES FOR IMPROVING POLLINATION

- Adjust the planting time in such a way that fruiting is over till April or starts after July
- Keep at least two bee hives per hectare when 25% plants have flowering
- In dioecious crops, keep at least 10% pollen parent scattered in the field for effective pollination
- In dioecious crops hand pollination in early morning is practiced for better fruit set
- In bottle gourd and ridge gourd flower open in afternoon when natural bee activity is very low, placement of bee hives is of at most importance

NUTRIENT MANAGEMENT


Crop	FYM (t/ha)	Nitrogen (kg/ha)	Phosphorus (kg/ha)	Potassium (kg/ha)
Muskmelon	25-30	125	70	70
Cucumber	15-20	100	60	60
Watermelon	15-20	100	60	70
Bitter gourd	20-25	100	60	50
Bottle gourd	15-20	100	60	60
Pumpkin	20-25	100	60	60

- Fertigation can be followed for better growth and fruit production in cucumber
- Top dressing of nitrogenous fertilizer should be completed before the commencement of fruit set
- ➢ Higher doses of potassium in muskmelon and watermelon increases TSS

(Thamburaj and Singh, 2014)

IRRIGATION MANAGEMENT

- Flowering and fruit set stages are the most critical stages for irrigation
- Moisture stress during flowering induces maleness
- In watermelon and muskmelon, when fruits reach maturity, frequency of irrigation is reduced
- In arid zones, pitcher irrigation is practiced to increase water use efficiency in muskmelon and watermelon
- Riverbed crops requires less irrigations due to presence of high water table
- Soil moisture should always remain 10-15% above permanent wilting point
- Drip irrigation with fertigation is also recommended

Drip irrigation system

FISEVIER

Contents lists available at ScienceDirect

Agricultural Water Management

journal homepage: www.elsevier.com/locate/agwat

CrossMar

Attenuating the negative effects of irrigation with saline water on cucumber (*Cucumis sativus* L.) by application of straw biological-reactor

Yune Cao^{a,b,*,1}, Yongqiang Tian^{a,1}, Lihong Gao^a, Qingyun Chen^{a,*}

Conducted experiment to study the effect of straw biological reactor (SBR) application on soil properties at main root zone (0-40 cm), plant growth, fruit yield and quality under saline water irrigation in **China**

Treatment code	Treatment	
T ₀ T ₁	Untreated soil (C) Irrigated with saline water (SW)	
T ₂	Treated with SBR and irrigated with saline water (SW + SBR)	

 T_1 recorded significantly higher salinity, higher pH in the main root zone of plants and significantly lowered the TSS, titratable acidity, vitamin C, biomass production and yield

 T_2 recorded significantly lower salinity, lower pH at the main root zone of plants and significantly higher TSS, titrable acidity, vitamin C, biomass production and yield

Negative effects of saline water on fruit quality were reduced by SBR application
 Application of SBR can be done to enhance plant growth and fruit quality under saline water irrigation

MULCHING

- Covering of the plant root zone with either organic or synthetic materials
- Among organic, grass, straw, paddy husk, saw dust are used
- Among synthetics, black polythene, transparent polythene and degradable plastic mulches are used

Added advantages:

- More advantageous in crops which are generally trailed on ground. For example Watermelon and Muskmelon.
- Reduces fruit decay by preventing direct contact with soil
- Reduces fruit fly attack on crops by checking their pupation
- Organic mulches add organic matter to soil upon decomposition

Polythene mulch in summer squash

Straw mulch in summer squash

Contents lists available at ScienceDirect

Agricultural Water Management

journal homepage: www.elsevier.com/locate/agwat

Cucumber (*Cucumis sativus*, L.) water use efficiency (WUE) under plastic mulch and drip irrigation

T. Yaghi^{a,*}, A. Arslan^a, F. Naoum^b

Studied the effect of two plastic mulch with drip irrigation on cucumber yield in Syria

Treatment code	Treatments	Yield (t/ha)	WUE (t/ha/mm)
T ₁	Transparent mulch + drip irrigation (TM + DI)	63.9	0.262
T_2	Black mulch + drip irrigation (BM + DI)	59.7	0.238
T ₃	Drip irrigation without mulching (DI)	44.1	0.153
T_4	Surface furrow irrigation (SI)	37.7	0.056

 T_1 recorded highest soil temperature as compared to T_2

 T_1 gave highest vegetative growth and almost double yield as compared to T_4

T₂ was best for weed control

PROTECTED CULTIVATION

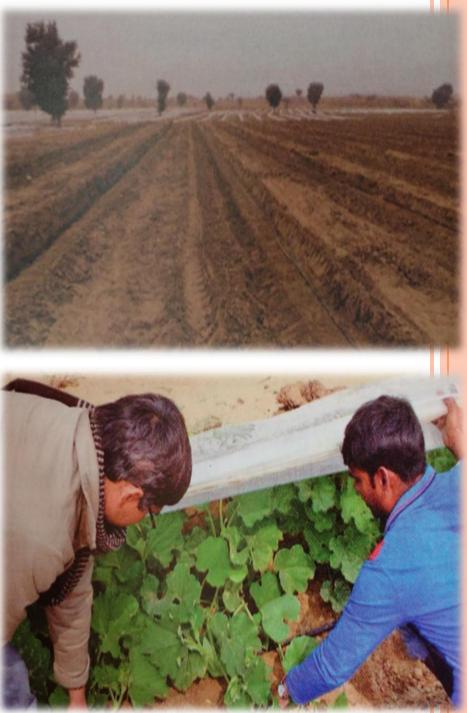
Principle involved:

- Absorbance of short wavelength of light and allow only PAR through the cladding material
- Short wave light (heat) penetrate into structures and structures in turn emit long wave length heat that fail to escape. It results into increase in temperature (Greenhouse effect)
- Greenhouse effect favours warm season crops during winter season
- During summer season cooling systems are used to lower down the temperature

Varieties:

- Cucumber: "NUN-9729", "NUN-3019", "Hilton", "Pant Parthenocarpic Kheera-1" and "Kian"
- ✓ Musk Melon: "Arava" (Israel Hybrid)

CUCURBIT PRODUCTION IN LOW POLY TUNNELS IN ARID ZONE


- Dig trenches of 45-60 cm wide and 45-60 cm deep at a distance of 2-2.5 m in East West direction in December end
- Add recommended dose of manures and NPK to the trenches and mix thoroughly
- Place a drip lateral in each trench with discharge of 4l/hour/dripper spaced at 60 cm
- Soak the seeds 24 hours prior to sowing. Must be sown within 1st week of January. Irrigate the trenches after sowing.
- Fix flexible 2 mm iron hoops manually keeping 1 m width and 60-75 cm height from ground. Cover the structure with 30 -50 micron biodegradable plastic sheet
- Operate drip at 2-3 days interval for 1-1.5 hours
- Open the Eastern side during day for effective pollination by honey bees when the plants start producing pistillate flowers
- Plastic sheet is removed on second or third week of February when the outside temperature rises.

Choudhary *et al.* 2015. *Indian Horticulture*, May –June: 22-24

Advantages:

- ✓ Protection from frost
- ✓ Earliness by 38-40 days
- ✓ Provides early quality produce fetches high price in market

HARVEST INDICES

1. Muskmelon:

- Half slip stage-for long distance transport
- ✓ Full slip stage-For local market
- Netting in cantaloupe
- 2. Cucumber:
 - ✓ Fruits of desirable size, having green skin colour

3. Watermelon

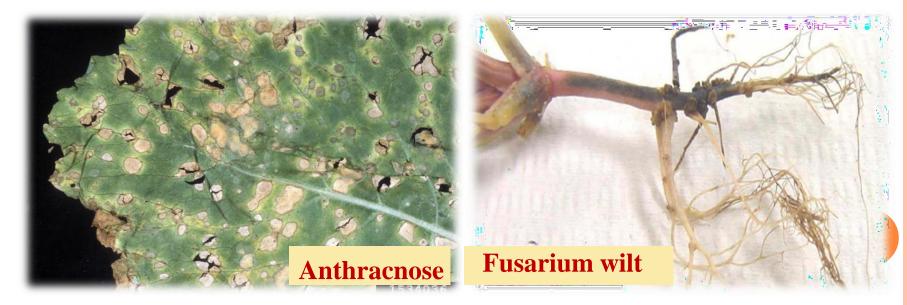
- Dull sound upon thumping of fruits
- Tendrils at fruit axil dry out and flower scar dry at the blossom end
- Ground spot turns yellow
- 4. Bottle gourd:
 - Presence of little pubescence on fruit skin
- 5. Bitter gourd:
 - Appropriate size of fruits having either dark green, light green or white colour (depending upon the variety)
- 6. Pumpkin:
 - Harvested at both tender and mature stage
 - Harvesting at mature stage improves transportability and storage

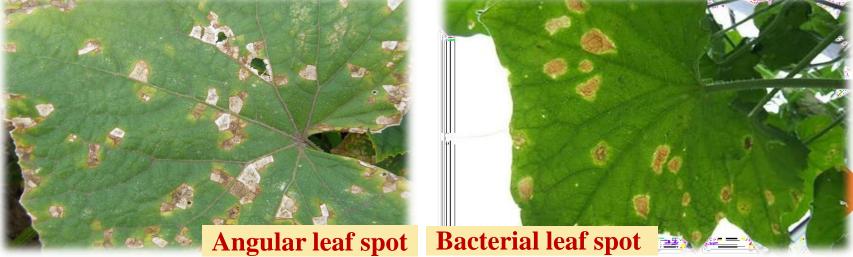
HARVESTING, YIELD AND STORAGE

	Days	Days	Yield	Storage		
Сгор	after sowing	after anthesis	(q/ha)	Temperature (°C)	RH (%)	Storage life (days)
Muskmelon	90-125	30-35	100-150	5	95	10-12
Cucumber	60-70	7-9	150-200	10	85	10-14
Watermelon	95-120	40-45	200-250	13-16	80	14-21
Bottle gourd	60-65	12-15	250-300	8-10	85-90	14-21
Bitter gourd	60-70	10-12	100-150	0.6-1.7	85-90	28
Pumpkin	75-180	35-65	200-250	10-12	70-75	180

PLANT PROTECTION

Fungal diseases


Diseases	Symptoms	Management		
Powdery mildew (Sphaerothica fuliginea)	Nearly white or fluffy, somewhat circular patches on leaves. Leaves become yellow and fall off	Karathane (0.05%) alternately		
Downy mildew (<i>Pseudopernospora</i> cubensis)	Downy purplish growth appears on the lower leaf surface during morning hours. Corresponding upper surface become yellow	Spray the crop with Mancozeb (0.25%) alternately with Ridomil MZ (0.15%) at 9-10 days interval		



Diseases	Symptoms	Management
Anthracnose (<i>Colletotrichum</i> <i>lagenarium</i>)	Reddish brown spots appear on leaves, petioles, stem and fruits. Fruits become shrivelled when pedicel is infected	Spray the crop with Bavistin (0.1%) or Thiophenate M (0.05%) at 5-7 days interval
<i>Fusarium</i> wilt (<i>Fusarium</i> oxysorum f. niveum) and (<i>F. o. f. melonis</i>)	It causes pre emmergence damping off, wilting in grown plants. Vascular bundles of affected plants show browning	Drench the soil with Captan or Hexocap (0.2-0.3%) Hot water seed treatment at 55°C for 5 minutes Follow crop rotation with rice

BACTERIAL DISEASES

Angular leaf spot (<i>Pseudomonas syringae</i> pv. <i>lachrymans</i>) appear spots d "shot h	soaked angular spots r on leaves. Later the dry and fall off giving a nole" symptom	Destroy all affected plant parts Avoid heavy and sprinkler	
Varia			
Bacterial leaf spot (Xanthomonas compostris py	small water soaked spots r on lower leaf surface corresponding upper e shows browning with halo	irrigation Use disease free seed Spray the crop with streptomycin (400 ppm) of Bordeaux mixture	

VIRAL DISEASES

Disease	Crop (s) severely affected	Transmission	Symptoms	Management
Cucumber Mosaic Virus (CMV)	All cucurbits	Aphids, sap and mechanical tools	Mild mottling, vein clearing, puckering of leaves. Plants remain stunted	plants away, Manage
CGMMV	Cucumber	Seeds, mechanical tools and irrigation water	Slight vein clearing, crumpling, blistering and distortion of leaves	•

Disease	Crop (s) severely affected	Transmission	Symptoms	Management
Bud necrosis (a strain of TOSPO)	Watermelon	Thrips, sap and mechanical tools	Buds turn brown and die Concentric rings on fruits	Tillnownomanagementisrecommended
Zucchini Yellow Mosaic (gemini) Virus	Pumpkin and squashes	Whitefly	older leaves	Repallent

Pest management

Pest	Nature and symptoms of damage	Management
Red pumpkin beetle (<i>Aulacophora</i> <i>fovicilis</i>)	Mostly attack in cotyledonary stage, eat away the cotyledonary leaves, plants die	
Aphids (<i>Aphis</i> gossypii and Myzus persicae)	Suck sap from under surface of leaves, plants become weak, remain stunted. These also acts as vectors of various viral diseases	

Pest	Nature and symptoms of damage	Management
Fruit fly (<i>Dacus dorsalis</i> and <i>D. Cucurbitae</i>)	Adults lay eggs below the developing fruit epidermis and maggots feed inside fruits and cause rotting. More severe during rainy season	traps to attract male adults Place poison bait (2 ml
Root Knot Nematode (<i>Meloidogyne</i> <i>incognita</i>)	Plants remain stunted, show wilting during thee hotter part of the day and recovers during nights Knots are easily seen at the roots	Application of Nemagon or Phorate 10G @ 3 kg per hectare

Advances in seed production

Isolation Distance

- > Foundation seed: 800 m
- Certified seed: 400 m

Crossable species

- Muskmelon from snap melon and long melon
- Cucumber from Indian wild cucumber (*C. sativus* var. *hardwickii*)
- Watermelon from round melon and wild sp. (*Citrullus colocynthis*)
- Bitter gourd from wild species (M. charantia var. muricata)
- Bottle gourd from wild species (Lagenaria sphaerica)
- > Pumpkin from squashes

Rouging

- > Early vegetative stage
- > Before opening of first flower
- > At fruiting and harvest stage

Available online at <u>http://www.ijabbr.com</u>

International journal of Advanced Biological and Biomedical Research

Volume 2, Issue 4, 2014: 1030-1037

The Effects of Pruning and Potassium Nutrition on some Morphological traits and Seedling Properties of Pumpkin (Cucurbita pepo L.)

Behrooz Esmaielpour¹ and Saeid Hokmalipour²

Treatment code	Treatments
T_1	No pruning
T_2	Pruning after 8 th node
T ₃	Pruning after 12 th node
T_4	No potassium (0 kg/ha)
T ₅	Potassium @ 75 kg/ha
T ₆	Potassium @ 150 kg/ha

 T_1 recorded highest fresh weight (93.22 g) of seeds, germination percentage and root and shoot dry weight (0.30 mg and 0.59 mg respectively)

 T_6 recorded maximum number of seeds per fruit (179.1) and 1000 seed weight (178.9 g)

They interpreted the result of non pruned plants as higher source and lower sink resulted into superiority whereas higher potassium level helped in greater translocation of the assimilates to the fruits resulted superiority as compared to that of lower potassium levels

They concluded that no pruning along with higher level of potassium (150 kg/ha) to be practiced for getting higher quantity and better quality pumpkin seeds

HYBRID SEED PRODUCTION

- Significant heterosis for earliness and yield has been reported for most cucurbits
- > Insignificant inbreeding depression helps to produce inbred lines easily

Methods for hybrid seed production

- Hand emasculation and pollination in andromonoecious and hermaphrodite species
- Manual defloration of male flowers (pinching before anthesis) from female parents in monoecious species
- Use of gynoecious lines
- Use of genetic male sterility (single recessive gene governs male sterility in cucumber, muskmelon, watermelon and squashes) as female parent
- Epigenic conversion towards femaleness form by using ethephon in monoecious cucurbits

Selection of best combiner inbreds, maintaining proper isolation, following any of these methods and keeping bee hives for insect pollination give more seed yield

(Robinson RW, 2000)

PROCEDURE

- Isolation of staminate and pistillate flowers by bagging one day prior to anthesis
- Next day pollens shed from paternal parent to maternal parent
- After hand pollination pistillate flowers are covered again for 4-5 days
- Collection of hybrid seed from ripe fruits

FRUIT HARVESTING AND SEED EXTRACTION

- Appropriate stage of maturity is important to determine seed quality
- Early or late harvesting causes quality deterioration

Stage for seed extraction and seed yield

Crop	Days after pollination	Seed yield (kg/ha)
Muskmelon	40-45	100-150
Cucumber	35-40	80-150
Watermelon	45-50	200-300
Bitter gourd	28-30	60-120
Bottle gourd	45-50	60-120
Pumpkin	65-70	100-300

Advances in breeding

BOTANICAL FEATURES

- Stems: Angular, slender, hollow and hairy
- Leaves: Petiolate, 3-5 lobbed, palmate, alternate in arrangement
- Flowers: Epigynous, solitary, axillary, monoecious (cucumber, watermelon, bitter gourd, bottle gourd and pumpkin); andromonoecious in muskmelon
- Calyx: Superior, calyx tube connects with the ovary
- Corolla: Corolla campanulate, 5 lobbed, yellow in (cucumber, watermelon, bitter gourd and pumpkin) and white in bottle gourd
- Androecium: Stamens are three, anthers adhere to corolla tube, pistillodes are present
- Gynoecium: Inferior, tri-carpellary ovary
- Fruits: Hard rind, many seeded (except in chow chow) berry, known as "pepo" (Kumar *et al.* 2014)

FLORAL BIOLOGY

Crop	Anthesis time	Anther dehiscence	Stigma receptivity
Muskmelon	5.30-6.30 am	5.00 to 6.00 pm	2 hrs before anthesis and 3 hrs after anthesis
Cucumber 5.30-7.00 am		4.30-5.00 am	12 hrs before anthesis and 7 hrs after anthesis
Watermelon	6.00 – 7.30 am	4.45 – 6.30 am	2 hours before and 3 hour after anthesis
Bottle gourd	5.00-8.00 pm	1.00-2.30 pm	Up to 60 hrs of anthesis
Bitter gourd	5.00- 10.30 am	7.00-8.00 am	1 day before anthesis and o1 day after anthesis
Pumpkin and squashes	7.00-9.00 am	6.30-8.30 am	2 hours before and 2 hours after anthesis
			(Kumar <i>et al.</i> 2014)

BREEDING OBJECTIVES

Muskmelon

- ✓ Earliness
- ✓ Short vines
- ✓ Yellow thick flesh
- ✓ Smaller seed cavity
- ✓ High TSS (11-13%) and flavour
- ✓ Good keeping quality
- ✓ Good transportability
- ✓ High early and total yield
- Resistance to diseases like Fusarium wilt, Powdery mildew, downy mildew and viral diseases
- Resistance to pests like red pumpkin beetle, fruit fly, aphids and nematodes
- Resistance to abiotic stress like seed germination at low temperature and salinity

Cucumber

- ✓ Earliness
- ✓ High female : male sex ratio
- ✓ Short vine length with short internodes

✓ Light green, green and white skin colour

- ✓ Cylindrical fruits without crook neck
- \checkmark Few or no spines, preferably white
- ✓ Few soft seeds at edible stage

✓ Fruits free from bitterness

✓ Edible fruits without carpel separation

 ✓ Higher yield, longer fruit duration and more number of fruits per plant.
 ✓ Resistance to diseases like anthracnose, powdery mildew, CMV and insect pests

Bottle gourd

- ✓ Vigourous and well branched plants
- ✓ Earliness
- ✓ Higher female : male sex ratio
- ✓ Fruits having glossy green surface and bitter less
- ✓ Late fiber development in fruits
- ✓ Resistance to diseases like *Fusarium* wilt, powdery mildew and viral diseases and insects like red pumpkin beetle
- ✓ Soft seeds at edible stage
 Bitter gourd
- Long growing well branched vines
- ✓ High female : male sex ratio
- ✓ Lesser number of seeds per fruit
- ✓ Moderate bitterness
- ✓ Yield
- Resistance to important diseases and pests

Watermelon

- Strong long vines with more number of branches
 - ✓ Earliness
- ✓ Firm flesh, red or pink coloured
- ✓ Fewer and small seeds
- ✓ TSS (more than 10° B)
- ✓ Good transportability and storage life
- ✓ Higher number of marketable fruits per plant
- ✓ Higher yield per plant
- Resistances to diseases such as anthracnose, Fusarium wilt, powdery mildew and insects like fruit fly and red pumpkin beetle

Pumpkin and squashes

- ✓ Medium or short vines
- ✓ Earliness
- High female : male sex ratio
- Thick, yellow coloured flesh
- Pleasant aroma
- ✓ Resistance to important diseases like powdery mildew and viruses and pest like red pumpkin beetle

BREEDING METHODS EMPLOYED

Conventional Introduction Selection Hybridization Backcross method Mutation breeding Polyploidy Non conventional Somaclonal variation Genetic engineering through Recombinant DNA technology

Introduction

Crop	Variety	Introduced from
	Japanese Long Green	Japan
Cucumber	Straight Eight	USA
	Poinsett	USA
	Asahi Yamato	Japan
Water melon	Sugar Baby	USA
	Improved Shipper	USA
Summer	Patty Pan	USA
Squash	Australian Green	Australia

Sel ction

	Pusa Madhuras	Local Collection of Rajasthan
Muskmelon	Hara Madhu	Local Collection of Haryana
	Arka Jeet	"Bati" strain of UP
Cucumber	Sheetal	Local material of MH
Watermelon	Durgapura Meetha	Local cultivar
w atermeton	Durgapura Kesar	Local strain
	Pusa Visesh	Local variety of Hapur, UP
Bitter gourd	Priya and Preethi	Local germplasm of Kerala
	Arka Harit	Germplasm collected from Rajasthan
	PSP Long and PSP Round	Local germplasm
Bottle gourd	Arka Bahar	Local cultivar of Karnataka
	Samrat	Local germplasm of Dahanu district of MH
Summer Squash	Punjab Chappan Kaddu	Inbred from segregating local variety of Punjab
Dumplyin	Arka Chandan	Germplasm of Rajasthan
Pumpkin	Pusa Viswas	Local line "CM 10"

Hybridization followed by selection

Crop	Variety	Parentage	
	Pusa Sharbati	Kuntana x Resistant No. 6	
Muskmelon	Punjab Sunheri	Hara Madhu x Edisto	
	Punjab Rasila	WMR 29 x Hara Madhu	
C 1	Himangi	Poinsett x Kalyanpur Ageti	
Cucumber	Phule Shubhangi	Poinsett x Kalyanpur Ageti	
Watermelon	Arka Manik	IIHR 21 x Crimson Sweet	
Bitter gourd Phule Green		Green Long x Dehli Local	

Heterosis breeding

Crop	Variety	Parentage
Muskmelon	Pusa Rasraj	Monoecious 3 x Durgapura Madhu
WIUSKIIICIOII	Punjab Hybrid	ms 1 x Hara Madhu
Cucumber	Pusa Sanyog	Japaneese Gynoecious line x Long Green Naples
Watermelon	Arka Jyoti	IIHR 20 x Crimson Sweet
Bottle Gourd	Pusa Meghdoot	PSP Long x Sel. 2
	Pusa Manjari	PSP Round x Sel. 11
Summer Squash	Pusa Alankar	EC 207050 x Sel. 1

Mutation breeding

Crop	Variety	Mutation method
Bitter gourd	MDU 1	50 Kr gamma irradiation on seeds of local cultivar (MC 103)

Short communication

Heterosis breeding exploiting gynoecy in cucumber (Cucumis sativus L.)

C.K.Airina1*, T. Pradeepkumar², T.E. George², P.G. Sadhankumar² and S. Krishnan³

EC- 709119 (a stable gynoecious line from USA) was taken as female parent and 12 monoecious lines as male parent and produced 12 top cross hybrids

13 parental lines and 12 hybrids were evaluated in the next season

• EC 709119 x CS 123: highest number of fruits per plant

- EC 709119 x IC 410617: superior for fruits per plant, number of harvests and yield per plant.
- EC 709119 x CS128: superior for fruit length, fruit girth and maximum earliness
- EC 709119 x IC 538155: highest yield per plant but fruits were not attractive
- EC 709119 x IC 538155: maximum crispiness that is desired in salad cucumber
- They suggested for further testing of these hybrids for commercial exploitation of heterosis

Varietal improvement work in cucurbits undertaken by Dept. of Vegetable Science, UHF, Nauni

l	Dept. of vegetable Science, OHF, Naum		
	Crop	Varieties	Varietal descriptions
		Khira 75	Local selection, prolific growth, fruits are well filled up to end, smooth, light green, cylindrical and 10-15 cm length. Ready for picking after 75 days
	Cucumber	Khira 90	Local selection, vigourous vines. Fruits are well filled up to end, smooth, light green, cylindrical, 15-20 cm long. Ready for picking after 90 days
	KH 1	Early maturing $F_{1,}$ bears 10-12 cm long fruits, ready for harvesting in 65 days, yields 3-40 t/ha	
		KH 2	Vines reach up to 5m with 4-5 lateral branches, fruits are cylindrical, 20-23 cm in length, black spine. Average yield 55-60 t/ha. Suitable for low temperature areas
	Bitter gourd	Solan Hara	Fruits are 20- 25 cm length and 4-5 com thick, green, white fleshed and spongy with high keeping quality. Ready for harvesting in 75 days, yields 15-17.5 t/ha
	Solan Safed	Fruits are 22-25 cm length and 4-6 cm thickness, takes 80 days for maturity, yield 17.5 t/ha	
	Pumpkin	Solan Badami	Vigourous vines, early, prolific bearer (40-50 t/ha), orange coloured medium sized fruits having thick flesh and good keeping quality
	Bitter gourd Pumpkin	Solan Hara Solan Safed	60 t/ha. Suitable for low temperature areas Fruits are 20- 25 cm length and 4-5 com thick, green white fleshed and spongy with high keeping quality Ready for harvesting in 75 days, yields 15-17.5 t/ha Fruits are 22-25 cm length and 4-6 cm thickness, take 80 days for maturity, yield 17.5 t/ha Vigourous vines, early, prolific bearer (40-50 t/ha), orange coloured medium sized fruits having thick flesh

TRANSGENIC VARIETIES

Transgenic Res (2012) 21:983–993 DOI 10.1007/s11248-011-9585-8

ORIGINAL PAPER

Development of transgenic watermelon resistant to *Cucumber mosaic virus* and *Watermelon mosaic virus* by using a single chimeric transgene construct

Ching-Yi Lin • Hsin-Mei Ku • Yi-Hua Chiang • Hsiu-Yin Ho • Tsong-Ann Yu • Fuh-Jyh Jan

SEX EXPRESSION AND ITS MODIFICATION

- It is a complex phenomenon
- Up to eight sex forms are found in different species
- Hermaphrodite is most primitive and Monoecious is most advanced form`
- Further, it depends upon
 - genetic makeup of the variety
 - prevailing **temperature** and **photoperiod**
 - time of planting
 - sequential fruit harvest
 - nutrition and irrigation management
 - endogenous level of phytohormones
 - exogenous application of **plant growth regulators**

SEX MODIFICATION THROUGH CHEMICALS AND PGRS

For inducing staminate (male) flowers	Chemical (s)	Concentration (ppm)	Crop (s)
	Gibberellic acid (GA ₃)	1500-2000	
	Silver nitrate (AgNO ₃)	200-300	Most monoecious cucurbits
	Silver thiosulphate $(Ag_2S_2O_3)$	300-400	
	Amino ethoxy vinyl glycine (AVG)	50-100	
For inducing pistillate (female) flowers	Tri-iodo benzoic acid (TIBA)	25-50	Watermelon
	Ethrel	250-400	Bottle gourd Bitter gourd
	Ethrel	250-500	Rest all monoecious sp.
	Napthalene Acetic Acid (NAA)	25-100	Ridge gourd, Sponge gourd
	Maleic hydrazide (MH)	50-150	Most monoecious sp.

SEX MODIFICATION THROUGH CULTURAL METHODS

- For induction of femaleness:
 - Application of lower doses of nitrogenous fertilizers
 - Cultivation when short day length and lower temperature prevail
 - Grafting on higher ethylene producing rootstocks
 - Pruning of main vine to promote axilary branches
- For induction of maleness:
 - Application of higher doses of nitrogenous fertilizers
 - Excessive irrigation
 - Cultivation when long days and high temperature prevail

INDUCTION AND MORPHOLOGICAL CHARACTERIZATION OF HERMAPHRODITE FLOWERS IN A GYNOECIOUS LINE OF BITTER GOURD BY SILVER NITRATE, GIBBERELLIC ACID, AND SILVER THIOSULFATE MISHRA SMARANIKA, BEHRA TK AND MUNSHI AD. 2015

- > Isolated gynoecious line (DBGy-1) of bitter gourd from *Momordica charantia* var. *muricata* and studied the effect of Silver nitrate (SN), Giberellic Acid (GA₃) and Silver thio-sulphate (STS) at different concentrations for pure maintenance
- Treatments- SN: 1.2 and 1.5 mM; GA_3 : 2.9 and 4.3 mM; STS: 3 and 6 mM
- > Treatment with SN showed no significant effect on hermaphrodite flower induction
- GA₃ at both concentration resulted increased vegetative growth, rudimentary stamen with non viable pollen
- > STS @ 3 mM and 6 mM induced staminal tissue in female flower making them hermaphrodite
- Treatment with STS @ 6 mM recorded highest altered sex expression that was also 10 days earlier as compared to treatment STS @ 3 mM

International Journal of Vegetable Science 21:204–211

African Journal of Plant Science Vol. 5(10), pp. 599-608, 27 September, 2011 Available online at http://www.academicjournals.org/AJPS ISSN 1996-0824 ©2011 Academic Journals

Effect of seed soaking treatment with growth regulators on phytohormone level and sex modification in cucumber (*Cucumis sativus* L.)

Hidayat Ullah¹*, Asghari Bano², K. M. Khokhar¹ and T. Mahmood¹

- Seeds were soaked in distilled water, ethrel (700, 1750, 2750, 3800 μmol/L); GA₃ (15, 30, 45, 60, 75 μmol/L) and MH (450, 675, 900 μmol/L) 20 hours before sowing, taking untreated seeds as control
- Treatment with MH @ 450 μmol/L recorded highest pistillate flowers/plant (36.3), TSS (3.23° B), fruit/plant (25.7), fruit yield/ plant (3.80 kg) and lowest male: female sex ratio (12:4)
- GA₃ @ 30 µmol/L increased chlorophyll content of leaves and Leaf Area Index
- MH @ 450 μ mol/L has recorded maximum IAA content at blooming and fruiting stage
- Indigenous IAA content at blooming and fruiting stage had positive significant correlation with number of pistillate flowers (0.795), fruits (0.634) and yield per plant (0.757) and also recorded negative significant correlation with sex ratio (-0.719)
- Concluded that treatment with MH @ 450 µmol/L has better potential to alter sex towards femaleness and can be used at commercial scale.

BREEDING FOR BIOTIC AND ABIOTIC STRESS RESISTANCE

NEED FOR RESISTANCE BREEDING

• Heavy application of pesticides increases the cost of cultivation as well as cause health hazards upon consumption

• Non-judicial use of pesticides causes environmental pollution and develop resistance

- Spraying of insecticides and fungicides are not much effective in vine crops
- Cucurbits are sensitive to sulphur and some acaricides

• Viral diseases have wide host range and vectors. Therefore they are very difficult to manage

• The major pest, fruit fly (*Dacus cucurbitae*) is very difficult to manage by chemical insecticides

• A major area of our country is covered by different stresses such as moisture, temperature (both high and low) and salinity

• Stress causes reduction in growth of plants, early senescence and ultimately reduces the yield resulting from low photosynthetic rate and rise in respiration

• During stress, there is change in nutrient uptake and translocation, change in metabolism of nitrogen and sugar

• Cucurbits are the potent crops for riverbed cultivation during November-December when the temperature is low in north India. Protection is required from strong cold desiccating wind.

Indian Journal of Agricultural Sciences 81 (5): 398-401, May 2011

Inheritance of salt tolerance in cucumber (Cucumis sativus L.)

JAGESH K TIWARI¹, ANILABH D MUNSHI², RAVINDER KUMAR³, RAM KUMAR SHARMA⁴ and AMISH K SUREJA³

- Studied inheritance pattern of salinity tolerance by combining ability and gene action analysis
- Studied salt tolerant and salt sensitive inbreds (produced through 5 generation of selfing) and their hybrids
- Salinity levels: 0.43dS/m (control) and 4.00 dS/m
- Higher value of GCA than that of SCA was obtained and narrow sense heritability was recorded between 50-100%
- Results indicated predominance of additive gene action for salt tolerance in cucumber
- They suggested either hybridization followed by selection or simple recurrent selection methods for improvement of salinity tolerance in cucumber

BIOTIC STRESS RESISTANCE

Major biotic stresses in cucurbits

Diseases	Causal organism(s)	Crop(s) severely affected	
<i>Fusarium</i> wilt	Fusarium oxysporum f.sp. melonis	Muskmelon, Cucumber	
	Fusarium solani	Watermelon	
Powdery mildew	Sphaerothica fuliginea Erysiphe cichoracearum	Cucumber, Musk melon, Bottle gourd, Pumpkin	
Downey mildew	Pseudoperenospora cubensis	Muskmelon, Cucumber, Ridge gourd	
Anthracnose	Colletotrichum laginarium	Cucumber, Watermelon, Bottle gourd	
Fruit fly	Dacus cucurbitae	Cucumber, All gourds, Melons	
Red pumpkin beetle	Aulacophora fovicilis	Muskmelon, Cucumber, Round melon	
Viruses	CMV, CGMMV	Cucumber, Melons, gourds and Pumpkin	

BIOTIC STRESS RESISTANT SOURCES

Muskmelon

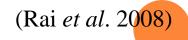
- PM: PMR 45, PMR 450,
 PMR 6, PI 124111
 DM: MR 1, PI 414723,
 DMDR 1, DMDR 2
 CGMMV:DVRM-1, 2, *c. africanus*, *C. ficifoilus*, *c. anguria*Fruit fly: *C. callosus*Nematode: *C. metuliferus*Whitefly: *C. asper*,
- C. denteri, C. dispsaceus,
- C. sagittatus

Bottle gourd

- CMV and WMV: PI 271353
- *Fusarium* wilt: Renshi (Taiwan)

Cucumber

- ✓ Anthracnose: PI
- 175111, PI 175120, PI 179676, PI 182445
- ✓ DM: B 184, B 159
- ✓ PM: PI 200815, PI
- 200818, C. hardwickii
- \checkmark CMV: Wise SMR 12,


SMR 15, SMR 18

Watermelon

- *Fusarium* wilt: Summit,
 Conqueror, Cherleston Gray,
 Crimson Sweet
- Anthracnose: Fair, Cherleston
 Gray, Congo, PI 189225

Pumpkin

- □ PM and viruses:
- C. lundelliana,
- C. martenezii
- **ZYMV** and WMV:
- C. ecuadorensis,
- C. foetidissima,
- C. martenezii

PM: Powdery Mildew, DM: Downy Mildew, CMV: Cucumber Mosaic Virus, CGMMV: Cucumber Green Mottle Mosaic Virus, WMV: Watermelon Mosaic Virus, SqMV: Squash Mosaic Virus

ACHIEVEMENTS IN RESISTANCE BREEDING

• Musk melon:

Punjab Rasila: Resistant to powdery mildew and moderately resistant to downy mildew **Arka Rajhans**: Tolerant to powdery mildew

• Cucumber:

Poinsett: Resistant to downy mildew, powdery mildew, anthracnose and angular leaf spot

Himangi: Resistant to bronzing

Phule Subhangi: Resistant to downy mildew

Pusa Barkha: Resistant to high temperature, high humidity and downy mildew

• Watermelon:

Arka Manik: Resistant to powdery mildew and downy mildew and resistant to anthracnose

• Bitter gourd:

Phule Green: Tolerant to downy mildew

• Bottle gourd:

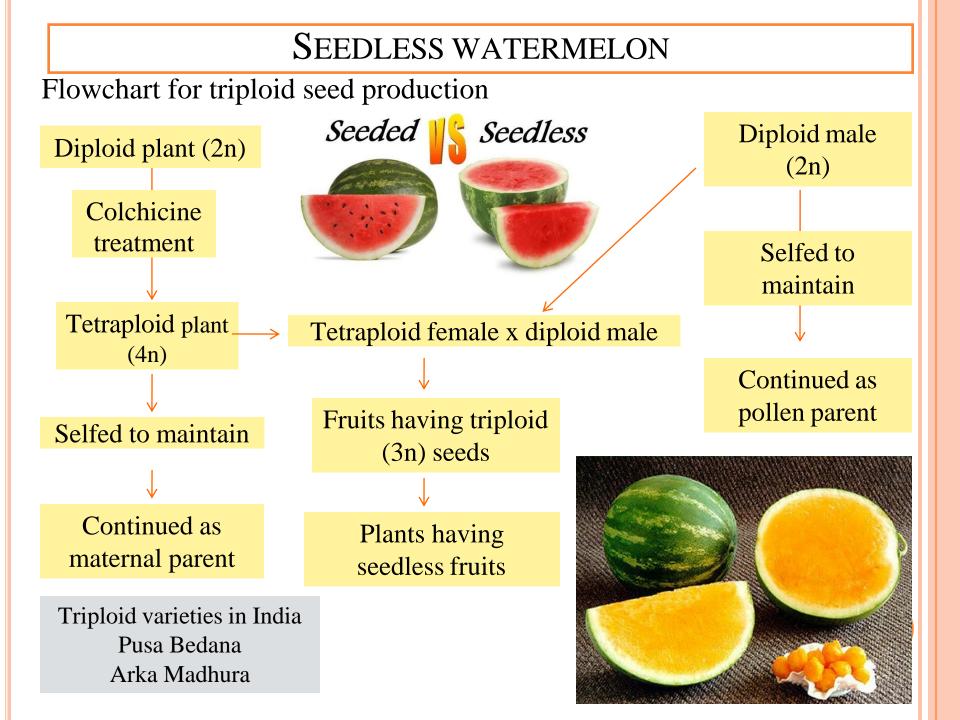
Pusa Santusthi: Tolerant to both high and low temperature

Punjab Komal: Tolerant to Cucumber Mosaic Virus (CMV)

• Pumpkin and squashes:

Arka Suryamukhi: Resistant to fruit fly (Daucus cucurbitae)

Punjab Chappan Kaddu: Field resistance to downy mildew and red pumpkin beetle


BREEDING FOR QUALITY TRAITS

PARTHENOCARPIC CUCUMBER

- Parthenocarpy is the ability to develop fruits without pollination
- This character is governed by incompletely dominant gene "Pc" (Pike and Peterson, 1969)
- Results early and more regular fruit setting (Zwinkles, 1987)
- Overcomes the inhibitory effect of seed formation on subsequent development of fruits (Lower and Edwards, 1986)
- Parthenocarpy sometimes produce misshapen fruits, therefore, must be combined with combined femaleness (gynoecy)

with

• Artificial parthenocarpy is induced by treating chlorflurenol (Tatlioglu, 1993)

Scientia Horticulturae 84 (2000) 255–264

www.elsevier.com/locate/scihorti

Production of seedless watermelon using soft-X-irradiated pollen

Keita Sugiyama^{*}, Masami Morishita

 \checkmark Described a new method for producing seedless watermelon in diploid plants in Japan

✓ Treated the whole male flowers of two cultivars "Fujihikari TR" and "Benikodama" with 100, 200, 400, 800 and 1000 Gy X-ray and considered unirradiated as control

✓ Doses of 800-1000 Gy in cv. "Fujihikari TR" and doses of 400-1000 Gy in cv. "Benicodema" was considered best in terms of small empty seeds

 \checkmark Any of the treatments did not affect fruit weight, fruit shape index, rind thickness and days to maturation as compared control

✓ Female flowers pollinated with irradiated pollen recorded slightly higher sugar content (from 11.8 to 13.1 %) in cv. "Benicodema"

SQUARE WATERMELON

Why to go for square watermelon?

- Easier to stack, convenient in storage and transportation
- They are designed to fit perfectly inside smaller refrigerators

How to grow square watermelon?

- Select a small watermelon on the vine, place a square, tempered and transparent glass box tightly around it
- When the fruit becomes larger, it assumes the shape of the box

ACHIEVEMENTS OF BREEDING FOR QUALITY

Musk melon

- Hara Madhu: 12-15°B TSS but poor keeping qulality due to relatively thinner flesh
- **Punjab Rasila**: Early variety, juicy and more flavoured fruits
- **Durgapura Madhu**: Very sweet fruits (14-15°B)
- Arka Jeet: Excellent flavour and high vitamin C content

Cucumber

Japaneese Long Green: Extra early variety Straight Eight: White spined fruit Himangi: White skin colour

Pumpkin

Arka Chandan: Flesh have good aroma and high carotene content (3331 IU per 100 g)

Watermelon

Asahi Yamato: Deep pink flesh and 11-13°B TSS

Sugar Baby: Pink flesh and small seeds

- **Pusa Bedana** and **Arka Madhura**: Seedless
- Arka Manik and Improved Shipper: Stands transport and storage

Bitter gourd

Konkan Tara: Fruits have good keeping quality (Shelf life 7-8 days in ambient condition)

Arka Harit: Fruits have moderate bitterness

Bottle gourd

Pusa Naveen: Fruits are perfectly cylindrical without crook neck

Arka Bahar: Flesh have pleasant aroma and fruits are devoid of crook neck

CONCLUSION

- Cucurbits, being large and diverse group, provide better opportunity to enhance overall production and productivity of vegetable crops
- Soil less culture has given quality produce and eliminate several soil borne diseases
- Grafting technique, use of exogenous PGR, training and pruning system has increased the yield almost twice
- The protected cultivation has allowed crop production irrespective of prevailing weather and ensures off-season availability
- Both the conventional and non conventional breeding methods has led to development of several resistant varieties
- Development of parthenocarpic (seedless) cucumber and seedless watermelon has led to new opportunities towards quality breeding

