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ABSTRACT 

 

During the 1990s, a question posed by new and intending growers of hazelnuts was “What is 

the best variety to plant when establishing a commercial orchard?”  Although existing 

growers had a range of views on this matter, there had not been any scientific studies to 

evaluate the range of cultivars available in Australia.  Although hazelnut cultivars were 

introduced to Australia in the mid-Nineteenth Century, there had been very limited industry 

development compared to other cool climate deciduous tree crops such as pome and stone 

fruits.  In the 1970s many cultivars were imported from overseas, but there was no systematic 

evaluation of this material. 

 

In 1994, the author of this thesis obtained a grant from the Rural Industries Research and 

Development Corporation (RIRDC) to undertake an assessment of hazelnut cultivars and 

their potential for Australian conditions.  The evaluation involved planting a range of 

cultivars at 5 field sites.  Two were in New South Wales, 2 in Victoria, and 1 in Tasmania.  

There was variation between the sites in soil types and climate. 

 

A randomised block design was used with cultivars as treatments within blocks.  

Observations and measurements were recorded for tree growth, floral phenology, nut yields 

and the characteristics of both nuts and kernels.  All sites had supplementary irrigation and 

common management practices.  1-year old hazelnut whips were planted at a spacing of  

3 m x 5 m.  Automatic weather stations were located at each site.   

 

There were major differences between cultivars, in terms of their vigour of growth, floral 

phenology, nut yields and kernel characteristics.  In addition to the cultivar effects, soil type 

was a major factor influencing tree growth, as was rainfall.  Cultivars with high vigour 

included ‘Barcelona’ and the Australian selection ‘Tokolyi/Brownfield Cosford’ (‘TBC’).  

Those of low vigour were ‘Tonda Gentile delle Langhe’ (‘TGDL’), ‘Negret’ and ‘Wanliss 

Pride’.  There were significant interactions between cultivars and the sites in tree growth and 

nut yields. 

 

Timing of male and female anthesis was strongly influenced by cultivar and seasonal 

conditions.  All cultivars were protandrous.  The commencement of pollen shed ranged from 

late-May, for the cultivars ‘TGDL’ and ‘Barcelona’, to early August for ‘Hall’s Giant’.  Chill 

hour requirements appeared to be the main factor influencing timing of pollen shed.  Female 
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anthesis was also spread over a period of several weeks with early cultivars being ‘Atlas’ and 

‘Tonda di Giffoni’, late cultivars were ‘Ennis’, ‘Casina’ and ‘Hall’s Giant’. 

 

Studies with cut branches in controlled temperature environments indicated that catkins had a 

relatively high post-chill heat requirement compared to female inflorescences.  The 

differences between cultivars in post-chill heat requirements for catkins were small.  The 

relative dates of flowering across cultivars were found to be highly predictable.  This, 

coupled with published data on genetic incompatibility, made it possible to recommend 

cultivars as pollinisers for the main nut-yielding cultivars. 

 

There were significant differences between cultivars in the date of bud break; ‘TGDL’ and 

‘Tonda di Giffoni’ were early (late August) whereas ‘Hall’s Giant’ was late (late September).  

Nut yields were highly influenced by cultivar, vigour of growth, site and seasonal rainfall.  

Low rainfall in one season greatly reduced nut yields.  High growth rates at one site lead to a 

closed canopy 7 years from planting with peak yields.  Soil characteristics were a main factor 

influencing tree growth and nut yields. The best tree growth and highest levels of production 

were achieved on a deep, well drained, fertile loam soil.  

 

The characteristics of nuts and kernels were strongly influenced by cultivar, although 

seasonal conditions influenced nut and kernel size and the degree of kernel fill.  An overall 

evaluation of cultivars was based on nut and kernel yields as well as kernel characteristics to 

meet market requirements.  On average, ‘Ennis’ gave the highest yields of the in-shell 

cultivars.  The cultivars ‘Barcelona’ and ‘TBC’ produced the highest average yields, although 

their relative performance varied between sites.  These cultivars were considered best suited 

for snack foods and catering with 15-17 mm kernels.  ‘Tonda di Giffoni’ produced 

moderately high yields, varying across sites, with kernels suitable for the confectionery 

market. 

 

Under favourable conditions ‘Barcelona’ achieved nut yields of 3 tonnes/ha within 6 years 

from planting.  Potential areas in Australia for hazelnut production were identified, based on 

a set of recommended climatic parameters and soil characteristics. 
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CHAPTER 1 - HAZELNUT PRODUCTION IN AUSTRALIA 
 

 

1.1 Introduction 

 

Hazelnuts belong to the Birch family (Betulaceae) within the Corylus genus.  There are 

nine widely-recognised species in the genus (Thompson et al., 1996).  The term “hazelnut” 

is used worldwide for all Corylus species.  Corylus avellana L., commonly known as the 

European hazelnut, is the species of greatest economic significance being grown 

commercially in temperate maritime climates, notably in northern Turkey on the Black 

Sea Coast, in parts of Italy, Spain and France and in the coastal valleys of Oregon, USA 

(Thompson et al., 1996). 

 

Corylus avellana L. is native to Europe and Asia Minor.  Kasapligil (1964) describes its 

distribution as being throughout Europe from the west coast of Portugal and Ireland across 

to the southern part of the Ural Mountains in the east and into Turkey, Lebanon, Syria and 

Iran.  In the north, its distribution extends into Norway, Sweden and to the southern shores 

of Lake Ladoga in Russia.  In the south, it extends into Spain, Sicily and Greece.  It is 

abundant throughout the Balkans. 

 

Corylus avellana L. spread through north-western Europe after the last great Ice Age 

(Tallantire, 2002) and became the dominant tree species in the early Boreal forest period 

(Thompson et al., 1996).  Hazelnuts were an important food source to hunter-food-

gatherers in Europe in the period 8000-5500 BC and were being cultivated in “classical 

times” in the Mediterranean (Ibid, 1996). 

 

Hazelnuts have been a crop of interest in Australia since early settlement by Europeans, 

but never successfully developed as an industry with any scale, appropriate for the 

potential demand for hazelnuts.  Reasons for the poor development of this crop are poorly 

understood. 

 

The European hazelnut is a deciduous shrub or small tree that grows from 3-10 m in 

height, occasionally up to 15 m (Mehlenbacher 1991).  In uncultivated situations, the trees 

produce many stems but, when grown in cultivation, the plants are usually trained to a 

single trunk with a vase-shaped branch structure arising from the trunk, 20-80 cm above 
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ground level.  In some situations they are trained to just a few stems as a multi-stem bush 

(Tous et al., 1994). 

 

Hazelnuts are monoecious, with separate male and female flowers (Plate 1.1).  The plants 

are anemophilous (wind pollinated) and self-incompatible.  The staminate (male) flowers 

are catkins.  The small pistillate (female) flowers, glomerules, are compound buds with a 

lower vegetative part and an upper fertile cluster.  They are indistinguishable from 

vegetative buds until flowering, when red stigmas, about 5 mm long, protrude from the tip 

of a bud (Germain, 1994).  Flowering and pollination occur from late autumn through to 

late winter.  However, fertilisation does not occur until late spring or early summer 

(Mehlenbacher, 1991 and Germain, 1994). 

 

 

 

Plate 1.1 Extended catkins of hazelnuts shed pollen which is spread to other plants by the 

wind.  The female, pistillate flowers are small with red coloured stigmas that capture wind-

blown pollen. 
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The fruits are borne in clusters of 1 to 6 or more nuts, which ripen to a brown colour in 

early autumn.  The nuts are 1-2 cm in diameter, depending on the cultivar.  The husk, 

which surrounds the nut, varies from long and tubular, extending well past the nut, to 

shorter than the nut (Plate 1.2).  In the UK, types with a long husk have traditionally been 

called filberts, whereas those with short husks are known as cobnuts (Woodroof, 1967).  

When Corylus avellana L. was introduced into the USA, the term “filbert” was originally 

used to differentiate it from the local wild hazelnut species.  However, preference is now 

given to the internationally accepted name, “hazelnut”, which applies to all types of 

Corylus species (Thompson et al., 1996). 

 

  

 
Plate 1.2 Nut clusters of ‘Tonda di Giffoni’ (left), a cultivar with short husks enclosing the 

nut, compared with the cultivar ‘Kentish Cob’ (right) which has long husks.  Cultivars with 

short husks were known as “cob nuts”.  The nuts fall free from the fruit cluster when ripe.  

Cultivars with long husks were called “filberts”; all types are now known as hazelnuts. 

 

 

1.2 World production 

 

Although wild hazelnuts (Corylus avellana L.) are widespread throughout Europe, they 

are only grown commercially in specific locations.  Total world production in the years 

2010 -2012 was estimated to be about 800,000 tonnes in-shell, that is, uncracked nuts, 

figure 1.1 (FAOSTAT, 2013).  World production for the triennium 2005-2007 was 

reported by Fideghilli and De Salvador (2009) to be 19% greater than the previous 

triennium.  However, although data from FAOSTAT (2013) for the period 1992 -2012 



 13 

indicated an increasing trend in production over that period (Figure 1.1).  It was not 

significant either as a linear or polynomial relationship, probably due to the large 

variations between seasons.  The apparent increasing trend in Turkish production, (Figure 

1.1) was also not significant. 

 

 

 

Figure 1.1 Estimates of annual world and Turkish in-shell hazelnut production, (FAOSTAT 

2013). 

 

Turkey is the leading hazelnut producer, with approximately 600 000 tonnes nut in-shell 

per annum in recent years, approximately 70% of world production.  The major centre of 

production is on the Black Sea Coast in the vicinity of Trabzon, Ordu and Giresun.  

Plantations range from the coast to 30 km inland, from sea level to 1000 m above sea 

level.  Orchards in Turkey are generally small, 1-2 ha, and yields are relatively low, about 

1 t/ha.  The orchards are on moderately hilly country (Plate 1.3), are unirrigated and the 

crop is generally picked by hand (Bozolglu, 2005). 
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Plate 1.3 Hazelnut orchard near Ordu in Turkey on the southern Black Sea coast.  

Plantations extend inland for 30 km and to an altitude of 1000 m. 

 

Italy is the next most important producer, with about 70 000 ha of orchards producing 

about 110 000 tonnes, ~15% of the world’s hazelnut crop (Tombesi, 2005).  There are 4 

main regions of production, Piedmont in the north-west (13% of Italy’s production), 

Latium, north of Rome (30% of production), Campania, near Naples (42% of production) 

and Sicily (12% of production).  Each region has its own key cultivars, such as ‘Tonda 

Gentile delle Langhe’ (‘TGDL’) in the Piedmont region, ‘Tonda Gentile Romana’ in the 

Latium region and ‘Tonda di Giffoni’ in Campania’.  Italian hazelnuts are generally highly 

regarded for their flavour, particularly ‘TGDL’. 

 

Spain is the next most important producer in Europe with about 22 000 tonnes of nuts in-

shell; 3% of world production.  The key centre for production is in the coastal district of 

the “Camp de Tarragona”.  The main cultivar grown is ‘Negret’, which produces a small 

kernel that blanches well, that is the skin or pellicle of the kernel is readily removed 

following dry heat at 130-150°C for 15 minutes (Plate 1.4). 
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Plate 1.4 Nuts, kernels and blanched kernels of the cultivar ‘Negret’.  The blanching process 

involves heating kernels at 130-150°C for 15 minutes, followed by rubbing the kernels to 

remove the loosened skins.  Cultivars vary in their blanching characteristics. 

 

‘Negret’ is highly sought after by the Spanish confectionery industry (Tous, 2005).  

Spanish orchards are relatively small, 1-5 ha.  Due to the relatively low rainfall (400-600 

mm) in this district, the orchards are irrigated, using drip irrigation technology.  Annual 

rates of irrigation are 2.5-3 ML/ha.  The crop is harvested mechanically using suction 

harvesters. 

 

Production in Azerbaijan is currently similar to Spain with a considerable increase during 

the 2005-2007 triennium (Fideghilli and De Salvador, 2009). 

 

There is a small industry in France where commercial planting commenced in the 1970’s.  

Production in 2005 was 5300 tonnes of nuts in-shell (Sarraquigne, 2005).  The main centre 

of production is Agen in the Aquitane district.  Average orchard size is 14-20 ha.  The 

crop is irrigated using drip irrigation; it is mechanically harvested using pick-up harvesters 

with average yields of 2 t/ha. 

 

Small areas of hazelnuts are grown in some other European countries such as Slovenia 

(Solar and Stampar, 1997) and Romania (Turcu and Botu, 1997), in locations where 

conditions are favourable for the crop. 

 

Outside Europe, hazelnuts are grown in the USA, mainly in the Willamette Valley in 

Oregon, south of the city of Portland.  The total area of production is about 11 000 ha, 
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with an average annual crop of about 28 500 tonnes of nuts in-shell; about 5% of world 

production (Mehlenbacher, 2005).  Rainfall is relatively high, 800-1000 mm/annum.  The 

crop is grown without irrigation.  Average yields are about 2.5 t/ha, but fluctuate markedly 

between seasons.  The crop is mechanically harvested using pick-up harvesters.  The main 

cultivars have been ‘Barcelona’ and ‘Ennis’, but these are susceptible to the fungal 

disease, eastern filbert blight (Anisogramma anomala Peck) which was introduced into 

southwest Washington in the 1960s and spread into Oregon (Hummer, 2001).  A breeding 

program was initiated at the Oregon State University in 1969 (Mehlenbacher, 1994) to 

breed high-yielding cultivars with resistance to eastern filbert blight. 

 

A hazelnut industry is being developed in Chile, where, in 1997, there were 480 ha (Grau 

et al 2001).  There are also plantings in New Zealand (McNeil, 1999).  There is a very 

small area of production in south-east England near Maidstone, Kent, where hazelnuts are 

known as “cobnuts”.  They are picked whilst still green for local consumption.  The main 

cultivar is ‘Kentish Cob’ which is relatively hardy and a reliable cropper.  Another cultivar 

grown in this area is ‘Cosford’ which has a very good flavour and thin shell, but is not a 

good cropper (Canon et al., 2001). 

 

 

1.3 Hazelnuts in Australia 

 

Hazelnuts were introduced into Australia in the 19
th

 Century by European settlers.  In an 

early catalogue of plants from a Hobart plant nursery, 3 types of hazelnut were listed for 

sale by Dickson (1845).  A small collection of cultivars of English origin was established 

in the Royal Tasmanian Botanic Gardens, where some trees still exist.  A list of 

introductions recorded in 1863 included the ‘Cob Nut’ and ‘White Filbert’ (Natalie 

Papworth, pers. comm., 2005).  In 1865, the list included ‘Deviana Prize’, ‘Webb’s 

Exhibition Red’ and ‘Webb’s Exhibition White’.  It appears that the early plant 

introductions into Tasmania were as named cultivars, principally of English origin.   

 

In 1859, 4 species of Corylus were being grown in the Royal Botanical Gardens in 

Melbourne; these were C. americana, C. avellana, C. corlurna and C. rostrata.  In 1873, 

the plant list included C. avellana var. barcelonensis.  There were no records that indicated 

the source of these plants (Helen Cohn, pers. comm., 2005).  In 1865, Joseph Harris of 

Melbourne listed Filberts in his nursery catalogue, these included ‘Barcelona’, ‘Cob’, 
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‘Northamptonshire Prolific’, ‘Red Filbert’ and ‘White Filbert’.  In 1886, 12 cultivars were 

advertised for sale in Melbourne by Law, Somner and Co. (1886). 

 

During the early 1900s, small orchards of hazelnuts were planted in cool climate areas of 

Victoria, particularly in the upper Ovens Valley, with Wandiligong being the main centre 

of production (Pescott, 1937).  Most of these were removed in the 1950s for higher return 

enterprises such as tobacco (Paskas, 1988) which has since been abandoned as a crop.  

One of the main cultivars grown in this area was ‘Wanliss Pride’ (Allen, 1986) which 

appears to be a selection from the Turkish cultivar ‘Kargalak’, also known as ‘Imperial de 

Trebizonde’. 

 

Although introduced into Australia more than 100 years ago, hazelnuts have so far only 

been grown on a relatively small scale, despite the fact that the Australian Bureau of 

Statistics (ABS) recorded annual imports of 1500-2300 tonnes of kernels and 80-120 

tonnes of nut in-shell over the period 1994-2005 (Figure 1.2).  .  The majority of imported 

hazelnuts in this period were from Turkey, Oregon and Italy (ABS, 2006). 
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Figure 1.2  The volume and value of hazelnuts imported into Australia 1992-2011 

Source: Kernels (shelled nuts) and value FAOSTAT 2013. Nut in shell Australian Bureau of 

Statistics, 2006. 

 

The records on imports from the ABS only go to 2005; since that date the method of data 

collection by the ABS has been changed making it difficult to compare data. However, 

data from FAOSTAT (2013) shows a significant increase (P=0.01) in imports of shelled 

hazelnuts (kernels) over a period of 20 years from 1992 (Figure 1.2) with considerable 

price fluctuations, probably related to world supply, but a significant (P=0.001) increasing 

trend in total value.  The volume and value of imports indicates there is an opportunity for 

the establishment of a local industry to supply the Australian market. 

 

The first recorded experiment to evaluate hazelnut genetic resources was commenced in 

1937 at the NSW Department of Agriculture, Glen Innes Research Centre on the Northern 

Tablelands of New South Wales.  The source of the majority of this planting material is 

unclear.  Thirty “cultivars” were planted on a spacing of 3 m x 3 m, with yields of up to 

7.5 kg of nuts per tree being reported for some trees 27 years after planting (Trimmer, 
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1965).  The cultivar names listed suggest European origins.  Records of plant material 

imported through the Australian Quarantine Inspection Service (AQIS) at about that time 

indicate they could have been introduced as plants (Ikin, 1974). 

 

In 1972, the experiment at Glen Innes was discontinued and suckers from there were 

transferred to an arboretum at the Agricultural Research Centre, at Orange, NSW.  At that 

site, yields obtained for the highest yielding cultivar, ‘Atlas’, were 1.5 kg per tree in 1981 

and 2.2 kg per tree in 1982 (Department of Agriculture NSW, 1982).  In 1981, a well-

known hazelnut researcher from the Oregon State University, Dr Maxine Thompson, 

visited the Orange site where she inspected the collection of “cultivars”.  She considered 

the collection was of seedling types and that most of the given names were incorrect 

spellings of known European cultivars (Bean and Kenez, 1991).  Nut size, shape and 

kernel characteristics of the trees in the Orange collection have been described (Baldwin 

and Baldwin, 1991).  Most of the nuts were small with relatively thick shells, a good 

indication that they were seedling types. 

 

In addition to the above work, some cultivar evaluation was initiated by the Tasmanian 

Department of Agriculture at the Research Centre at Grove, in the Huon Valley, as 

reported by Thomas (1951), but no details of the cultivars grown and their production 

seem to have been published. 

 

During the 1960s and 1970s, Imre Tokolyi, an immigrant from Hungary, was very keen to 

have fresh Australian hazelnuts for his bakery business.  He was frustrated by the lack of 

Australian-grown nuts and established his own orchard and nursery in the Hoddles Creek 

area of Victoria.  He planted nuts of hazelnuts imported from Turkey, Italy, Spain and the 

USA and made several selections from his seedling trees (Kenez, 1989).  There appear to 

be 3 key types which he selected and named as ‘Tokolyi Cosford’, ‘Turkish Cosford’ and 

‘White American’ (Tokolyi, N.D.).  These were subsequently planted in orchards.  It 

appears that the largest plantation (2-3 ha.) was established by the Brown family in the 

Acheron area of Victoria in the late 1970s (Plate 1.5), another was a planting by Dennis 

Bear near Beechworth in Victoria. 
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Plate 1.5 Members of the Brown family with Lester Snare (NSW DPI) on the right, in their 

orchard of ‘Tokolyi Cosford’ at Acheron in Victoria, 1994. 

 

During the 1970s, there was a renewed interest in hazelnut growing in Australia, 

particularly in Victoria, where, in 1978, enthusiastic growers decided to establish the 

Victorian Hazelnut Growers Association (Allen, 1989).  During the 1970s and 1980s, 

many cultivars of European and North American origin were introduced into Australia 

through the Australian Quarantine Inspection Service (AQIS) by enthusiastic growers, 

propagators and the Victorian Department of Agriculture (Baldwin, 1997).  In the period 

1980-1994, there were 108 introductions of Corylus species through AQIS, as rooted 

plants and scion wood (Table 1.1). 

 

Table 1.1 Imports of Corylus species into Australia through the Australian Quarantine 

Inspection Service (AQIS). (AQIS, 1996). 

 
 

Number of quarantine approvals 

Periods 

Pre-1980 1980-84 1985-89 1990-94 

23 40 23 45 

 

The imported material was grown in government or approved private post-entry 

quarantine facilities for a minimum of 9 months, during which time the plants were 

visually screened for pests and diseases. 

 

Although more than 80% of these cultivars were introduced into Victoria, the introduction 

of hazelnut cultivars into Australia has been uncoordinated and, consequently, many 
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cultivars have been imported more than once, often to the same State.  For example, the 

cultivar ‘Casina’ was introduced on 7 occasions between 1984 and 1994 (Table 1.2).  The 

identity of importers is kept confidential by AQIS, making it difficult to source cultivars 

for research.  Records of plant introductions are no longer available from AQIS. 

 

Table 1.2 Importation of the hazelnut cultivar ‘Casina’ into Australia (AQIS, 1996). 

 
Date of entry Plant Quarantine Station 

06.12.84 Kingston, Tasmania 

15.12.86 Australian Capital Territory 

15.12.86 Burnley, Victoria 

17.06.88 Burnley, Victoria 

20.01.89 Burnley, Victoria 

05.03.94 Knoxfield, Victoria 

06.04.94 Burnley, Victoria 

 

During the 1980s, collections of hazelnut cultivars were established by the Victorian 

Department of Agriculture at the Ovens and Toolangi Research Centres.  Although these 

were useful collections, there was little systematic evaluation of the material at these sites.  

However, Sample (1993) reported that ‘Atlas’ out-yielded all other cultivars at Ovens, 

with yields of up to 4 kg/tree.  At Toolangi, 'good crops' were reported 12 years after 

planting from the cultivars ‘Atlas’, ‘Barcelona’, ‘Cosford’ (‘Cob’), ‘Du Provence’, ‘Royal 

Italian’, ‘Wanliss Pride’ and ‘White American’ (Kenez 1993). 

 

In 1988, Professor Lagerstedt from the USA was the guest speaker at the first Australian 

Nut Conference.  Professor Lagerstedt had many years of experience in hazelnut growing 

and research and at that time had recently retired from the United States Department of 

Agriculture (USDA) in Oregon.  He had close connections with the Oregon State 

University and its breeding program.  He visited several hazelnut farms in Australia as 

well as the research sites at Toolangi and Ovens.  He considered that the cultivar ‘Wanliss 

Pride’ was worthy of promotion for both the in-shell market, due to its large size and 

attractive appearance, and also for the kernel market, due to the good blanching 

characteristics and sweet flavour of its kernels (Lagerstedt, 1990).  In general, he 

considered the cultivar situation in Australia was in a state of chaos with some nurseries 

selling seedling trees.  Although he was of the opinion that in the short-term the in-shell 

market was the most important, he considered that in the long-term the kernel market 

would be more important.  He suggested that each State should have its own replicated 

variety trials to assess material for both the in-shell and kernel markets and that there was 

a need to define the most suitable ecological areas for hazelnut growing in Australia.   
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In 1990, the author of this thesis moved to Orange, NSW and, along with his wife, 

commenced some studies on the collection of hazelnut genotypes at the Orange 

Agricultural Research Centre (Baldwin and Baldwin, 1991).  In 1996, funding was 

received from the Rural Industries Research and Development Corporation (RIRDC) to 

conduct an evaluation of the growth and productivity of hazelnut genotypes in South-

eastern Australia.  At that time, the total production of hazelnuts in Australia was 

estimated to be approximately 25 tonnes of nut in-shell per annum, with several small 

orchards existing in cool climatic areas of South-eastern Australia, principally in the hills 

to the west of Melbourne, the river valleys of NE Victoria and on the Central Tablelands 

of New South Wales.  There were very few plantations in Tasmania.   

 

Although hazelnuts had been introduced into Australia in the 1800s, RIRDC considered 

the crop to have potential and placed it in the category of “New Crops” due to the small 

size of the industry and the lack of research conducted on this species.  The project was 

supported by RIRDC on the basis that it could provide valuable information for the further 

development of the industry.  The research that was funded by RIRDC and supported by 

the University of Sydney and the Hazelnut Growers of Australia forms the basis of this 

thesis. 

 

 

1.4 The aims and structure of the thesis 

 

Although many hazelnut cultivars have been introduced to Australia, particularly since the 

1980s, there has been very little systematic evaluation of this imported material and the 

factors influencing production, or comparisons made with local selections.  Apart from a 

small industry in north-eastern Victoria in the 1930s and a number of small orchards 

scattered through Victoria and NSW, hazelnut growing had not advanced as an industry.  

Why was this?  Was it due to a lack of knowledge on the most appropriate cultivars to 

grow and the appropriate pollenisers for them or was it that hazelnuts are not well-adapted 

to the soils and climate of the cool temperate areas of south-eastern Australia and do not 

produce commercially viable yields?  An evaluation of cultivars and their growth under a 

range of environmental conditions is a fundamental need in the early stages of industry 

development. 
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The general aim of this thesis was to answer the following questions:  

 

 What are the relative merits of the main hazelnut cultivars available for 

commercial production in Australia? 

 How do environmental conditions affect the growth, phenology and productivity of 

hazelnut cultivars? 

 What is the productive potential of hazelnuts (Corylus avellana L.) in Australia?  

 

In order to address these questions, a range of hazelnut cultivars and local selections were 

grown at 5 field sites in south-eastern Australia.  Two sites were in New South Wales, 2 in 

Victoria and 1 in Tasmania, with some controlled temperature studies on floral phenology 

in growth cabinets at Orange. 

 

This thesis comprises 9 chapters, viz.: 

 

1. Hazelnut production in Australia – an introduction and background to the research 

2. Literature Review – factors influencing the growth and productivity of hazelnuts 

and a review of the cultivars evaluated 

3. Research Methods – field sites, techniques and separate experiments 

4. Tree growth – the growth of trees over time as affected by cultivars, seasons and 

sites 

5. Floral phenology of the cultivars – cultivar, seasonal and site effects 

6. Effects of temperature on flowering and bud break 

7. Nut yields, yield development and yield efficiency 

8. Nut fall and the characteristics of nuts and kernels  

9. Conclusions – cultivar selection, climate effects on production and the potential for 

hazelnut production in Australia 

 

Chapters 4-8 include analyses of the data generated in the study with a particular focus on 

cultivar and site interactions, along with an interpretation and a discussion of the data.  

The final chapter summarises the conclusions drawn from the work and the scope for 

further research.  In the appendix, an assessment is presented of whether the supplied 

cultivars were true to type. 
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CHAPTER 2 - LITERATURE REVIEW 
 

 

Introduction 

 

The European hazelnut (Corylus avellana L.) is native to Europe and Asia Minor and is 

commonly found growing as wild plants throughout these regions.  The natural 

distribution of this species and its rich genetic diversity indicates its potential for 

production over a wide range of temperate environments (Mehlenbacher, 1991).  

However, quite specific climate and soil conditions appear to be needed for commercial 

production, which occurs in specific geographic regions.  To achieve high commercial 

yields in new areas, there is a need to understand how the species responds to 

environmental conditions and how cultivars perform in a given locality. 

 

The productivity of crop plants in general is influenced by: 

 the environment in which the crop is grown; 

 the physiology of the crop species and its management;  

 the genetics of the crop species; and 

 interactions between these. 

 

To gain a better understanding of the potential of hazelnuts (Corylus avellana L.) in 

Australia, this literature review is written in 4 main parts.  The first part provides a review 

of the influence of climate and soils on hazelnut production.  The second part reviews the 

factors influencing growth, the reproductive processes, nut yields and kernel quality.  The 

third part focuses on the performance of specific cultivars and the effect of the 

environment on their performance.  Finally, there is an overall conclusion that covers the 

first 3 parts. 
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Part 1 Climate and soils  

 

2.1.1 Climate 

 

The main areas of commercial hazelnut production are in maritime, Mediterranean-type 

climates in the latitude range 40-45°N, with mild, humid winters and cool summers 

(Mehlenbacher, 1991).  Examples of the monthly temperature and rainfall for key regions 

of production in Turkey (Giresun), Italy (Viterbo), Spain (Reus) and Oregon (Corvallis) 

(Figure 2.1) illustrate the nature of these climates. 

 

The summer temperatures of the key centres are relatively mild, with mean maximum 

temperatures in the range 25-30°C and mean minimum temperatures in the winter in the 

range 0-5°C (Figure 2.1).  The mean monthly temperature patterns at both Myrtleford and 

Orange are similar to the four overseas locations, suggesting that these Australian 

localities would have suitable climates for hazelnut production. 

 

Mean annual rainfall varies from a low of 518 mm in Reus, where hazelnut orchards are 

irrigated, to over 1000 mm in Giresun and Corvallis, where hazelnuts are grown without 

irrigation. 

 

Although mean monthly temperature patterns are similar across all these centres, the 

pattern of rainfall distribution varies between them.  The rainfall at Giresun is fairly evenly 

distributed, with no month receiving less than 50 mm.  In contrast, Corvallis and Viterbo 

receive the majority of their rainfall in the autumn and winter months with little rainfall in 

the summer months of June, July and August.  The implications of low rainfall in June and 

July, when nuts and kernels are developing, are discussed later in this thesis.   

 

All the northern hemisphere centres have more than 50 mm of rainfall in May, when trees 

would be making active leaf and shoot growth.  

 

It is recognised that data is required on evaporation rates and soil water-holding capacity 

to estimate soil moisture availability in the growing season; this is discussed further in the 

next section, 2.1.2, Soils. 
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Giresun, Turkey (Ann. rain 1245 mm)
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Viterbo, Italy (Ann. rain 939 mm)
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Corvallis, Oregon (Ann. rain 1084 mm)
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Reus, Spain (Ann. rain 518 mm)
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Orange, NSW (Ann. rain 949 mm)
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Myrtleford, Vic. (Ann. rain 949 mm)
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Figure 2.1 Mean monthly temperatures and rainfall along with mean annual rainfall for 

some key centres of hazelnut production in the world, compared with 2 Australian locations 

where hazelnuts have been grown.   
Source: Overseas data from S. Mehlenbacher, personal communications 1996 and Australian data 

(Australian Bureau of Meteorology www.bom.gov.au/climate/data/ ) 

http://www.bom.gov.au/climate/data/
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Studies on the effects of climate on hazelnut production indicate that although the 

European hazelnut is a deciduous woody plant, it can be damaged by extremes of cold in 

winter.  In winter, dormant hazelnuts can tolerate temperatures down to -23°C (Thompson, 

1981), although Schuster (1944) reported temperatures of -15°C to be damaging to 

dormant catkins.  Extended catkins are less cold tolerant, but can tolerate temperatures 

down to -8°C (Germain, 1986) with female inflorescences tolerating temperatures down to 

-10°C (Tous, 2001).  However, Thompson (1981) reported that female stigmas that were 

frozen at temperatures of -12°C to -15°C proceeded normally as temperatures rose.  In 

Romania, Botu and Turcu (2001) reported the catkins, female flowers and one year-old 

shoots were damaged during winter when temperatures fell below -27°C.  Duke (1989) 

suggested that, in order to minimise the risks of damage from low temperatures, sites in 

which winter temperatures did not fall below -5°C should be selected 

 

Chilling temperatures in the range 0-7°C are required to break the dormancy of catkins, 

female inflorescences and vegetative buds (Mehlenbacher, 1991).  The chill requirements 

vary with cultivars.  Vegetative buds have the highest requirement; up to 1550 hours for 

the cultivar ‘Casina’ (ibid, 1991).  The chill and post chill warmth requirements for 

flowering and bud break are discussed further in Chapter 6. 

 

Although pollination occurs in winter, fertilisation does not occur until early summer.  The 

weather conditions at the time of fertilisation are critical.  In France, Latorse (1981) found 

that there was a decrease in nut set and an increase in the number of blank nuts when the 

maximum day temperatures in the second week of June (early summer) were less than 

21°C.  In Australia, the period when fertilisation is likely to occur is in late November or 

early December, probably varying with seasons, localities and cultivars.  In the Vila Real 

region of northern Portugal, Silva et al. (1996) found negative correlations between the 

hours of sunshine, the maximum temperature in May, and the number of blank (empty) 

nuts in the cultivar ‘Butler’.  These effects of temperature and sunshine on kernel 

development may be related to a critical period in the development of the hazelnut tree, 

when fertilisation and early kernel development is occurring whilst shoots are still making 

active growth.  Active photosynthesis would be required to produce materials for these 

processes. 

 

Hazelnuts are very sensitive to moisture stress (Tombesi, 1994).  Soil moisture stress 

during the spring months can reduce vegetative growth and consequently affect nut 



 28 

production in the following year.  Soil moisture stress during nut development and kernel-

fill can reduce nut weights, nut yields and kernel-fill (Bignami and Natali, 1997).  The 

most critical period is the time from fertilisation to kernel fill, which is from the end of 

May to mid July in the Northern Hemisphere (Mingeau et al., 1994).  Irrigation is used in 

some instances to overcome soil moisture stress in this period such as at Reus in Spain 

(Gispert et al., 2005) where total rainfall in May and June is on average less than 120 mm.  

In general, 800 mm seems to be the minimum level of annual rainfall for productive 

unirrigated orchards (Tous et al. 1994).  However, this depends on soil type and seasonal 

distribution of rainfall.  On the southern coast of Crimea an annual rainfall of over 1000 

mm is considered desirable (Khokhlov, 2001). 

 

In the Willamette Valley, Oregon USA, annual rainfall is about 1100 mm.  There is a 

strong winter–spring incidence with a dry summer (Figure 2.1).  Rainfall during the 

critical period of fertilisation and kernel-fill, May and June in Corvallis, is on average, less 

than 100 mm.  As hazelnuts are not generally irrigated in this region, it appears they are 

very likely to be drawing from soil moisture reserves at depth to maintain growth and 

production in the summer, as discussed later in the section on soils, Section 2.1.2. 

 

Hazelnuts are sensitive to hot dry conditions, low humidity and rainfall deficits in 

summer.  Thompson (1981) reported that temperatures greater than 35°C with low 

humidity can cause leaf burn.  The climate of the Willamette Valley is considered to be 

ideal with temperatures in summer reaching 20-28°C, rarely exceeding 33°C and with cool 

nights of 8-16°C (ibid, 1981).  Climate data recorded over a 30-year period for Corvallis 

indicates that on average there are only two days per year when temperatures exceed 35°C 

(Taylor et al., 1991).   

 

In the Catalonia region of Spain, summer temperatures of 30-35°C are commonly 

recorded with an annual rainfall of 400-600 mm.  In the Reus area of this region, crops are 

irrigated with an average of 2.5 ML/ha (Tous, 2005). 

 

When assessing the most appropriate part of France to develop a hazelnut industry, 

Bergoughoux et al. (1978) considered rainfall, temperature, relative humidity and wind to 

be key factors.  They were of the opinion that an annual rainfall of 1000 mm was required, 

although it could be lower if supplementary irrigation was available.  The rainfall should 

ideally be well-distributed throughout the year, but dry conditions were desirable for the 
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period of nut fall and harvest, from mid-September to mid-October.  They considered the 

critical temperatures for winter were a minimum no lower than -15°C, to avoid damage to 

buds and dormant inflorescences, a minimum of -7°C, to avoid damage to dehiscing 

catkins and of -3°C in spring, to avoid damage to young shoots after bud break.  Under 

conditions of high evaporative stress, such as hot dry winds, hazelnuts become moisture-

stressed.  Districts where the relative humidity was less than 70% were considered 

undesirable.  Persistent strong winds were also undesirable.  Using these parameters, 

Germain and Sarraquigne (2004) used long-term climate data to prepare a map showing 

the area in south-west France where they considered the climate to be suitable for hazelnut 

production. 

 

The studies presented in this section on the effects of climate on flowering, growth and 

production have been used to develop a set of critical climate indices, Table 2.1 which 

could be used to assess the potential suitability of districts in Australia for hazelnut 

production.  The Commonwealth Bureau of Meteorology has a comprehensive data base 

of climatic averages for weather stations across Australia which can be accessed at 

www.bom.gov.au/climate/data/ and which potential growers could use to assess the 

suitability of their location for hazelnut growing.  This database contains mean monthly 

rainfall and temperatures, including highest and lowest recorded for many centres across 

Australia. 

 

Although the data base does not include chill hours, these can be estimated from mean 

monthly temperatures by using the formula derived by da Mota (1957): 

Hc = 485.1- 28.52x 

 

Hc = the monthly chilling hours and x = the mean monthly temperature. 

 

A further limitation of the data base is that relative humidity values are only available for 

9 a.m. and 3 p.m.  At many sites there are only figures for 9 a.m.  A figure of >70% RH at 

9 a.m. has been included in the table.  There is also limited data on wind strength or wind 

run for most sites. 

 

There is limited specific information on the effects of high temperatures and low humidity 

in summer on hazelnuts.  In southern Australia, there are days in the summer when 

temperatures can exceed 40°C and relative humidity can be less than 10%.  These 

conditions occur with hot northerly winds ahead of a cold front.  They usually last for only 

http://www.bom.gov.au/climate/data/
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a day, but can be extremely desiccating.  It is considered that two days per annum when 

the maximum temperature exceeds 35°C could be included as a critical level.  It is likely 

these events will have some detrimental effect such as causing leaf burn as reported by 

Thompson (1981).  Other effects would depend on the phenological stage of crop 

development and available soil moisture levels.  As rainfall in Australia is highly erratic, 

some provision for supplementary irrigation is likely to be highly desirable in most 

circumstances. 

 

Table 2.1 Key climate requirements for hazelnut production, based on research and 

observations from major production areas in Europe and the USA 
 

Phenological stage and effects 

Climate parameter and 

period in Australia 

 

Critical level 

Flowering, low temperatures can 

adversely affect catkins and female 

inflorescences 

Lowest air temperature in 

the coldest months  

-7°C 

Bergoughoux et al. (1978) 

Bud break, chill to break dormancy, 

insufficient chill may result in poor 

leafing out 

Total chill hours (0-7°C) 

April–August (incl.) 

 

>1500 chill hours 

(Mehlenbacher, 1991) 

Bud break and early leafing, low 

temperatures can harm emerging leaves 

September/October, 

lowest minimum air 

temperature  

-3°C 

Bergoughoux et al. (1978) 

Fertilisation, minimum temperatures for 

successful fertilisation 

Late November-early 

December, mean max. air 

temperature  

 

>21°C 

Latorse (1981) 

Nut and kernel development, heat stress 

may affect tree growth and kernel 

development 

 

December–February 

(incl.) 

Max.  2 days >35°C 

Thompson (1981), and 

(Taylor et al., 1991). 

Nut and kernel development and tree 

growth adversely affected by moisture 

stress associated with low humidity  

 

December - February 

>70% mean RH at 

9 am Bergoughoux et al. 

(1978) 

Overall growth and production and 

future crop yields, inadequate soil 

moisture adversely affects these 

processes 

Minimum annual rainfall, 

unless supplementary 

irrigation available  

 

>800 mm 

(Tous et al. 1994) 

Tree growth, adversely affected by 

strong winds  

October- March Not persistent 

Bergoughoux et al. (1978) 

Nut harvest, dry conditions required to 

facilitate harvest  

March mean monthly 

rainfall  

<50 mm 

(Tous et al. 1994) 
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The hypothesis that the key climate characteristics listed in Table 2.1 could be used to 

determine the suitability of locations in Australia for hazelnut growing was tested for 5 

localities where it was known that crop-bearing plantations of hazelnuts existed (Table 

2.2).  The climate data for these locations was obtained from the Australian Government, 

Bureau of Meteorology site at www.bom.gov.au/climate/averages. 

 

Generally the data shows that winter (July) and spring (October) temperatures for these 

sites did not fall below damaging levels.  Winters at all sites were relatively mild and all 

were estimated to have a total of less than 1500 chill hours over the 4 months of May-

August, as calculated using the formula of da Mota (1957).  The chill hours estimated for 

the mild winter climate of Manjimup were particularly low, yet the relatively high chill 

cultivar ‘Hall’s Giant’, which Mehlenbacher (1991) considered requires about 1000 chill 

hours for bud break, was seen by the author to grow at the Western Australia Department 

of Agriculture Manjimup Research Station.  It is possible that either the da Mota equation 

generally under-estimates chill hours or hazelnuts require less chill to break bud dormancy 

than indicated in the literature. 

 
Table 2.2 Evaluation of critical climate data for hazelnut growing in Australia, based on 

climatic averages for 5 sites where hazelnut plantings have been successfully established 
 Location 

NSW WA Victoria Tasmania  
Orange (NSW 

DPI Ag 

Research 

Institute) 

Manjimup 

(WA Dept Ag 

Res Station) 

 

Myrtleford 

(Post Office) 

 

Toolangi (Mt 

St Leonards) 

 

 

Geeveston 

Desirable/

maximum 

levels 

Station no. 063254 009573 082034 086142 094137  

Latitude 33.32°S 34.25°S 36.57°S 37.57°S 43.16°S  

Altitude (ASL) 922 m 287 m 223 m 595 m 55 m  

 

Terrain and 

climate type  

 

Tablelands, 

cold winter 

Cool wet 

winter, hot 

dry summer 

Inland valley, 

warm 

summers 

 

Coastal hills, 

cool summers 

 

Cool 

maritime 

 

Lowest air 

temp July 

 

-5.6 

 

-0.1 

 

N/A 

 

-2.5 

 

-4.7 

 

>-7°C 

Est Chill hours 

May-Sept 

 

1367 

 

795 

 

1134 

 

1325 

 

1245 

 

>1500 

Lowest air 

temp. Oct 

 

-2.0 

 

0.1 

 

N/A 

 

-0.6 

 

-1.4 

 

>-3°C 

Est Chill hours 

May-Aug 

 

1373 

 

644 

 

956 

 

1120 

 

1030 

 

>1500 

Mean max 

temp. Nov 

 

21.0 

 

21.9 

 

24.5 

 

18.0 

 

18.2 

 

>21°C 

Mean max 

temp. Dec 

 

24.2 

 

24.8 

 

28.5 

 

20.8 

 

19.9 

 

>21°C 

No. days Dec –

Feb >35°C 

 

1 

 

6 

 

N/A 

 

1 

 

1 

 

<2 (max) 

Mean 9 a.m. 

RH Dec-Feb 

 

67% 

 

65% 

 

59% 

 

75% 

 

72% 

 

>70% 

Ann. rainfall 

(mm) 

 

933 

 

1005 

 

905 

 

1362 

 

889 

 

>800 

 

http://www.bom.gov.au/climate/averages
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At some of the cooler sites, temperatures in November and December were lower than 

those considered desirable.  It is possible that phenological development of the trees is 

delayed in localities where November temperatures are lower and fertilisation does not 

occur until December.  Mean relative humidity at 9 a.m. in December–February was lower 

than 70%, at 3 of the sites. 

 

Another consideration is the mean maximum temperature in November and December 

could be slightly lower than 21°C, provided sunshine hours are high and moisture stress is 

low, to favour photosynthesis at this critical period.  As hazelnuts are very sensitive to 

moisture stress, the use of supplementary irrigation is likely to be highly advantageous to 

reduce the impacts of highly variable rainfall, periods of drought and periods of hot dry 

winds as discussed above. 

 

Manjimup was the site where the highest number of days above 35°C had been recorded.  

The trees seen growing at Manjimup had been irrigated.  Possibly a figure of 2 days above 

35°C is a rather arbitrary heat stress indicator.  It is highly likely that a combination of 

high temperature, low humidity and inadequate soil moisture, for an extended period of 

time, would be the key factors adversely affecting the moisture content of leaves, 

photosynthesis and growth. 

 

It is considered that for a location to be suitable for hazelnut growing, all of the climatic 

indices should be favourable, with the possible exception of rainfall, provided 

supplementary irrigation is available. 

 

Conclusion on climatic indices 

It is concluded that, based on limited observations and data, the set of climatic indices 

developed to assess the suitability of locations for hazelnut production in Australia (Table 

2.1) provides a useful guide but may require some modification, such as the estimated 

chill hours based on the da Mota formula, the duration and the intensity of heat stress.  

Total rainfall could be less important if irrigation is available. 
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2.1.2 Soils 

 

The physical and chemical characteristics of soils affect the growth of plants through their 

effects on the root system of the plants.  Roots have 3 main functions; to absorb water and 

nutrients and transfer these to the above ground parts of the plant, to act as a storage organ 

and to anchor the plants in the ground.  The uptake of water and nutrients is through the 

unsuberised roots and root hairs near the growing tips of the root system.  Root growth is 

influenced by air in the soil, moisture, temperature and the provision of carbohydrates.  

Roots grow profusely in well-aerated soils.  They can be damaged by a lack of oxygen, 

excess moisture and high acidity.  Oxygen levels of 9-12% are required by many 

agricultural plants for active root growth (Russell, 1961). 

 

Soil texture and structure have a strong influence on root growth.  Many plants produce a 

large root mass in a sandy soil compared with a heavy clay.  By contrast, compacted soils 

such as poorly-structured clays can impede root growth.  Root growth of many agricultural 

plants slows in soils with penetrometer readings of 1 MPa, falling to zero at 5 MPa, 

(Passioura, 2002).  Benhough et al. (2011) considered that mechanical impedance was a 

major limitation to root elongation in many plant species, with zero elongation occurring 

at less than 6 MPa for most species.  It is considered that plant roots can sense 

deteriorating or restrictive environmental soil conditions and produce “feed forward” 

inhibitory signals that may affect stomatal conductance, cell expansion, cell division and 

the rate of leaf appearance (Passioura, 2002).  However, it is possible that feed forward 

signals may be lost through selection for high production in agricultural plants.  Benhough 

et al. (2011) reported that root tip traits influence the ability of roots to penetrate soils with 

differences between genotypes providing potential opportunities to breed cultivars that are 

better able to exploit the soil, with possible greater drought tolerance. 

 

Mehlenbacher (1994) considered soil type had a significant effect on the growth and 

production of Corylus avellana L., with the species growing best on deep, fertile, well-

drained soils.  Thompson (1981) stated that in Oregon, a high percentage of roots were in 

the top 0.6–1.0 m, with some going deeper.  In France, Germain and Sarraquigne (2004) 

also found that the majority of hazelnut roots were in the top 0.6 m of soil with some 

going down to 1.2 m.  However, Woodroof (1967) reported that roots can penetrate down 

to 3.5 m in depth in well-aerated soils.  Both Woodroof (1967) and Thompson (1981) 

emphasised the poor tolerance of hazelnuts to poor soil aeration and the damaging effects 
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of waterlogging, particularly during active vegetative growth.  On shallow soils, the 

hazelnut trees may grow well in their early years but subsequently do poorly and are often 

stunted, (Thompson, 1981) and (Woodroof, 1967). 

 

In Oregon, hazelnuts are mainly grown on deep, fertile loams with good water-holding 

capacity as unirrigated crops in the Willamette Valley (Lagerstedt. 1981).  Deep, well-

drained, fertile soils with a pH of at least 6.0 were recommended by both Woodroof 

(1967) and Thompson (1981).  They considered that soils should be at least 2.4–3 m in 

depth, to provide sufficient moisture for a dry season.  Hazelnut trees can make extensive 

root growth in winter when temperatures are above 5
°
C (Thompson, 1981).  This 

presumably enables them to develop a good root structure in spring that can obtain 

moisture for growth and kernel fill during the relative dry summer months of July and 

August (Figure 2.2). 

 

There appears to be a relationship between soil type and rainfall.  In Oregon, high yields, 

1700-2000 kg/ha, are achieved on deep, well drained soils with an annual rainfall of about 

1100 mm.  Whereas in France, with a 700-800 mm annual rainfall and deep fertile sandy 

loam soils, some irrigation is needed.  In Spain where rainfall in the Camp de Tarrogona 

region is only 500 mm and summers are dry, irrigation is essential (Tous et al, 1994).  

 

It appears that deep loam soils may provide a reserve of soil moisture.  In Oregon, 

hazelnuts are grown without irrigation, on deep loam soils in the Willamette Valley, where 

annual rainfall averages 1100 mm.  The rain falls mainly in late autumn, winter and 

spring, summers are relatively dry (Thompson, 1981).  Evaporation is very low in winter 

and high in summer.  Water use by dormant trees is negligible in winter and rises to peak 

levels in summer, following bud-break and leaf expansion, to a full canopy in July.  In 

France, Mingeau and Rousseau (1994) measured the relationship between water loss 

through transpiration (T) and estimated evapotranspiration (ETP), as calculated using the 

Penman formula.  This relationship provides crop coefficients that can be used to estimate 

water loss by hazelnut trees from evaporation data.    Based on an available water-holding 

capacity of 175 mm/m depth for a loam soil (Charman and Murphy, 1991, p. 164) and an 

assumed rooting depth of 2 m, an estimate was made of the soil moisture levels under a 

mature hazelnut orchard in Oregon through the growing season, from bud-break in 

March/April to the start of kernel filling in July, based on the crop coefficients of Mingeau 

and Rousseau (1994), Figure 2.2.  These assumptions, estimates and calculations indicate 
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that in an average year of rainfall, hazelnut trees in the Willamette Valley appear to utilise 

most of the available stored moisture in the top 2 m of soil by the end of July.  At that 

stage, kernels would be filling and it is likely that trees would need to utilise stored soil 

moisture from greater depth for the completion of kernel fill and to maintain growth until 

the autumn.  However, modelling beyond July would need to take into consideration the 

effects of drier soils on transpiration rates.   

 

It is recognised that these are theoretical calculations and there is a need to conduct studies 

on root development and water uptake by hazelnuts in non-irrigated situations.  However, 

this simple modelling supports the views of Woodroof (1967), Thompson (1981) and 

Mehlenbacher (1994) that deep well-drained soils are required for commercial hazelnut 

production.  However, there must be a limit to their ability to supply adequate moisture for 

high yields and well-filled kernels at times when spring and summer rainfall is low. 
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Figure 2.2 Estimated available soil moisture levels under a hazelnut orchard in an average 

season at Oregon, based on rainfall and evaporation data for the Agricultural Experimental 

Station, Oregon State University (Taylor et al., 1991).   
Note: Estimated available soil moisture store is based on a loam soil with a water-holding capacity of 175 

mm/m, a rooting depth of 2 m and crop coefficients (T/ETP) developed by Mingeau and Rousseau (1994). 
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Soil texture and pH 

Soil texture is considered to be an important factor for successful hazelnut production.  

Germain and Sarraquigne (2004b) recommend that in France, soils in the texture range 

sandy loam to clay loam with a clay content of no more than 20-40%, should be selected.  

In their studies on soils in Romania, Botu and Turcu (2001) reported soils with a clay 

content exceeding 35-40% were unsuitable for hazelnut growing.  Trees on soils with a 

high clay content lacked vigour, produced more suckers, were later coming into bearing 

and produced lower yields.  Soils considered suitable were alluvial, brown forest and 

chernozems (black prairie soils).  Germain and Sarraquigne, (2004) considered that very 

sandy soils are also unsuitable and should be avoided. 

 

Khokhlov (2001) concluded from studies on the growth of hazelnuts on the southern coast 

of Crimea that the most suitable soils were those that were moist, slightly stony, with a 

light clay texture and were slightly alkaline. 

 

In the UK, hazelnut growing occurs mainly in the Sevenoaks district of east Kent, where 

hazelnuts, locally known as cobnuts, are grown on soil derived from soft ragstone rock, 

derived from limestone (Kent Geologist Group, 2011).  This soil is fertile with a sandy 

texture, is free-draining, and has a neutral pH (Baldwin and Baldwin, 2003). 

A slightly acid to neutral soil reaction with a pH in water (pHw) of 6-7 is considered 

desirable.  However, some cultivars seem well-adapted to mildly alkaline conditions.  In 

France, soil pH is considered to be relatively important, a pH range of 6.2-7.8 is 

recommended by Germain and Sarraquigne, (2004).  In Oregon, liming soils before 

planting is recommended, when soil pH is below 6.4 (Oregon State University Extension 

Service, 1985).  In Spain, hazelnuts are grown mainly on calcareous loam soils with a 

pH>7-8 (Tous, 2005).  At this level of pH, plants may suffer from iron chlorosis (Tous, 

2001).  In Croatia, Miljković and Prgomet, (1994) reported the cultivars ‘Barcelona’, 

‘Nocchione’, ‘Negret’ and ‘Tonda Romana’ grew well and produced good nut yields on a 

terra rossa soil overlying limestone with an annual rainfall of 800-900 mm.  Terra rossa 

soils are red soils that have a high content of iron oxides and are well drained. 

 

Conclusion on soil suitability 

It is concluded that, as with most agricultural crops, soil type is important.  Desirable 

attributes are a loam texture, fertile, good drainage, a high water-holding capacity, pH 6-7 
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with a depth of at least 1.5 m.  Heavy clay soils should be avoided, particularly if poorly 

drained. 

 

Relating this to the Australian situation, Charman and Murphy (1991, p225) writing on the 

suitability of soils for agricultural use in NSW, state that for a given climatic region, soil 

type is strongly influenced by soil parent material.  Soils derived from basalt are generally 

chemically fertile, have a high clay content, are well structured with good internal 

drainage and have relatively deep topsoils.  They are often used for intensive cropping and 

horticulture.  In contrast, soils from parent materials such as granite and sandstone are 

relatively infertile, with sandy topsoils overlying poorly structured clay subsoils, duplex 

profiles.  The subsoil or ‘B’ horizons are commonly poorly structured resulting in poor 

internal drainage.  Soils developed from alluvial deposits can vary considerably in texture 

depending on their origin.  This relationship between soils and parent material generally 

applies to all soils in south-eastern Australia. 

 

The selection of appropriate soils in Australia is likely to be very important and may be a 

significant factor influencing the places where hazelnuts can be successfully grown.  

Suitable soil types are likely to be those derived from basalt and well-drained alluvial 

soils.  The soils of the research sites listed in Table 2.2 included soils derived from basalt 

at Orange and Toolangi, an alluvial loam soil at Myrtleford and a deep well-drained red 

soil at Manjimup. 

 

 

2.1.3 Conclusions on Climate and Soils 

 

It is concluded that both climatic conditions and soil type have a significant effect on the 

growth and production of hazelnuts.  A series of climatic parameters were developed from 

the literature to assess the suitability of locations for hazelnut production.  When tested 

against sites where hazelnuts have been grown in Australia, it appeared that the greatest 

climatic limitations to hazelnut production in Australia are likely to be related to a 

combination of high temperatures and low humidity in summer causing moisture stress. 

 

A mean annual rainfall greater than 800 mm appears to be required for unirrigated 

orchards, but water sources to provide supplementary irrigation are likely to be essential to 

buffer erratic rainfall. 
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It is unlikely that in Australia damage will generally occur from low temperatures in 

winter, although late spring frosts may be a concern.  In some warmer locations there may 

be insufficient chill hours to break dormancy.  The chill requirements of cultivars need to 

be evaluated as part of the research. 

 

Soil type appears to be very important.  Relatively deep, well drained, fertile, loam soils 

appear to be highly desirable.  As many Australian soils have a duplex profile, with a 

heavy textured B horizon, locating a suitable soil type combined with an appropriate 

climate may limit areas where hazelnuts can be grown.  Soil depth and physical 

characteristics are likely to be an important criterion in site selection.  Nutrient levels are 

likely to be less important as they can be supplied as fertiliser in various forms. 
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Part 2 Factors influencing growth and production 

 

2.2.1 Physiological process of growth 

 

Photosynthesis provides the primary compounds and energy for plant growth.  The rate of 

photosynthesis changes seasonally and diurnally (Kozlowski and Pallardy, 1997).  If 

moisture is not limiting, the rate of photosynthesis is low early in the morning rising to a 

maximum about mid-day and declining in the latter part of the day.  Major environmental 

factors that regulate photosynthesis include light intensity, temperature, wind, relative 

humidity, daylength and physiological state of the plant, available soil moisture and soil 

fertility (ibid, 1997).   

 

Shading within the canopy of hazelnut trees has a significant effect on photosynthesis.  

Light intensity and photosynthesis decrease markedly with increasing distance from the 

top of the tree crown.  At low light intensity, lower in the canopy, there is very little 

photosynthesis, yet there is a release of CO2 from respiration. 

 

In a study on the physiological aspects of hazelnut training systems, Valentini et al. (2009) 

found that in an orchard where the tree crown was 4 m above the ground, the 

photosynthetically active radiation (PAR) was in the range 17-25% at 3 m above the 

ground with a reduction to 3-7% at 1.5 m above the ground.  This indicates the high level 

of shading often found in the foliage of mature hazelnut trees.  The cultivar was ‘Tonda 

Gentile delle Langhe’, the trees were 15 years old, trained to a free-vase form and planted 

at a spacing of 3x5 m.  The leaf anatomy was markedly affected by light intensity.  Leaves 

that received more light had a higher stomata density (225/mm
2
) and a more developed 

palisade tissue (49% of leaf thickness) compared with the more shaded leaves with a lower 

number of stomata (116/mm
2
) and less well-developed palisade tissue (29% of leaf 

thickness).  Leaves with a higher proportion of palisade tissue and higher stomatal 

conductance had higher net assimilation rates. 

 

The age of leaves influences their photosynthetic capacity, increasing from low levels for 

juvenile leaves to a maximum for fully expanded, adult leaves, declining as leaves 

senesce.  The high levels of photosynthesis in adult leaves are associated with a greater 

number of chloroplasts per cell, a thicker palisade layer and thicker leaves (Kozlowski and 

Pallardy, 1997).  The changes in photosynthetic capacity with age vary with species.  
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Training systems can influence light transmission within the canopy and leaf anatomy 

(Goncalves et al., 2009).   

 

Most temperate-zone woody species are C3 plants, in which the fixation of carbon through 

photosynthesis uses the Calvin cycle.  Photosynthesis occurs over the temperature range of 

just above 0°C to 40°C.  Optimum temperatures are in the range 15-25°C (Kozlowski and 

Pallardy, 1997).  The disadvantage of C3 plants is that under hot dry conditions their 

efficiency of photosynthesis is greatly reduced due to photo respiration.  When the CO
2
 

concentration in the chloroplasts drops below about 50 ppm, the catalyst rubisco that helps 

to fix carbon begins to fix oxygen instead, thereby reducing the efficiency of 

photosynthesis. (Moore et al, 1995.).  Studies on photosynthesis in apricot by Lange et al. 

(1994) showed that some acclimation to higher temperatures can occur. 

 

Photosynthesis is influenced by both drying and waterlogging of the soil.  Water deficits 

cause stomata to close, which decreases the efficiency of carbon fixation.  This can lead to 

a reduction in leaf development and even leaf-shedding under conditions of prolonged 

water deficits (Kozlowski and Pallardy, 1997). 

 

Tombesi (1994) conducted studies under high light conditions in summer on the effects of 

soil water deficits on photosynthesis and stomatal conductance on 3 year-old hazelnut 

trees.  The photosynthetic rates of trees with high levels of soil moisture availability were 

highest at 09:00 h with a slight reduction at 12:00 h and a recovery at 16:00 h.  This 

suggests that water loss at 12:00 h might have been greater than the ability of the plants to 

take up water from the soil, even from a soil in which water was readily available.  

Photosynthesis was high until water availability declined to 60%.  As water deficits 

increased, photosynthesis, stomatal conductance and water use efficiency declined.  As 

water deficits approached wilting point, leaves wilted and, with no further addition of 

water, they became desiccated.  Chlorophyll, soluble sugars and starch content declined in 

stressed leaves.  Mingeau et al. (1994) found that if available soil water levels decline 

relatively slowly, hazelnuts can adjust their transpiration rates, thereby limiting the impact 

on photosynthesis and growth.  When soil moisture deficits were relieved, plants reverted 

relatively quickly to more normal rates of transpiration and photosynthesis.  Water deficits 

were also shown by Girona et al. (1994) to reduce net photosynthesis in hazelnuts.  In a 

comparison of irrigated and unirrigated hazelnut trees, Dias et al., (2005) recorded lower 

rates of photosynthesis and lower levels of chlorophyll in the leaves of the unirrigated 

http://hyperphysics.phy-astr.gsu.edu/hbase/biology/chloroplast.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/organic/rubisco.html#c1
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trees.  In contrast, Bignami and Natali (1997) found no differences in assimilation rates 

between young trees in unirrigated and irrigated treatments, although leaf area index 

increased significantly in response to irrigation levels. 

 

Conditions of low humidity often cause stomatal closure in woody plants (Kozlowski and 

Pallardy, 1997).  Bergoughoux et al. (1978) noted that several days of desiccating winds 

caused wind burn on leaves and considered ideal relative humidity levels were 70-80%.  

These relative humidity levels were included in the climatic indices in  

Table 2.1. 

 

In studies on changes in the xylem water potential (Ψ) of 3 hazelnut cultivars, ‘Barcelona’, 

‘Tonda di Giffoni’ and ‘Tonda Gentile delle Langhe’, Grau and Sandoval (2009) found 

that the lowest levels of ‘pre-dawn’ (06:00 h) xylem water potential were recorded when 

the relative humidity on the previous day had fallen to 50%.  This suggests there was a lag 

in the rehydration of tissues following desiccating conditions.  Rainfall had no effect on 

‘pre-dawn’ water potential.  The studies were undertaken in Chile from late January to late 

April.  There were no significant differences between the 3 cultivars in their response to 

the environmental conditions, nor were there any differences in stomatal density; which 

averaged 42 stomates/mm
2 

for randomly-sampled leaves.  This is a low figure compared 

with that recorded by Valentini et al. (2009), as discussed previously. 

 

Carbohydrates produced from photosynthesis are used in many plant functions.  The 

greatest proportion is used in respiration to provide energy for the synthesis of new 

cellular material for growth and development.  The rate of respiration depends on 

environmental conditions and physiological factors such as the age of the tissues.  Energy 

losses through respiration can be as high as 60% of the daily production of photosynthesis 

(Kozlowski and Pallardy, 1997).  Carbohydrates not used in metabolic process and growth 

accumulate in a variety of vegetative and reproductive tissues; the levels varying 

seasonally.  In Turkey, the levels of the monosaccharides fructose and glucose and the 

disaccharide sucrose in bark tissues of several hazelnut cultivars were found to decrease 

during spring to their lowest levels in summer.  Levels then rose during autumn to winter 

(Okay et al., 2005).  The levels of sucrose in winter were higher in districts with lower 

winter temperatures.  Cold hardiness has commonly been attributed to the accumulation of 

sugars during early autumn before leaf fall (Kozlowski and Pallardy, 1997).  Sucrose and 

starch are also storage carbohydrates that are used in growth and development.  The 
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storage of carbohydrates and nutrients, especially nitrogen, are particularly important for 

new growth in early spring (Olsen et al., 2001). 

 

 

2.2.2 The phenology of growth and development 

 

The European hazelnut (Corylus avellana L.) is widely distributed in Europe, where its 

natural growth habit is as a multi-stemmed deciduous shrub to a height of 3-10 m, 

occasionally up to 15 m.  It is a polygenic and polymorphic species, exhibiting a wide 

diversity in morphological characteristics such as plant size, growth habit, nut size, nut 

shape and husk length (Mehlenbacher, 1991).  A polygene or quantitative gene is one of a 

group of non-allelic genes that influence a phenotypic trait such as nut size or nut shape.  

This gives rise to polymorphism with a diverse range of phenotypes, with a great variation 

in characteristics. 

 

The phenological development in hazelnuts, in Oregon, typifies the general pattern in the 

Northern Hemisphere and the sequence would apply elsewhere.  Flowering and pollination 

occurs during winter when the plant is dormant.  Leaf emergence occurs in March-April, 

followed by shoot development.  Nut development starts in May–June, fertilisation takes 

place in late June–early July, the embryo and kernel develop in July and August.  Nuts 

mature in late August.  The husk slowly matures and nut-drop extends from early 

September to mid-October (Lagerstedt, 1981).  Leaf fall occurs from October onwards. 

 

This general growth pattern is typical of deciduous woody plants, which alternate from a 

period of active growth under warm seasonal conditions to a dormant, leafless phase under 

cool–cold, winter conditions.  There is a transition between these 2 growth phases, which 

are influenced by climate.  New buds produced during the active growth phase become 

inactive, moving into a pre-dormancy phase.  This dormancy becomes progressively 

deeper (endodormancy) during autumn until it is gradually terminated through the 

accumulated exposure to a period of chilling followed by warmth that leads to bud break 

and the beginning of active growth (Kozlowski and Pallardy, 1997). 

 

A model for seasonal growth and dormancy was proposed by Fuchigami et al. (1982) 

showing how deciduous woody plants move from a summer growth phase to a period of 

endodormancy in winter.  In some species, shortening daylength in late summer triggers 
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the cessation of growth, leading to a state of ecodormancy; with other species growth 

ceases with declining temperatures.  There is a transition from ecodormancy to 

endodormancy in which buds are dormant due to a balance of growth-regulating 

substances.  The transition to endodormancy is usually complete by October or November 

in the northern hemisphere (Westwood, 1993).  Endodormancy is strongly influenced by 

levels of growth-regulating substances such as the inhibitor abscisic acid (ABA), with 

levels declining during chilling and with flowering being stimulated by growth-promoting 

cytokinins, as proposed by Lavee (1973).  The chilling requirements to break dormancy 

vary greatly with species and with cultivars within species.  It would seem that an 

important consideration in this model is the transition that occurs between the phases of 

growth and dormancy, rather than considering these phases as having sharply-defined 

boundaries.  It seems highly likely that the transition times are strongly influenced by 

seasonal conditions. 

 

In woody plants, growth arises from meristematic tissue.  Shoot elongation arises from the 

expansion of buds, involving cell division in the apical meristem, followed by elongation, 

differentiation and maturity.  Shoot thickening and the increase in trunk diameter arises 

from the activity of the meristematic tissue in the cambium, resulting in the production of 

xylem vessels inwardly and phloem outwardly (Kozlowski and Pallardy, 1997). 

 

Seeds contain a radicle or root meristem from which the initial roots develop.  Lateral 

roots arise from the outer layer of the stele, or pericycle.  The pericyclic cells become 

meristematic, and grow out through the outer layers of the root tissues.  These lateral roots 

have an apical meristem and a root cap (Kozlowski and Pallardy, 1997).  In temperate 

regions, root growth of deciduous plants commonly commences before shoot growth and 

continues after shoot growth ceases. 

 

The date of bud break, which marks the beginning of active growth, varies with cultivar 

and environmental conditions.  For example, in Oregon, it occurs from late February to 

early April, for hazelnuts, depending on the cultivar (Mehlenbacher, 1991).  Studies in 

Norway on leaf bud-break on a range of deciduous tree species including Corylus avellana 

L. found that time of bud-break decreased with increasing duration of chilling (Heide, 

1993).  The estimated base temperature for the accumulation of thermal time varied 

between species from -4°C to +1°C.  Another factor was the influence of day length; long 

days reduced the thermal time to bud break. 
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Hazelnut cultivars that are early into bud-break include ‘Tonda di Giffoni’ and ‘TGDL’.  

Intermediate cultivars include ‘Barcelona’ and ‘Imperial de Trebizonde’ (syn.  ‘Wanliss 

Pride’) and late-leafing cultivars include ‘Ennis’, ‘Hall’s Giant’ and ‘Kentish Cob’ 

(Thompson et al., 1978).  In some environments, such as where late frosts can occur, 

cultivars that leaf-out early may be subject to frost damage (Mehlenbacher, 1991). 

 

The seasonal growth of shoots of 4 cultivars was studied in Portugal by Santos et al. 

(1998) as the trees developed over a period of 10 years.  They found that, with each 

cultivar, shoot growth followed an S-shaped curve.  Over the 10-year period, the highest 

growth rates were observed in the early stages of tree development, following planting.  

As tree size increased, the relative growth rates of shoots declined.  In their situation, 

competition between the trees was observed from the fifth year.  The trees had been 

planted at a spacing of 5x3 m.  Average annual shoot growth ranged from 25-50 cm, but 

varied with seasons and cultivars.  It was highest in the cultivar ‘Butler’ and lowest in 

‘Hall’s Giant’.  Shoot growth was positively correlated with rainfall.  Poor shoot growth 

resulted in low nut yields in the following year, which was also reported by Dimoulas 

(1979).  The sensitivity of hazelnuts to soil moisture deficits in the period May to early 

July in the northern hemisphere and its adverse effects on shoot elongation, trunk growth 

and nut yields was also reported by (Tombesi, 1994) (Mingeau et al., 1994) and (Bignami 

and Natali, 1997). 

 

Leaf growth is rapid in late spring, producing a dense canopy by early summer.  In 

Oregon, Hampson et al. (1996) recorded only 10% of full sunlight 2.1 m above the ground 

in a 6 year-old ‘Ennis’ orchard in mid-summer.  A leaf area index (LAI) of 7.6 was 

estimated for 10 year-old Barcelona trees (ibid).  LAI values of 2.4-5.2 were reported by 

Bignami and Natali (1997) for young trees in an irrigation study in Italy.  The higher 

values were for irrigated trees.  Azarenko et al., (1997) found that levels of light in the leaf 

canopy from late May to early July, when nuts and kernels are developing, had a critical 

effect on nut yields and kernel quality.   
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2.2.3 Vigour, growth habit and suckering 

 

Hazelnut cultivars vary markedly in their vigour, growth habit and tendency to produce 

suckers at their base.  Many Turkish cultivars, such as ‘Imperial de Trebizonde’ (syn. 

‘Wanliss Pride’), are of low vigour which makes them suitable for hand harvesting.  

‘Kentish Cob’ (syn. ‘Longue d’Espange’) is also a cultivar of low vigour (Santos and 

Silva 2001); it too is hand-picked in the UK for its green nuts (Allens Farm, Kent Cobnuts, 

2011). 

 

‘Negret’ and ‘Tonda Gentile delle Langhe’ are of low–medium vigour and are grown as 

small trees with short trunks for mechanical harvesting (Tous et al., 1994).  ‘Casina’, 

‘Ennis’ and ‘Willamette’ were reported to be of intermediate vigour compared to 

‘Barcelona’ (McCluskey et al., 1997).  ‘Barcelona’ and ‘Pautet’ are cultivars of high 

vigour (Mehlenbacher, 1991) as are ‘Butler’ and ‘Segorbe’ (Lagerstedt, 1975).  ‘Hall’s 

Giant’ is an example of a very vigorous cultivar (Mehlenbacher, 1991).  However, the 

vigour of cultivars varies with environmental conditions.  For example, in Croatia, 

Miljkovic and Prgomet (1994) reported that ‘Negret’ and ‘Tonda Romana’ were cultivars 

of high vigour, similar to ‘Barcelona’.  In Chile, Grau and Bastias (2005) reported that 

‘Tonda Gentile delle Langhe’ had similar high vigour to ‘Barcelona’ and ‘Tonda 

Romana’. 

 

Tree shape is largely determined by the angle of the branches, which varies with cultivars 

from very erect, as in ‘Daviana’, to very spreading or drooping, such as ‘Imperial de 

Trebizonde’ (Thompson et al., 1996; Bioversity International, FAO and CIHEAM, 2008).  

It is generally considered that the ideal shape for hand harvesting is very spreading 

whereas cultivars with an upright to spreading growth habit combined with a high level of 

vigour, such as ‘Barcelona’ and ‘Pautet’, are considered ideal for mechanical harvesting 

(Mehlenbacher, 1991). 

 

Branching density varies from quite sparse as in ‘Butler’ to dense as in ‘Ennis’ (Bioversity 

International, FAO and CHIEAM, 2008).  The natural tendency of the species is to grow 

as a bush form with many suckers.  However, trees are generally trained to either a 

traditional multi-stem form such as occurs in Turkey, Italy and Spain (Tous et al., 1994) or 

to a vase shape with a single stem to facilitate the mechanisation of orchard operations 
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including harvesting.  In this latter situation, suckers are commonly controlled with 

herbicides. 

 

There does not appear to be a relationship between the degree of suckering in a cultivar 

and its vigour.  Some cultivars that produce many suckers are vigorous, such as ‘Fertile de 

Coutarde’ (Thompson et al., 1978); others like ‘Hall’s Giant’ are also vigorous but 

produce relatively few suckers (Bergoughoux et al., 1978). 

 

The traditional training system in Turkey, Italy and Spain is the multi-stem bush.  

However, where orchards are mechanically harvested, trees are commonly grown on a 

single trunk (Tous et al., 1994).  Young orchards in Oregon and Europe, of vigorous 

cultivars such as ‘Barcelona’, are generally pruned to a vase shape.  Newly-planted trees 

are often cut back to produce 3-4 scaffold branches at a trunk height of about 80 cm.  

However, with lower-vigour cultivars, such as ‘Negret’ in Spain and ‘TGDL’ in Italy, 

lower trunk heights of 10-40 cm are used (Tous et al., 1994).  In the early stages of 

development, the main aim is to shape the tree and build a strong framework (Woodroof, 

1967).  The primary branches are often headed back and subsequently the secondary 

branches to favour the general branching of the tree.  During the early-bearing stages, little 

pruning is done as the trees expand their bearing surface and root systems. 

 

Assessing growth 

Vigour of growth is often assessed by measuring the butt circumference of trees.  In Chile, 

Grau and Bastias (2005) took measurements 150 mm above the ground.  In Bioversity, 

FAO and CIHEAM (2008), it is recommended that measurements be taken 400 mm above 

the ground.  Butt circumferences are frequently converted to trunk cross-sectional area 

(TCSA) to obtain an indication of wood production and to determine nut yield efficiencies 

(Westwood, 1993).  Nut yield efficiencies are determined from the nut yield at some given 

year of cropping divided by the TCSA.  Trees that produce high yields with low TCSA 

values have high yield efficiencies.  It indicates the relative use of assimilates to produce 

nut yields rather than tree growth.  Other measures of yield efficiency include light 

interception and light use efficiency (Charles-Edwards, 1982) as well as water use 

efficiency in dryland crops (Feddes et al., 1978) and (French and Schultz, 1984.) 

 

Observations of tree vigour are commonly used to complement measurements of butt 

circumference.  Although measurements of butt circumferences are relatively easy to 
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obtain, they do not give a very good indication of tree size.  In Portugal, Santos et al. 

(1994) found that the crown volume and total stem mean area of 11 hazelnut cultivars 

grown as multiple stems were poorly correlated. 

 

Lagerstedt, as reported in Westwood (1993), considered that the maximum bearing surface 

of a hazelnut orchard was achieved when the total trunk cross-sectional area of the trees in 

an orchard was 91,800 cm
2
/ha.  The total trunk cross-sectional area is determined from the 

mean trunk cross-sectional area of the trees multiplied by the number of trees per hectare 

in an orchard.  Although not stated, this estimate was probably for the cultivar 

‘Barcelona’, as the study was in Oregon where ‘Barcelona’ was the main cultivar grown.  

It is likely this figure will vary with cultivars and the conditions under which they are 

grown. 

 

Training systems  

Hazelnuts are borne mainly on the shoot growth of the previous season, one-year old 

wood.  It is generally considered that most cultivars need to produce 150-200 mm/annum 

of new wood on shoots to be fruitful (Tous et al., 1994).  Shoots less than 50 mm 

differentiate few flower buds.  Although it is considered highly desirable to produce 

vigorous growth of young trees to prepare a good framework for crop-bearing, vigour is 

not necessarily correlated with yield in the early years of production.  Female buds are not 

only borne on the lateral buds of the new season’s shoots but, in some cultivars, they also 

occur on catkin peduncles (Giulivo and Pisani, 1973).  The cultivars ‘Barcelona’ and 

‘TGDL’ produce most of their flowers on stems, whereas ‘Ennis’ and ‘Casina’ produce a 

high proportion of their flowers on catkin peduncles (Azarenko et al., 1994).  Cultivars 

differ markedly in the time they take to come into bearing, for example ‘Lewis’ and 

‘Ennis’ are early into bearing (McCluskey et al., 2001) which may be because they bear 

flowers on catkin peduncles. 

 

Traditionally, hazelnuts have been grown as a multi-stemmed bush, but a single stem or 

vase form is preferred in large orchards where operations, such as spraying and harvesting, 

are mechanised (Tous et al., 1994).  Young orchards in Oregon and Europe, of vigorous 

cultivars such as ‘Barcelona’, are generally pruned to a vase shape. 

 

In the early stages of development, the main aim is to shape the tree and build a strong 

framework.  The primary branches are often pruned and subsequently the secondary 
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branches to favour the general branching of the tree.  During the early-bearing stages, little 

pruning is done as the trees expand their bearing surface and root systems (Woodroof, 

1967). 

 

In the early stages of tree development, vigorous cultivars such as ‘Barcelona’ are pruned 

to produce 3-4 scaffold branches at 80 cm above soil level whereas less vigorous cultivars 

such as ‘Negret’ or ‘TGDL’ are pruned to produce scaffold branches at a height of 40 cm 

(Tous et al., 1994). 

 

Other training systems such as the V-hedge, “monocone” (vertical axis) and “ipsilon” (2 

main stems arising just above the ground) as shown in Figure 2.3, have been evaluated.  In 

Spain, Tous et al., (1994), compared the “free vase”, “monocone”, “ipsilon” and V-hedge 

systems.  The V-hedge involved planting pairs of trees 0.4 m apart down the centre of the 

row with the individual trees planted with their trunks at opposite angles of 30° from 

vertical.  The trees were planted at a spacing of 6 m x 3 m, 555 trees/ha, except the hedge 

system which was 1100 trees/ha.  These 4 training systems were evaluated on 3 cultivars 

of differing vigour at 2 sites.  There was an interaction effect between cultivars, training 

systems and sites on 5-year cumulative nut yields.  However, the V-hedge system, with its 

high tree density, produced the highest nut yields in the first years of nut production at 

both sites.  The V-hedge system produced the most suckers; the “monocone” was not 

suitable for low vigour cultivars whilst the vase system gave the best vegetative growth. 
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Figure 2.3 Training systems of free or open vase, monocone or vertical axis, V-hedge or 

hedgerow and ipsilon.   
Source: Tous et al. (1994) 

 

Similarly in France, Germain and Sarraquigne (1997) compared 3 training systems; an 

open vase on a single stem, a vertical-axis form and a V-hedge.  The spacing between the 

pairs in the V-hedge was as for the individual vase and vertical-axis trees.  The 3 training 

systems were evaluated on 3 cultivars, ‘Ennis’, ‘Segorbe’ and ‘Tonda Romana’.  Nut 

yields were recorded over a period of 8 years.  In the early years, the V-hedge, with a plant 

density twice that of the other systems, gave higher yields, particularly with the cultivar 

‘Segorbe’.  There were no significant differences between the training systems in nut 

weights, kernel weights or percentage kernel.  The V-hedge produced many water shoots 

and required a great deal of maintenance pruning.  The open vase was the preferred form.  

In Italy, Me et al. (2001) obtained similar results when comparing training systems of an 

open vase form with a V-hedge for ‘TGDL’ and 7 selection lines.  There was an 
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interaction effect with ‘TGDL’ and some selection lines, producing higher initial yields 

from the V-hedge.  These authors also reported the V-hedge required more maintenance 

pruning.   

 

Planting distances and densities 

Spacing in commercial orchards is highly variable, depending on soil type, rainfall, 

cultivar vigour and the system of mechanisation.  It is considered the minimum distance 

between rows should be 5 m to facilitate the operation of machinery (Tous et al., 1994).  

In Oregon, the spacing varies from 6x6 m to 5x5 m (270 and 400 trees/ha) for ‘Barcelona’, 

which is trained to a vase.  In south-west France, spacings of 5x3 m and 5x2.5 m (666 and 

800 trees/ha) were recommended (Germain and Sarraquigne, 2004a).  In the Viterbo 

region of Italy, the recommendation for ‘Tonda Romana’, a medium-vigour cultivar, is 

4.5-5 m between rows and 3 m in the row (740-666 plants/ha).  Irrigated orchards in Spain 

are commonly planted in the range 6x3 m to 7x4 m (550–350 trees/ha) (Tous, 2005).  The 

main cultivar grown is ‘Negret’, which is a small tree of relatively low vigour that is 

trained to a vase.  In their studies on tree growth in the Porto Wine region of Portugal, 

Santos and Silva (2001) considered that in their situation, vigorous cultivars, such as 

‘Fertile de Coutarde’ and ‘Segorbe’, require a tree-spacing of around 7x5 m or 8x6 m.  In 

contrast, cultivars that produce smaller trees, such as ‘Daviana’ and ‘Longue d’Espagne’ 

are suitable for cultivation at a spacing of 6x4 m.   

 

Pruning mature trees 

Generally, hazelnut orchards are not pruned on an annual basis.  Pruning is usually 

restricted to the removal of dead, damaged or low branches (Tous et al., 1994).  The 

effects of regular pruning are not well documented.  However, in Kent, pruning is carried 

out annually to limit the height of the trees to facilitate hand picking of the green 

“cobnuts” as well as to maintain vigorous shoot growth for crop production (Kentish 

Cobnuts Association, 2001). 

 

The progressive growth and development of a hazelnut orchard leads to branches meeting 

down the rows and eventually meeting between the rows, creating a full canopy.  During 

this process, trees lose vigour, there is a reduction in shoot growth and nut yields decline 

due to competition for resources such as light and moisture (Me et al., 1994) (Santos et al., 

1998) and (Roversi and Mozzone, 2005).  The time taken to reach this point varies with 

cultivar, planting density, soil type and rainfall. 
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In Italy, Me et al., (1994) studied rejuvenation pruning of a ‘Tonda Gentile delle Langhe’ 

orchard that was 33 years old.  The plants were at a spacing of 5.5 x 5.5 m and had been 

trained as a multi-stem bush form.  A full canopy had been achieved with branches 

crossing between the trees.  Average annual yields were only 1.0 t/ha.  Severe rejuvenation 

pruning, which involved cutting the stems back to2.5m, led to an initial drop in yield but 

stimulated the vigour of the trees which, by their fifth year from the initial pruning, had 

achieved the same cumulative yield as unpruned trees, but, in the next 2 years, yielded far 

more than the unpruned trees.  Pruning treatments included a reduction in the number of 

stems per tree.  Six stems per tree gave higher yields than 4 stems per tree over the 6-year 

period of the study.  In a similar study, Roversi and Mozzone (2005) found that severe 

renewal pruning of ‘Tonda Gentile delle Langhe’ led to very high initial yield losses, but 

increased fruit bearing branches and nut quality. 

 

Studies were conducted by Cristofori et al. (2005) on pruning intensity on 50-year old 

trees of ‘Tonda Romana’ in Central Italy.  Treatments involved the removal of 20% and 

40% of the wood from the upper part of the trees to renew the vigour of shoot growth.  

This involved shortening vigorous branches and removing those that were badly 

orientated.  High intensity pruning produced higher 3-year cumulative nut yields after 

pruning than the light intensity pruning, but better light penetration was obtained from 

both pruning treatments.  Cumulative nut yields 3 years after pruning from the high 

intensity pruning were not significantly different from the unpruned control.  The pruning 

treatments had no significant effect on nut traits and kernel quality. 

 

No significant differences were found between pruning treatments of 10 year-old ‘Ennis’ 

trees planted at 3.1x6.1 m.  Treatments included unpruned trees, selected scaffold removal 

and the removal of alternate trees within the row.  Average yields were about 2.9 t/ha 

(Azarenko et al., 2005).   

 

It is concluded that mature hazelnut trees that have achieved full canopy closure, are 

producing little annual shoot growth and have declining nut yields, can be rejuvenated 

through severe pruning.  In general, severe pruning causes a high yield loss in the first 2 

years from pruning, but leads to improved shoot vigour, which, under some circumstances, 

results in higher yields.  The positive relationship between shoot vigour and yield is well 

documented, as pointed out by Tous et al. (1994) in their review of pruning and other 

cultural practices in hazelnuts.  Pruning mature trees generally has a high labour and cost 
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component, but there do not appear to be studies on the value of regular mechanical 

pruning to manage tree size. 

 

Nutrition and fertilizers 

There is a considerable diversity in fertiliser practices; however, nitrogen is widely 

recognised as an important element for hazelnut development and crop yield (Tous et al., 

1994).  Nitrogen can increase the growth rate of annual shoots and subsequent nut yields.  

It is the main fertiliser recommended for developing hazelnut trees in Oregon (Olsen, 

2001).  Nitrogen reserves in the tree are very mobile.  The main source of nitrogen for leaf 

growth in spring and early summer is from root reserves (Olsen, 1997). 

 

Uptake of nitrogen in early spring is slow, increasing to late summer.  Fertilizer nitrogen 

only forms a small proportion of nitrogen in new growth, with an uptake of only 28% of 

spring-applied ground fertiliser (Olsen et al., 2001).  Time of fertiliser application 

influenced partitioning in the plant.  Spring applications were mainly partitioned into fruit 

growth; the later N was applied, the more likely it was to be partitioned into the frame of 

the tree.  Post-harvest applications of foliar urea were absorbed into the tree and 

partitioned into buds and one-year wood reserves, which were readily available for spring 

growth (Olsen, et al., 2001). 

 

Although phosphorus is an important element for plant growth, responses to phosphorus 

fertiliser seem to be variable.  Olsen (1995) recorded no responses to phosphorus 

fertilisers in Oregon, as did Bergoughoux et al. (1978) in France.  Yet in his review of 

cultural practices in hazelnut orchards, Tous et al. (1994) recorded recommendations 

ranging from nil to 30 kg/ha P.  This raises the questions, were the soils in Oregon and 

France high in phosphorus or do hazelnut trees have the ability to extract phosphorus from 

soils and hence have low phosphorus fertiliser requirements on some soils?  It is possible 

that hazelnuts host mycorrhizal fungi that enable them to extract their phosphate 

requirements from soils.  In Italy, seedling hazelnut trees were reported to commonly host 

a range of ectomycorrhizal fungi (Lefevre and Hall, 2001).  Desirable levels of phosphorus 

in hazelnut leaves are given in table 2.3. 

 

Hazelnut kernels are high in potassium (Alphan et al., 1997) and an increase in kernel size 

has been recorded from applications of this element.  Potassium is commonly 

recommended as a fertiliser for hazelnuts (Tous et al., 1994). 
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Calcium is an important element in hazelnut production.  Calcium is generally applied as 

ground limestone to raise soil pH.  Olsen (1995) considered the minimum pH for hazelnut 

production was pH 5.0.  Excessive levels of calcium in the soil can have an adverse effect 

on the uptake of iron.  The ideal soil pH is generally considered to be pH 6.5 (Germain 

and Sarraquigne, 2004a), with calcium representing 75-85% of the soil’s cation exchange 

capacity (CEC). 

 

Boron seems to be an important minor element that can have an influence on yield, nut 

quality and the proportion of blank nuts.  Beneficial responses to foliar applications of this 

element have been reported by some authors, as reviewed by Olsen and Cacka (2009), 

however, foliar applications of boron are not always beneficial, as reported by Borges et 

al. (2001).  It is concluded that there is a need for further studies on how boron is taken up 

by hazelnut trees and its role in plant nutrition and kernel development. 

 

Recommendations on the desirable mineral content of hazelnut leaves have been 

developed by several authors and reviewed by Tous et al., 1994 (Table 2.3).  Leaf contents 

of 2.2% nitrogen, 0.18% phosphorus and 0.9% potassium in fully-developed leaves in 

mid-summer are considered to be about optimum (Table 2.3).  More recently, Olsen 

(2001) has developed recommendations for the desirable level of elements in hazelnut 

leaves in Oregon (Table 2.3).  These are generally similar to those recommended by 

earlier authors, as cited by Tous et al. (1994). 

 

Table 2.3 Desirable levels of elements in hazelnut leaves as a proportion of dry matter, as 

recommended by several authors 
 

Source of 

data 

Elements 
N (%) P (%) K (%) Ca (%) Mg 

(%) 

S (%) Cu 

(ppm) 

Zn 

(ppm) 

B 

(ppm) 

Mn 

(ppm) 

Tous et 

al., 1994 

2.0–

2.6 

0.1–

0.6 

0.7–

1.0 

1.1–

3.0 

0.2–

1.0 

0.12–

0.2 

2–180 13–

200 

25–80 25–

800 

Olsen, 

2001 

2.2–

2.5 

0.14–

0.45 

0.8–

2.0 

1.0–

2.5 

0.25–

0.5 

0.12–

0.2 

0.8–

2.0 

15–60 30–75 26–

650 

Source: Tous et al., 1994, authors cited included Painter 1963, Molne, 1976, Chaplin, 1981, Romisiondo et 

al., 1963, Lopez-Acevedo, 1983 and Kowalenko, 1984. 

Propagation and rootstocks 

 

A common method of propagation of hazelnuts is through rooted suckers in a stool bed.  

The “whips” produced from this technique, when planted in orchards, also produce 

suckers.  A considerable amount of time, energy and expense goes into the control of 

suckers in hazelnut orchards.  Scion wood of cultivars can be grafted onto rootstocks of 
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other cultivars through the use of a hot callusing tube (Lagerstedt, 1981).  Rootstocks can 

affect the growth, production and kernel quality of the scion cultivar.  Tous et al. (1997) 

reported that ‘Negret’ grafted onto rootstocks of ‘Tonda Bianca’ and the hybrid rootstocks 

of ‘Newberg’ and ‘Dundee’ produced very good vegetative growth and nut yield 

compared with ‘Negret’ on its own roots.  Thompson (1981) reported that ‘Daviana’ had a 

deeper rooting system than ‘Barcelona’ with ‘Daviana’ being less susceptible to “wind-

throw”, that is trees being blown over by a very strong wind when soils are saturated and 

unable to provide support to the root system. 

 

Corylus colurna, the Turkish hazelnut tree, does not produce suckers and has some 

potential for use as a rootstock for sucker control and improving drought tolerance 

(Fideghelli and De Salvador, 2009).  However, Lagerstedt (1981) reported rootstocks of 

Corylus colurna tended to overgrow all but the most vigorous cultivars.  When 

‘Barcelona’ is grafted on to rootstocks of the Turkish hazelnut tree, nut yields are reduced 

compared with ‘Barcelona’ on its own roots.  Lagerstedt initiated a rootstock breeding 

program in Oregon with the objective of producing non-suckering rootstock from crosses 

of Corylus avellana L. with C. chinensis and C. colurna (Thompson, 1981).  Two hybrid 

rootstocks were produced, ‘Newberg’ and ‘Dundee’, but unfortunately these were 

susceptible to eastern filbert blight, limiting their use in Oregon.  The higher cost of 

producing grafted hazelnut trees seems to be a factor limiting interest in the use of non-

suckering rootstocks. 

 

Pests and diseases in Australia  

At the initiation of this research, the only major disease of hazelnuts recorded in Australia 

was hazelnut blight (Xanthomonas arboricola pv corylina), which adversely affects new 

shoot growth in spring.  This was discovered in Australia in the 1970s (Allen, 1986).  

None of the major global pests of hazelnuts, including big bud mites (Phytocoptella 

avellanae and Cecidophyopsis vermiiformis), were considered to be present.  The major 

pest problem reported in Australian orchards was native birds, particularly sulphur-crested 

cockatoos (Cacatua galerita), destroying nuts (Allen, 1986).  It was concluded that many 

of the common pests and diseases of hazelnuts orchards in Europe and Oregon were not 

likely to be a problem in Australia, although cockatoos could be. 
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2.2.4 Reproduction in hazelnuts 

 

The productivity of hazelnuts is strongly influenced by the number of female flowers on a 

tree, the proportion being effectively pollinated then fertilised and subsequently 

developing into nuts and kernels, as indicated in Figure 2.4. 

 

 
 

Figure 2.4 Pathway of yield development from flowering to nut and kernel development 

 

An understanding of the process of reproduction in hazelnut and how it is influenced by 

environmental conditions is important in evaluating the performance of genetic material.  

A very comprehensive review of this topic was conducted by Germain (1994).  The 

European hazelnut (Corylus avellana L.) is a monoecious plant with separate male and 

female flowers on the same tree (Figure 2.5).  These flowers are borne on one year-old 

shoots. 
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Figure 2.5 One year-old hazelnut shoot with vegetative buds, and separate male and female 

flowers 
Source: Germain and Sarraquigne (2004) in Le Noisetier 

 

The male inflorescences (catkins) are comprised of 130-290 flowers (Germain, 1994).  

Each flower contains 4 bifurcated stamens, each terminating in 2 anthers.   

The female flowers (glomerules) are compound buds with a lower vegetative part and an 

upper fertile cluster, comprising on average, 4 bracts, each with 2 flowers (Figure 2.6).  

The female flowers are small; they comprise a pair of elongated stigmatic styles, each with 

a minute embryonic ovary at its base.   
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Figure 2.6 Cross-section of a female flower, showing the upper fertile part with stigmatic 

styles, embryonic ovaries and a lower vegetative part. 
Source: Germain and Sarraquigne (2004) in Le noisetier 

 

Male flowers are initiated before female flowers.  In France, Germain and Dimoulas 

(1979) reported the first signs of catkin differentiation occurred in buds from mid-May.  

Female flower induction was not observed until late June to mid-July.  After the formation 

of female flower primordia in the second half of July, it is possible to see rudimentary 

styles in late August.  Style growth continues with female flowers being completely 

formed by early October (Germain, 1994). 

 

The number of female flowers formed each year is influenced by the level of light 

received by one year-old shoots, their origin and vigour.  The total number of female 

inflorescences increases with shoot length, irrespective of cultivar and tree age.  

Bergoughoux et al. (1978) reported that shoots of low vigour, less than 150 mm in length, 

have a lower percentage of female flowers relative to vigorous shoots.  Very vigorous 

shoots, longer than 350-400 mm in length, have a strong tendency to vegetative bud 

development in their apical part.  In a study of flowering in ‘TGDL’, it was found that on 

one year-old branches, that ranged in length from 50-250 mm, the relative number of 

pistillate flowers per bud remained constant at about 0.5 (Maija et al. 1994).  The number 

Stigmatic 
styles 

Bracts 

Embryonic 
ovary 

Embryonic 
leaves 

Bud scales 

Small shoot 
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of nuts per cluster does not appear to be related to shoot length.  Cartechini et al. (1989) 

found late spring and early summer applications of urea enhanced flower differentiation, 

possibly by providing nitrogen at a critical stage in the development of shoots and fruits. 

 

Shoots receiving plenty of light bear 1.5–3 times as many female flowers as shoots in 

shaded foliage.  In a study on shading trees with black polypropylene cloth, in which light 

levels were reduced by 63% for certain periods in their growth, the number of catkins and 

female inflorescences were reduced in the period late May to the end of September in 

Oregon (Azarenko et al., 1997).  This coincides with the periods of floral initiation and 

development reported by Germain and Dimoulas, (1979). 

 

Flowering occurs in winter after chilling breaks the dormancy of the inflorescences.  For a 

given cultivar, chilling requirements for catkins are considered to be lower than those for 

female flowers, Kavardzhikov (1980), Mehlenbacher (1991) and Germain, (1994).  

Mehlenbacher (1991) recorded chilling requirements for catkins ranging from 100 to 860 

hours and for female flowers from 290 to 1550 hours, depending on the cultivar. 

 

Pollen grains are very small, 25-40 μm in diameter.  They are easily carried by the wind 

over long distances.  Concentration decreases rapidly within 15-20 m of the dispersal site.  

Pollen quality depends on the climatic conditions at the time of release.  Catkins can each 

produce 40 million pollen grains, but in some cultivars 30-50% of the pollen grains are not 

viable (Germain, 1994). 

 

The stigmas can be receptive for at least 2 months from the time of exertion from their 

enclosed scales (the red dot stage).  In time, the stigmas darken and wither.  Stigmatic 

receptivity is at its optimum about 15 days from the beginning of anthesis (Germain, 

1994). 

 

Genetic incompatibility 

Both self- and cross-incompatibility is found in hazelnuts, which is diploid, 2n = 22.  This 

incompatibility is sporophytically controlled by a single locus or gene with multiple 

alleles, (Germain, 1994).  The genetic incompatibility of hazelnut cultivars has been 

studied by many researchers, Schuster (1924), Bergoughoux et al. (1978), Thompson 

(1979a) and Mehlenbacher (1997).  To date, 25 S-alleles have been identified, 
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Mehlenbacher (1997).  In the pistillate flowers, the alleles exhibit independent action 

whereas in the pollen they act either in a dominant or co-dominant manner. 

 

Identification of the S-alleles for each cultivar enables compatibility relationships between 

cultivars to be determined, which is important when selecting pollinisers for commercial 

production.  Each cultivar has two S-alleles and both of these are expressed in the female 

flowers.  In the pollen, both alleles may be expressed when they are of equal dominance, 

that is, they are co-dominant.  However, if 1 allele in the pollen is dominant over the other, 

only the dominant allele is expressed in the pollen.  For cultivars to be compatible, the S-

alleles of the female must differ from the dominant or co-dominant alleles of the pollen, as 

illustrated in Table 2.4.  The dominant allele is underlined in each case (Thompson, 

1979a). 

 
Table 2.4 Example of some cultivars that are compatible with ‘Barcelona’ and can be used 

as pollinisers, compared with an incompatible cultivar, ‘Ennis’; the alleles expressed in the 

pollen are underlined. 
 

Example:    S-alleles 

 

 Nut producing cultivar - ‘Barcelona’ 1 2 

 

 Polliniser cultivars  - ‘Butler’ 2 3 

  - ‘Casina’ 10 21 

  - ‘Hall’s Giant’ 5 15 

 

 BUT NOT - ‘Ennis’ 1 11 
 

 

 

In ‘Barcelona’ the alleles are S1 and S2, but only the dominant allele S1 is expressed in the 

pollen, whereas in ‘Hall’s Giant’ (S5S15) the S-alleles are co-dominant and therefore both 

are expressed in the pollen. 

 

The dominant allele of ‘Butler’ is the S3 allele.  Therefore, although ‘Butler’ has an S2 

allele, this is recessive in the pollen, so cross-pollination with ‘Barcelona’ can occur.  

‘Casina’ and ‘Hall’s Giant’ have co-dominant S-alleles but they are different from the S1S2 

alleles of ‘Barcelona’, therefore ‘Casina’ and ‘Hall’s Giant’ are compatible with 

‘Barcelona’.  However, ‘Ennis’ pollen is not compatible with ‘Barcelona’ as ‘Ennis’ has a 

dominant S1 allele. 

 

Pollination, fertilisation and nut development 

Only a few of the pollen grains caught by the stigmas produce a pollen tube that reaches 

the base of the style after germination.  Pollen growth within the style is rapid, taking 4-10 
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days for the pollen tube to reach the base of the style, where its growth ceases at the apex 

of the ovary.  The tip broadens, develops a callose coat and goes into a quiescent phase 

(Germain, 1994).  In the case of incompatible pollen, the pollen germinates but fails to 

penetrate between the cells of the stigma (Germain, 1994). 

 

In pollinated flowers, the ovules slowly develop and produce megaspores.  The pollen 

tubes, which had been at rest for several months, grow again and fertilisation occurs about 

the end of May to late June, that is, early summer in the northern hemisphere, depending 

on the cultivar.  This is equivalent to the end of November to late December in Australia.  

Of the 2 ovules, the most advanced is fertilised, generally producing only 1 kernel per nut, 

although in some cultivars, such as ‘Barcelona’, both ovules can be fertilised, resulting in 

2 kernels in some nuts (Germain, 1994). 

 

During the 3 weeks after fertilisation, the embryo grows very slowly, attaining only 3-5% 

of its final volume.  When the shell begins to harden in early July (equivalent to early 

January in Australia), the embryo grows very quickly and fills the nut in 3-5 weeks.  Nuts 

ripen over a period of 2-3 weeks for most cultivars, with nut fall from the end of August to 

early October in the northern hemisphere (equivalent to the end of February to early April 

in Australia). 

 

Nut clusters may fail to develop before fertilisation and abscise in late spring or early 

summer.  This loss is considered to be due to competition between flowers and is related 

to apical dominance in 1 year-old shoots.  In some situations, applications of foliar boron 

and other nutrients may reduce cluster drop, (Barone, 1973) and (Stebbins, 1977), 

although Silva et al., (2003) did not obtain such responses. 

 

Blank nuts, those in which the kernel has not developed, can result in a significant loss of 

yield in some seasons.  Many factors can adversely affect the normal development of 

kernels.  These include environmental stress at the time of fertilisation, such as low 

temperatures (Ribaldi, 1968) and (Latorse, 1981), inadequate nutrition and moisture stress 

(Bignami and Natali, 1997).  Blank nuts occur more frequently in some cultivars, such as 

‘Barcelona’, ‘Negret’ and ‘Tonda di Giffoni’, with considerable variation between seasons 

(Thompson et al., 1996).  The application of boron and other nutrients to the foliage of 

trees during nut and kernel development has given variable results.  For example, in 

Slovenia, Solar and Stampar (2001) obtained yield increases and a reduction in the 
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proportion of blank nuts from foliar applications of boron and zinc to the cultivar ‘Tonda 

di Giffoni’, whereas in Portugal, Borges et al. (2001) did not obtain any increase in yield 

or a reduction in the proportion of blanks with foliar treatments of boron on the cultivars 

‘Fertile de Coutard’ and ‘Segorbe’.  However, they obtained differences between seasons 

and cultivars in the proportion of blanks.  In Oregon, Olsen and Cacka (2009) evaluated a 

range of foliar treatments, which included boron, other elements and cytokinins.  None of 

their treatments had any effect on nut yield or kernel quality.  Although, in a separate 

experiment, Cacka and Smith (2009), obtained yield increases from foliar applications of 

proprietary blends of calcium, boron and other micronutrients, with nutrient-enhancing 

amino acids.  The treatments were applied during shell development in mid-May and 

during kernel development in mid-June. 

 

Leaf shedding  

Leaf shedding in the autumn is generally a response to decreasing day length and 

temperature.  The movement of nutrients and carbohydrates from the leaves into twigs and 

branches occurs prior to leaf senescence.  This is followed by the development of an 

abscission layer of cells at the base of the leaf petiole and subsequent leaf fall. 
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2.2.5 Floral phenology  

 

An understanding of floral phenology is very important for the selection of suitable 

polliniser cultivars in a commercial orchard.  As discussed in the previous section, 

hazelnuts are wind-pollinated.  At anthesis, the pollen from the catkins drifts through the 

orchard on dry days in winter and is caught by the stigmas of open female flowers.  For 

pollination to be successful, the male pollen donor cultivar must be genetically compatible 

with the female receptor cultivar, as previously discussed.   

 

The keys to successful pollination are: 

 Good supplies of viable pollen 

 Synchronous flowering of genetically compatible cultivars 

 

Effective pollination is an essential component of high productivity.  When planting a 

hazelnut orchard, it is important to know which cultivars are genetically compatible with 

the selected nut-bearing, main-crop cultivars; when these trees will have exerted stigmas; 

and, when the pollinating cultivars will shed their pollen.  The incompatibility alleles of 

most commercial cultivars have been well-documented (Mehlenbacher, 1997).  However, 

the periods of pollen shed and female anthesis vary markedly between locations and 

seasons, being influenced by climatic conditions, particularly temperature (Bergoughoux 

et al. 1978).  Flowering occurs in winter after chilling to break dormancy (Mehlenbacher, 

1991). 

 

The literature on flowering commonly refers to cultivars as being either protandrous, that 

is pollen shed occurs before the stigmas of female flowers are exerted, or protogynous 

when the opposite occurs.  Homogamous refers to the situation when pollen shed and 

female anthesis commence at about the same time (Mehlenbacher, 1991).  However, it is 

arguably more appropriate to describe cultivars as behaving in either a protandrous, 

homogamous or protogynous manner.  The basis for this reasoning is that the timing of 

pollen shed relative to female anthesis for a given cultivar is not constant but varies with 

the climatic conditions under which the cultivar is grown.  For example in Slovenia, Solar 

and Stampar (1997) reported that ‘Butler’ and ‘Ennis’ were protandrous, whereas Turcu et 

al. (2001) found the degree of dichogamy varied between seasons and that ‘Butler’ and 

‘Ennis’ were protogynous in some seasons and homogamous in others.  In general, most 

European cultivars behave in a protandrous manner in maritime climates with relatively 
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mild winters, such as southern France (Germain, 1994), Italy (Manzo and Taponi, 1982) 

and Oregon (Mehlenbacher, 1991).  Bergoughoux et al., (1978) reported that in the 

Gironde region of France, the cultivar ‘TGDL’ normally commences pollen shed in the 

second week of December, but, if the autumn is very mild, pollen shed occurs a little after 

mid-November.  Stritze (1962) found that, in Germany, protandry occurred in winters that 

were relatively mild, with protogyny being more common in cold winters.  However, 

cultivars are more commonly protogynous or homogamous in locations with very cold 

winter climates such as Romania (Turcu et al., 2001). 

 

In Romania, Turcu et al. (2001) studied the floral phenology of 14 cultivars over a period 

of 13 years.  They confirmed that flowering period was influenced by cultivar and winter 

temperatures.  They considered that rest had been achieved in all cultivars following a 

period of 3-6 days when daytime temperatures had been below zero.  They obtained 

correlations between accumulated heat units, Growing Degree Days (GDD) above zero, 

following the completion of rest, and the commencement of pollen shed.  These ranged 

from 98.5 GDD for ‘Tonda Romana’ to 149 GDD for ‘Du Chilly’ (‘Longue D’Espagne’), 

with an average of 126.5 for all the cultivars.  For female flowers, the GDD units to stigma 

exertion ranged from 102 for ‘TGDL’ to 147 for ‘Romavel’, with an average of 105 GDD 

for all the cultivars.  In their environment, of very cold winters, ‘Ennis’ and ‘Butler’ were 

generally protogynous, as were the majority of cultivars.  ‘TGDL’ had a tendency to being 

protandrous.   

 

Piskornik et al. (2001) studied the degree of dichogamy in 46 genotypes in southern 

Poland.  After 2 mild winters, with mean temperatures below 0°C for 42 and 62 days, 

most genotypes showed protogyny.  In a severe but short winter, with mean temperatures 

below 0°C for 77 days, many genotypes showed homogamy, but after a long severe 

winter, with mean temperatures below 0°C for 99 days, some genotypes were protandrous, 

with fewer being protogynous.  They concluded that the length and severity of the winter 

influenced the type of dichogamy and that temperatures after the period of rest had a lesser 

effect.  In their situation, they considered that endodormancy was followed by a period of 

ecodormancy, in which temperatures were too low for active growth and the length of the 

ecodormant period varied between seasons.  It is unclear from their publication how 

Piskornik et al knew when the chill requirements to break endodormancy were achieved.  

In their studies, ‘TGDL’, ‘Ennis’ and ‘Hall’s Giant’ were protandrous in some years and 

protogynous in others.   
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Mehlenbacher (1991) undertook a study in Oregon to assess the chilling requirements of 

staminate and pistillate flowers as well as vegetative buds of a range of cultivars.  Shoots 

of hazelnut cultivars were cut at weekly intervals from 16 October until 26 February and 

placed in a warm greenhouse.  Chill hour requirements of flowers were calculated from 

cutting dates as the number of hours in the temperature range 0-7°C from 1 October until 

the cutting date when either 50% of catkins had shed pollen, or at least 4 female flowers 

had exerted stigmas.  Similarly, the chill requirements of vegetative buds were based on 

the cutting dates when more than 50% of leaf buds were swollen in the greenhouse.  The 

estimated chilling requirements of catkins ranged from 100–860 hours and female flowers 

from 290–1550 hours, according to cultivar.  There was a high correlation between the 

number of chilling hours for both catkins and female inflorescences and observations of 

the beginning of pollen shed and exerted stigmas in the field.  However, there was no 

correlation between the chilling requirements of catkins and those of female 

inflorescences.  The amount of chilling required to break the dormancy of the catkins was 

generally lower than that for female flowers.  Mehlenbacher’s correlations indicate that 

chill hour requirements were the main factors influencing the commencement of pollen 

shed and female anthesis. 

 

Similar studies by Tiyayon (2008) indicated that chilling occurred over a wider 

temperature range, 5-15°C.  Post-chilling heat requirements for catkin elongation were 

considered to be constant for cultivars, but were found to be less with increased chilling.  

The optimum temperature for catkin elongation was 15°C. 

 

Barbeau (1972), Kavardzhikov (1980), Mehlenbacher (1991) and Turcu et al. (2001) 

considered that post-chill warmth was required for flowering and this was generally 

considered to be greater for catkins than female inflorescences, as stated above.  Turcu et 

al. (2001) estimated an average of 126.5 GDD for catkins and 105 GDD for female 

inflorescences, for the 14 cultivars studied in Romania.  They used a base temperature of 

0°C in their calculations of GDD.  Tiyayon (2008) reported much higher post-chill heat 

requirements of approximately 53 000 GDH (equivalent to 2208 GDD) for catkins of 

‘TGDL’, Barcelona’ and ‘Hall’s Giant’.  The heat requirements were similar for all 3 

cultivars, but were reduced following additional chilling. 

 

The studies presented indicate that hazelnut flowers require chilling to break the period of 

endodormancy (“rest’) followed by warmth to stimulate development.  The chilling 
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requirements vary with cultivars, catkins and female inflorescences.  For example, 

Mehlenbacher (1991) estimated the chill requirements for the catkins of TGDL to be <100 

hours compared with 290–365 hours for ‘Ennis’ and ‘Hall’s Giant’.  Whereas he estimated 

the chill requirements of the female inflorescences for these three cultivars to be 760–860 

hours for ‘TGDL’, 1170–1255 hours for ‘Ennis’ and 600–680 hours for ‘Hall’s Giant’.   

 

It would appear that a combination of chill hour requirements and post-chill warmth might 

be factors influencing the degree of dichogamy of cultivars.  Kavardzhikov (1980) and 

later Mehlenbacher (1991) were of the opinion that catkins required a greater degree of 

post-chill warmth than the pistillate flowers.  Barbeau (1972) concluded from his studies 

in France that the daily sum of temperatures following chilling influenced the start of 

flowering. 

 

Where winter climates are very cold, post-chill warmth seems to become a more 

significant factor.  When winters are prolonged, such as in Poland, the accumulation of 

post-chill warmth in late winter would be protracted, delaying flowering.  However, the 

difference in the post-chill heat requirements of catkins and female inflorescences, 

presented by Turcu et al. (2001), seem minor compared with the much larger differences 

in chill requirements estimated by Mehlenbacher (1991).  For example, the average GDD 

requirements of catkins compared with female inflorescences seemed to vary by only 1 

GDD for both ‘TGDL’ and ‘Hall’s Giant’ and only 8 GDDs for ‘Ennis’.   

 

For any given cultivar, the duration of pollen shed and female anthesis varies with winter 

temperatures, being shorter in locations with low temperatures (Kavardzhikov, 1982).  

Piskornik et al. (2001) noted that the duration of flowering was influenced by temperature, 

ranging from about 22 days, when the mean temperature was 5-10°C, to 43 days when it 

did not exceed 3°C.  Catkin development was found by Germain et al. (1979) to cease 

once temperatures fell to about 0°C.   

 

There do not appear to be any studies reported on the possible effects of day-length on 

floral phenology of hazelnuts.  As seasonal variations in floral phenology vary from the 

commencement of flowering, before and after the shortest day, it seems unlikely that day-

length is a significant factor. 
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It is concluded that the factors influencing the floral phenology of hazelnuts are not well 

understood.  There is a need to gain a better understanding of the processes involved and 

the chill and post-chill heat requirements of hazelnut flowers under a range of climatic 

conditions.  Studies on other deciduous fruit trees could play a part in improving our 

understanding of flowering in hazelnuts. 

 

Bud and flower development in other deciduous fruit and nut tree species 

Numerous studies have been undertaken on deciduous temperate fruit trees to determine 

the effects of climate, particularly temperature, on the date of bud burst and flowering.  

There is widespread agreement that a period of chilling is required to break the dormancy 

of buds in deciduous fruit trees, based on the studies of Richardson et al. (1974) on peach, 

Coullivon and Erez (1985) on apple, cherry, peach and pear, Felker and Robitaille (1985) 

on sour cherry, Smith et al. (1992) on pecan, Barone and Zappila (1993) on walnuts and 

Rattigan and Hill (1986) and Egea et al. (2003) on almonds.  These results suggest a 

common mechanism in each case, although the extent of the stimulus required varies.  

Chill hours were generally considered to be accumulated when temperatures were in the 

range 0-7°C.  However, Richardson et al. (1974), in their work on peach, considered 

temperatures in the range 2.5-9.1°C were the most effective for breaking the dormancy of 

peach buds, with no chilling below 1.5°C and none above 12.5°C.  They developed the 

concept of chill units based on the effectiveness of temperature on chilling, with 

temperatures in the range 2.5-9°C contributing 1 chill unit (CU) per hour.  Tiyayon (2008) 

considered chill units to be more effective in estimating date of catkin elongation than 

chill hours. 

 

It is generally considered that, following the completion of rest, i.e. at the end of 

dormancy, there is the need for a period of warmth to stimulate both flower and bud 

development.  Richardson et al. (1975) used growing degree hours (GDH) as a measure of 

accumulated warmth for peaches with a base temperature of 4.5°C and maximum of 25°C.  

This model was used to predict bud burst or flowering for specific cultivars of peach, 

based on their needs for a given number of hours of chill to break dormancy and a given 

number of accumulated heat units for bud and flower development.  However, many 

studies have shown the dynamics of flowering are more complex than this.  For example, 

Felker and Robitaille (1985) found that, with sweet cherry, temperatures over 15°C could 

nullify chilling.  Whereas under conditions where there was prolonged exposure to 

chilling, the post-dormancy accumulated heat requirements were reduced in apple, cherry, 
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peach and pear (Couvillon and Erez, 1985).  Herter et al. (2000) reported similar results 

with peach. 

 

Studies by Garcia et al. (1999) on apricots in 2 differing climatic environments, 1 in Spain 

and the other in Italy, found that more heat could partially compensate for a low amount of 

chilling.  They found considerable differences between seasons that were not predicted by 

models using a specific number of chill units and growing degree hours for the cultivars.  

They considered that the presence of ecodormancy, that is conditions unsuitable for 

growth, may have had an effect on flower development. 

 

Rattigan and Hill (1986) attempted to determine the specific chill requirement to break 

dormancy and the specific heat units required for flower development in a range of 

almond cultivars grown in Australia.  They used a chill unit model, based on the work of 

Anderson and Richardson (1982), to determine the chill requirements and growing-degree-

hours to determine the post-chill warmth to 50% flowering.  The hourly temperatures for 

their analyses were calculated from daily maximum and minimum temperatures.  The 

cultivar requirements for chill ranged from 220-320 CUs and the post-chill heat units 

ranged from 5300-7200 GDHs.  They considered chilling hour requirements to be the 

main factors influencing the date of flowering.  Their predictions of flowering date were 

variable between seasons and to a lesser extent between cultivars.  Their studies on 

flowering were only in 1 locality and were within a 5-6 day range, with an accuracy of 

about 80%. 

 

It is concluded from the research reviewed in this section that, like most deciduous fruit 

and nut crops, hazelnut flowers require chill to break their dormancy.  The study 

conducted by Mehlenbacher (1991) on the chill requirements of cultivars indicated that 

these vary between cultivars.  However, studies on a range of deciduous fruit and nut 

crops indicate that the chilling requirements are not a constant for any given cultivar and 

can vary between seasons, depending on climatic conditions, particularly variations in 

temperature between seasons.  Some post-chill warmth appears to be required for flowers 

to develop and the thermal sums for this process may vary between cultivars and seasons.  

As hazelnuts are monoecious, that is the male and female flowers are separate on the same 

plant, they might not have the same temperature requirements for their development.  The 

dates these separate inflorescences commence flowering may vary between male and 

female flowers, cultivars and seasons.  The development of a universal model to predict 
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the complex biological process of flowering may be difficult.  It would require the model 

to be tested over a wide range of cultivars and environmental conditions. 

 

This thesis will investigate a range of questions that relate to floral phenology in 

hazelnuts: 

 

 What will be the phenological response of the cultivars being evaluated? 

 How might this vary between seasons and sites?  

 In what way might climatic conditions influence the timing of pollen shed and 

female flowering?  

 Which genetically compatible pollinating cultivars shed pollen when the stigmas of 

selected main-crop cultivars are exerted? 

 Can this information be used to develop pollination plans for commercial orchards 

in Australia? 

 

 



 69 

2.2.6 Nut yields and yield improvement 

 

Physiology of nut yield 

As discussed in the section on hazelnut reproduction, factors influencing nut yields include 

the number of female flowers produced and the proportion that are pollinised and 

subsequently fertilised (Figure 2.3).  As discussed previously, the amount of new growth 

in the previous season and the level of light in the canopy are factors influencing the 

number of female inflorescences. 

 

Fertilisation occurs around the end of May or early June in the northern hemisphere.  This 

is a critical period of growth and development and it is highly likely there is competition 

between plant parts for photosynthates.  At that time of year, shoot growth and leaf growth 

is still occurring, nuts are growing and catkins are being initiated (Germain, 1994).  

Female flowers for the next season are initiated a little later, at the end of June and early 

July, a time when the kernels are beginning to develop rapidly, following the end of shell 

growth.  Water stress in the period just before fertilisation and for the next 50 days can 

result in a marked loss in yield and kernel quality in that season (Mingeau et al., 1994).  It 

can also adversely affect canopy size and leaf area index (Bignami and Natali, 1997).   

 

Nutrition of the tree during this period also appears important with some authors recording 

responses in this period to foliar-applied nutrients, such as boron and zinc (Solar and 

Stampar, 2001), and to calcium and boron plus a range of micronutrients (Cacka and 

Smith, 2009). 

 

The development of both nuts and kernels follows a sigmoid growth pattern (Ebrahem et 

al., 1994).  The oil content, proportion of fatty acid and vitamin E content, represented 

mainly as α-tocopherol, also increase in a sigmoid pattern.  However, the water content 

declines over the whole period of kernel development. 

 

Nuts, kernel percentage and kernel quality 

Nut weight, shell thickness and kernel percentage are highly heritable characteristics 

(Mehlenbacher, 1994).  ‘Ennis’ is an example of a cultivar that produces large nuts with a 

mean weight of about 4.5 g; in contrast ‘Casina’ is a cultivar that produces small nuts with 

a mean nut weight of about 1.8 g (McCluskey et al., 1997).  However, cultivar nut weight 

varies with seasonal conditions, particularly with rainfall during the period of shell growth 
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in late spring through to early summer (Mingeau et al., 1994).  Pacerisa et al., (1993) 

reported that nut weight was also affected by “crop load”. 

 

The ratio of kernel weight to nut weight, or kernel percentage is an important cultivar 

attribute.  A high kernel percentage is obviously a desirable characteristic when cracking 

nuts for the kernel market.  The cultivar ‘TGDL’, which is often prized for its high-quality 

kernels, has a relatively thin shell and generally a high kernel percentage.  However, this 

varies between sites and seasons; for example an average of 52% kernel was obtained in 

field studies by McCluskey et al., (1997) in Oregon and by Turcu and Botu (1997) in 

Romania, whereas a lower average figure (47%) was obtained by Miletic et al. (1997) in 

eastern Serbia, where dry conditions were experienced during the “second part” of the 

growing season. 

 

The proportion of poorly-filled and shrivelled kernels is of low heritability (Mehlenbacher, 

1994), but is strongly influenced by environmental conditions, particularly during kernel-

fill in mid to late summer (Mingeau, 1994) and (Bignami and Natali, 1997).  Romero et al. 

(1997) undertook a very comprehensive study of the quality of kernels from the cultivar 

‘Negret’ in Spain over 7 seasons and from 14 zones.  The average kernel percentage was 

46% but it varied across seasons and sites.  Kernel samples with the best physical 

characteristics were those from highly productive (2.5 t/ha), well-managed orchards.  In a 

separate study, an evaluation of clones of ‘Negret’ and ‘Gironell’ was undertaken; clones 

with superior quality kernels were identified (Rovira et al., 1997). 

 

Some cultivars, such as ‘Barcelona’, produce a relatively high proportion of twins; that is 

there are 2 kernels in the shell.  This is a relatively highly heritable trait (Mehlenbacher, 

1994). 

 

When kernels are blanched, that is heated in an oven at 140-150°C for 15 minutes, the 

pellicle of some cultivars becomes loose and can be readily removed.  Ease of pellicle 

removal after blanching is a moderately heritable trait (Mehlenbacher, 1994) but is also 

influenced by seasonal conditions.  The cultivar ‘Negret’ blanches very well whereas 

‘Casina’, ‘Ennis’ and ‘Tonda Romana’ do not blanch well (McCluskey et al., 1997). 

 

Oil and crude protein content vary with cultivars.  In a study of cultivars in eastern Serbia, 

Miletic et al. (1997) found crude protein levels varied from 13.8% for ‘TGDL’ to 16.1% 



 71 

for ‘White Lambert’, with oil content ranging from 58% for ‘White Lambert’ to 66% for 

‘TGDL’.  In a Spanish study by Romero et al. (1997) on ‘Negret’ kernels, an average oil 

content of 63%, with a small variation between sites and seasons, was reported.  This 

compared with an average oil content of 62% for ‘Pautet’ and 59% for ‘Tonda di Giffoni’.   

 

In a study on 17 cultivars of hazelnuts, Ebrahem et al. (1994) found oil content ranged 

from a low of 58% for ‘Hall’s Giant’ to a high of 66% for the Turkish cultivar ‘Tombul’.  

Richardson, (1997) also reported a similar range from a low of 57% for ‘Hall’s Giant’ to 

65% for ‘Tombul’.   

 

Piskornik (1994) found that lower temperatures in Poland during kernel fill, compared 

with Mediterranean environments such as Italy, resulted in a lower content of oil in the 

kernels, grown under cooler conditions, but a slightly higher content of the longer-chained 

unsaturated fatty acid, linoleic acid (C18:2).  The main fatty acid found in hazelnuts is the 

desirable unsaturated fatty acid oleic acid (C18:1), which is found in the range 77-84% of 

all the fatty acids, with levels varying between cultivars (Botta et al., 1997).  Linoleic acid, 

an essential fatty acid, is the next most commonly-occurring fatty acid with levels varying 

from 7-13% depending on cultivar. 

 

 

2.2.7 Summary of growth and development 

 

The studies presented in this review on the growth and development of hazelnut plants 

throughout the year are summarised in Table 2.5.  As discussed, the critical period of 

growth and development is considered to be in the months of November to January.  This 

is when there are high demands for photosynthates for stem and leaf growth to produce the 

current season’s growth and to produce reproductive structures for the next season’s 

production, whilst fertilisation and fruit development are also occurring.  Environmental 

factors that adversely affect photosynthesis in this period, such as moisture stress and 

extremes of temperature (low and high), have been shown to result in reduced levels of 

productivity. 
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Table 2.5 Generalised pattern of growth and development of hazelnut trees in Australia 

based on studies in the northern hemisphere.  Variations will exist with cultivars and 

seasonal conditions. 

 

Months 

 

Phases of growth and development 
 

June – August 

Catkins extend and shed pollen, stigmas exerted and flowers 

pollinated 

 

September 

Transfer of stored nutrients from roots and stems to buds 

Bud break and leaf growth 

 

October 

Stem and leaf growth continuing to late December or into 

January 

 

November 
 
Critical period 

of growth and 

development 

Fertilisation,  

late November–mid December 

Next season 

Initiation of catkins 

 

December 

 

Nut growth 

Initiation of female 

flowers 

 

January 

 

Kernel growth 

 

 

February 

 

Nut maturity 

 

 

March 

 

Nut fall 

 

 

April 

Transfer of nutrients from leaves to  

stem and roots 

 

May 

 

Leaf fall 

 

 

Yield potential in South-eastern Australia 

Considering the climate and soil requirements of hazelnuts, along with the physiology of 

their growth and development, it is postulated that hazelnuts grown in the Ovens Valley of 

Victoria, for example, with its deep alluvial soils and similar climate to Corvallis, might 

produce similar commercial nut yields of 2-2.5 t/ha as those obtained in Oregon 

(Mehlenbacher, 2005).  The effects of duplex soils, which are common throughout South-

eastern Australia, on the growth and production of hazelnuts are unknown. 
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2.2.8 Conclusion 

 

This section of the Literature Review shows how the growth, reproduction and 

development of hazelnuts are influenced by environmental conditions.  Temperature in 

late autumn and winter appears to be a key factor influencing floral phenology.  The 

literature indicates that chilling and post-chill heat are required to break the dormancy of 

male and female flowers and this varies between catkins and female inflorescences, as 

well as between cultivars.  There does not seem to be a published formula to predict the 

time of flowering for a given cultivar or for a set of environmental conditions based on 

chill and post-chill warmth requirements.  Yet it is important to plant cultivars in which 

the timing of pollen shed is synchronous with female anthesis between genetically 

compatible cultivars in order to achieve successful pollination, which is the starting point 

for crop yield.   

 

Hazelnuts do not seem to be able to take up moisture from the soil sufficiently quickly to 

cope with conditions of high evaporation, such as might arise in periods of low humidity 

and high temperature, coupled with strong wind.  Moisture deficits cause the closure of 

stomata, reducing photosynthesis and the supply of assimilates to developing parts of the 

plant.  The literature clearly shows how moisture stress can cause reductions in growth, 

nut development and kernel-fill, depending on the period and duration of the moisture 

deficit. 

 

Erratic rainfall, coupled with periods of low humidity and high temperatures, is likely to 

be a key factor influencing the growth and development of hazelnuts in Australia.  The 

extent of such potentially harmful effects needs to be understood.  Supplementary 

irrigation is likely to be needed at some stage of crop development in most environments.   
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Part 3 Cultivars, their attributes and relative merits 
 

 

There are nearly 400 distinct, named hazelnut cultivars worldwide, although 

Mehlenbacher (1991) stated that fewer than 20 of these are considered worthy of 

cultivation.  So what makes a good cultivar and how can cultivars be compared? 

When evaluating cultivars of any crop there are usually two key criteria, viz: 

 Characteristics required by the market; and 

 Characteristics required by the grower, such as high yield. 

 

 

2.3.1 Market requirements 

 

There are 2 main market outlets for hazelnuts, the in-shell market and the kernel market.  

The kernel market is by far the largest, with 90-95% of the world crop being cracked and 

sold this way (Mehlenbacher, 1991).  The kernels are sold to confectioners, bakers and 

other processors, in either the raw, blanched or roasted form.  Sometimes kernels are 

diced, sliced or ground into meal (Lobb, 1995).  They can also be used to make paste, oil 

and flour.  Kernels used in this market sector are often referred to as being for “industrial 

use” (Tombesi et al., 1994).  Kernels are also used by restaurateurs in a wide variety of 

dishes.  During the last decade there has been an increasing interest in the use of nuts for 

snack foods, including hazelnuts (Australian Nut Industry Council, 2009). 

 

There has been an increasing awareness of the value of nuts in a healthy diet.  In Australia, 

the Australian Nut Industry Council (ANIC) has invested in a “Nuts for Life” campaign, 

which has researched the health benefits of nuts and promoted their value to the medical 

profession and the general community (www.nutsforlife.com.au).  There are numerous 

publications on the nutritional value of hazelnuts (Alphan et al., 1997; Richardson, 1997; 

Stone et al., 2000) and their role in reducing the risk of coronary heart disease and some 

types of cancer.  One recent publication (Tey et al., 2011) provides guidelines for hazelnut 

consumption.  The health-promoting substances in hazelnuts include the anti-oxidant 

vitamin E (α-tocopherol), vitamin B-6 and mono-unsaturated fatty acids, particularly oleic 

acid.  There are some differences between cultivars in their content of these substances.  

Ebrahem et al. (1994) measured the oil content of 17 cultivars and found this ranged from 

57.9% in ‘Hall’s Giant’ to 65.7% in ‘Tombul’.  He also measured the α-tocopherol levels 

which ranged from 8 μg/g of oil in ‘Ennis’ to 36 μg/g in ‘Tombul’.  Large differences 

http://www.nutsforlife.com.au/
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between cultivars in their content of phenolic compounds were also reported by Solar et 

al., (2009). 

 

Australia imports approximately 2300 t/annum of hazelnut kernels, as discussed in 

Chapter 1, Section 1.3.  Current imports of nut in-shell are not readily available, but the 

quantities in the period 1994 -2005 were less than 100 tonnes per annum and appeared to 

be declining.  A survey of users of hazelnuts in Australia in 2002 showed that the major 

use was as roasted kernels in confectionery products, in hazelnut spreads, as diced 

hazelnuts, as paste and in snack foods (Baldwin and Simpson, 2003).  The supply chain of 

hazelnuts from overseas producers and local growers is shown in Figure 2.7.  As 

Australian production is low, the majority of sales are into local markets and to caterers 

and small confectionery companies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.7 Australian supply chain from overseas and local production to manufacturers 

and retail outlets  
 

Source: Baldwin and Simpson, 2003 

 

The ideal cultivar for industrial use in the confectionery market has small round nuts with 

a thin shell and a crisp textured kernel from which the pellicle can be easily removed by 

dry heat (Mehlenbacher, 1991).  Other attributes are a good aroma and the “right amount 

of fats” (Tombesi et al., 1994).  Kernel size seems to be less important for the snack and 
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health food markets but appearance is important.  There is a preference for kernels with a 

smooth, thin pellicle (Baldwin and Simpson, 2003).   

 

Although the market for kernels for use in the snack and health food market segment is 

quite small, it is growing as the health benefits of nuts are increasingly recognised.  The 

type of kernel preferred for this market segment is not very different from that of the 

confectionery market, although as the kernels are eaten raw, blanching is less important; 

however, a thin smooth pellicle is important.  Slightly larger kernels are acceptable up to 

about 17 mm (Baldwin and Simpson, 2003).  For the in-shell market segment, the relative 

size and appearance of the nuts are the most important characteristics (Table 2.6), with a 

preference for large, shiny nuts. 

 

Table 2.6 Key characteristics of hazelnuts and kernels for the main segments of the 

hazelnut market. 
Market segment Key characteristics of nuts and kernels 

Confectionery, roasted, used in chocolates 

and nougat, also paste mixed with chocolate 

(e.g. ‘Nutella’ ®)  

 

Small, (≤15 mm diameter) round, plump, bright white 

kernels (readily blanched)  

Baked goods and restaurant trade, also 

unprocessed kernels for snack and health 

foods (e.g. in muesli) 

‘Good’ flavour, smooth, round, thin pellicle, medium 

brown, crisp texture, small medium size (≤17 mm) 

In-shell Large, shiny, medium brown nuts 

 

 

2.3.2 Cultivar evaluation 

 

In Europe, hazelnuts are a relatively traditional crop with cultivars having been selected 

from the wild by growers for their own districts.  These include ‘Tonda Gentile delle 

Langhe’ (‘TGDL’) from the Langhe district of north-west Italy, ‘Tonda Gentile Romana’ 

in the Latium region of Italy, ‘Negret’ in Spain and ‘Tombul’ and ‘Palaz’ in northern 

Turkey (Thompson et al., 1996).  In some newer areas of production in Europe, such as 

the Agen region of France, the cultivars grown are based on the results of field-testing of a 

range of cultivars (Germain and Sarraquigne, 2004).  However, a new cultivar ‘Fercoril-

Corabel’ that is suited to the environment of the Agen region was selected from ‘Fertile de 

Coutard’ for the in-shell market (Germain and Sarraquigne, 2004). 

 

The cultivar ‘Barcelona’, probably named from a Spanish import, was introduced into the 

USA by the horticulturalist Gillette in the 1880s (Hummer, 2001).  It was found to grow 

and produce well in the Willamette Valley.  However, by the 1980s the European hazelnut 
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cultivars grown there had succumbed to local strains of the fungal disease, eastern filbert 

blight (Thompson et al., 1996).  As this disease is not readily controlled by fungicides, it 

was considered that the most effective method of control was to breed resistant cultivars, 

which has led to a very active hazelnut breeding program (Mehlenbacher, 1994).  This has 

been undertaken by the Oregon State University (OSU) and is probably the largest and 

most significant hazelnut breeding program in the world.  Two cultivars from this program 

have been introduced into Australia, ‘Willamette’ and ‘Lewis’. 

 

There is a huge range of hazelnut cultivars, mostly selected for specific local 

environments.  This raises the question; do most cultivars have specific environmental 

requirements?  If so, have they been selected for specific soil types or specific climates or 

is it a combination of the two?  Also, what influence has human culture and regional or 

commercial preferences had on the selection of cultivars?  For example, the cultivar 

‘TGDL’ is considered to have characteristics of good nutty flavour, texture and size that 

makes it highly sought-after by the Italian confectionery industry (Tombesi, 2005).  

Similarly, in Spain, the cultivar ‘Negret’ is highly prized by the local confectionery 

industry for the quality of its kernels (Tous, 2005).  In Turkey, cultivars have been 

selected for their long, clasping, restricted husks and several small nuts per cluster 

(Mehlenbacher, 1991).  The trees are relatively small and the nuts do not fall free from the 

husks.  The large nut clusters are picked by hand, when the nuts are mature. 

 

In recent decades, there has been an interest in evaluating cultivars with useful commercial 

traits from “foreign” countries for new areas of production, such as in Chile (Grau and 

Bastias, 2005).  Foreign cultivars are also evaluated as an alternative to traditionally-

grown cultivars, such as by Miletic et al. (1997) in Serbia, Miljkovic and Prgomet (1994) 

in Croatia, Solar and Stampar (1997) in Slovenia and Wertheim (1994) in Holland.  There 

has also been an interest in breeding higher-yielding cultivars and those with disease 

resistance (Mehlenbacher, 1994) or cultivars with greater cold tolerance (Xie et al. 2005).  

Research has also been undertaken to try to select better clones of existing cultivars such 

as ‘Tonda Gentile Romana’ in Italy (Monastra et al., 1997) and ‘Negret’ and ‘Gironell’ in 

Spain (Rovira et al., 1997). 

 

Most of the studies on cultivar evaluation have been in a single location, with very few 

studies being done across locations to test for any interactions between cultivars and 

environmental conditions.  The main exception to this is the work of Grau et al. (2001) 
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who evaluated a range of cultivars in 3 different locations in Chile with some differences 

in the yields of cultivars being reported for the different sites.  An example of an 

interaction between sites and cultivars was with ‘TGDL’.  Grau et al. reported high vigour 

of growth of ‘TGDL’ compared with ‘Barcelona’ at Los Robles in Chile on a “low stress” 

site, whereas, in more “stressful” situations, ‘TGDL’ displayed low vigour. 

 

In many countries that produce hazelnuts, there have been programs of cultivar evaluation 

to try to find superior types for their industries, with an emphasis on small kernels suitable 

for the confectionery market.  Such programs of cultivar evaluation have led to industry 

expansion and development through the planting of cultivars that are more productive and 

of superior quality, such as ‘Pautet’ in France (Germain and Sarraquigne, 2004).  Some 

cultivars have been bred for better adaptation to the environment as well as being of good 

quality, such as the breeding of the cultivar ‘Arutela’ in Romania (Botu et al., 2009).  In 

many cases, the limitations of existing cultivars have become apparent.  There has been a 

need to breed cultivars with resistance to serious diseases, such as eastern filbert blight 

(Anisogramma anomola Peck) in Oregon, as well as to increase yields and kernel quality, 

as has been achieved with recent releases from the OSU breeding program (McCluskey et 

al., 2009). 

 

Some studies have included sensory evaluation, using panels to describe characteristics 

such as taste, texture and aroma, Valentini et al. (2001), Tombesi et al. (1994) and Botu et 

al. (2009).  Fatty acid content has been considered in some studies.  Tombesi et al. (1994) 

reported they sought the “right amount of fats”, but did not elaborate on what this 

constituted.   

 

Nearly all cultivars are assessed on their own roots, but it has been found that rootstocks 

can affect yield.  Tous et al. (2009) reported the Spanish cultivar ‘Negret’ grew more 

vigorously and gave higher yields when grown on the non-suckering rootstocks of 

‘Dundee’ and ‘MB69’.  However, kernel quality was superior when ‘Negret’ was grown 

on its own roots. 

 

Growth, nut yields and some aspects of nut and kernel characteristics appear to be strongly 

influenced by the genetic traits of cultivars and the environment in which they are grown.  

At Vâlcea in the Oltenia region of Romania, which is on the southern foot slopes of the 

Carpathian Mountains, north-west from Budapest, the winters are very cold with 
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temperatures going down to -20°C (Botu and Turcu, 2001).  Turcu et al. (2001) reported 

that in this region of Romania, nut yield was directly influenced by the time of female 

anthesis.  The staminate flowers of cultivars that were late commencing anthesis, when 

temperatures did not fall below -5°C, were not damaged by low temperatures and these 

cultivars produced higher yields.  In Poland, Piskornik (1994) also reported reductions in 

yields caused by late frosts at flowering.   

 

The cultivars ‘Merveille de Bollwiller’, ‘Du Chilly’ (syn ‘Kentish Cob’) and ‘TGDL’, 

which are late into female anthesis, all showed good adaptability to the environmental 

conditions of Vâlcea, in Romania (Parnia and Botu, 1994).  It seems possible that in this 

environment, late female anthesis has an advantage by avoiding late frosts or maybe 

occurring at a time when there was abundant pollen being shed.  The mean annual rainfall 

in the Vâlcea region is 715 mm with about 300 mm falling in the months of May, June and 

July, the period of greatest water usage (Turcu and Botu, 1997).  The mean yield of 

‘TGDL’ over a 9-year period, 5 years after planting, was 3.7 kg/tree, compared with 3.1 

kg/tree for ‘Merveille de Bollwiller’.  Not only did ‘TGDL’ yield well, 12 kg/tree in 1989, 

but its variability in yield over the 9 years was relatively low at 29% compared with 51% 

for ‘Merveille de Bollwiller’.  Other high-yielding cultivars in this experiment were 

‘Butler’, ‘Ennis’ and the local selection ‘Vâlcea 22’.  ‘Langi de Spania’ (syn. ‘Longue 

d’Espagne’) was slightly lower-yielding at a mean of 2.7 kg/tree.  ‘TGDL’ produced many 

suckers per tree whereas ‘Merveille de Bollwiller’, ‘Ennis’ and ‘Butler’ were all lower 

suckering. 

 

Conversely, in places where the winters are mild, such as the Tarragona region of Spain, 

which is near the Mediterranean Sea, Rovira and Tous (2001) reported that cultivars with 

late stigma exertion did not produce well due to a lack of pollen at that time.   

 

The cultivar ‘Barcelona’ (syn ‘Fertile de Coutard’) appears to be a vigorous, strongly-

growing, cultivar over a wide range of conditions, including Sicily, Baratta et al. (1994); 

Croatia, Miljković and Prgomet (1994); Oregon, McCluskey et al. (1997); Portugal, 

Santos and Silva, (2001); and Chile, Grau and Bastias, (2005) with generally high nut 

yields.  The main disadvantages of this cultivar are its relatively low yield efficiency, thick 

shells and low kernel percentage, McCluskey et al. (1997). 
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Yield efficiency in tree crops is commonly related to the relative efficiency of assimilates 

being used for fruit or nut production compared with those for overall tree growth.  

Calculations of yield efficiency for cultivar comparisons are determined from cumulative 

nut or kernel yields compared with the trunk cross-sectional area (TCSA) of the trees, as 

measured after harvest in the last year of yield assessment after a period of 5 or 10 years 

(Westwood, 1993).  Although other measures of yield efficiency, as discussed in Section 

2.2.3, can be used, that which is based on cumulative nut yield/growth (TCSA) is the most 

common in cultivar evaluation.  This is probably because it is easy to undertake. 

 

On a per tree basis yield efficiency (YE) is: 

Cumulative nut yield per tree (kg) 

TCSA in last year of production (cm
2)

 

 

The Italian cultivar ‘Tonda di Giffoni’ is also vigorous and shows wide adaptation with 

good quality kernels.  Clonal selections have been made to improve its productivity and 

kernel quality, Petriccione et al., (2010).  ‘Tonda di Giffoni’ grew well in Oregon, 

McCluskey et al. (1997), producing higher yields than ‘Tonda Romana’.  However, 

‘Tonda Romana’ was reported by Baratta et al. (1994) to have wide adaptation in a study 

at the Nebrodi area near Messina in Italy.  It also grew and yielded well in the Oltenia area 

of Romania, Turcu and Botu (1997) and in the Chillan, Grau et al. (2001) and Camarico 

regions of Chile, Grau and Bastias (2005).  Miljković and Prgomet (1994) considered that 

‘Tonda Romana’ and ‘Nocchione’ demonstrated “good drought resistance” when grown 

on a terra rossa soil in the Istria region of Croatia, where the average annual rainfall is 

800-900mm. 

 

The cultivar ‘TGDL’ seems to be variable in its growth and production.  It grew well and 

was productive under the arid conditions of Serbia, Miletic et al. (1997) and performed 

well at Valcea in Romania, Turcu and Botu (1997).  Moderately good growth and nut 

yields were obtained in Croatia, Miljković and Prgomet (1994).  In Chile, growth and 

yield of ‘TGDL’ varied considerably with site, making poor growth with low yields in the 

Camarico region, Grau and Bastias (2005).  In Oregon, McCluskey et al. (1997) reported 

‘TGDL’ was of low vigour with low nut yields. 

 

‘Hall’s Giant’, (syn ‘Merveille de Bollwiller’) is a cultivar that is late commencing pollen 

shed and female anthesis.  It is generally reported to be a vigorous-growing cultivar but 
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with variable yields.  High yields were reported by Turcu and Botu (1997) in Romania.  In 

Oregon, McCluskey et al. (1997) reported good growth and moderately good yields of 

medium-sized nuts that had thick shells and a low kernel percentage.  Bergoughoux et al. 

(1978), consider it to be a cultivar that was well adapted to regions with a continental 

climate that was cold in winter and spring.  This cultivar was used in a breeding program 

in Romania to produce a new cultivar ‘Arutella’ which was derived from a cross between 

‘Merveille de Bollwiller’ and ‘TGDL’ (Botu et al., 2009).  ‘TGDL’ is also a cultivar that 

appears to be tolerant of cold conditions (Parnia and Botu, 1994).  The cultivar ‘Arutella’ 

combines the vigour of ‘Merveille de Bollwiller’ with the good kernel quality of ‘TGDL’. 

 

The cultivar ‘Negret’ also seems to vary greatly in growth and productivity, depending on 

the situation in which it is grown.  Good vigour and productivity were reported by 

Miljković and Prgomet (1994) on a terra rossa soil in Croatia, whereas poor growth and 

productivity were reported by both McCluskey et al. (1997) in Oregon and Grau and 

Bastias (2005) in Chile.  In Spain, where it is the main commercial cultivar, ‘Negret’ 

appears to be susceptible to iron deficiency on calcareous soils.  Grafting onto more 

vigorous rootstocks has enhanced yield, (Tous et al. 2009). 

 

Two cultivars that were developed as part of the OSU breeding program and which are 

available in Australia are ‘Willamette’ and ‘Lewis’.  ‘Willamette’ was released in 1990 for 

the blanched kernel market.  It has a thin shell and a high kernel yield.  Over a 6-year 

period, 1985-1990, ‘Willamette’ produced a higher kernel yield than ‘Barcelona’ and a 

higher cumulative yield efficiency (Mehlenbacher et al. 1991).  Similarly, ‘Lewis’ has 

relatively thin shells and a high kernel yield.  Over a 6-year period, 1985-1990, ‘Lewis’ 

also produced a higher kernel yield than ‘Barcelona’, with a higher cumulative yield 

efficiency.  Its productivity is similar to ‘Willamette’, but it has greater tolerance to 

eastern filbert blight, McCluskey et al. (2001).  Both cultivars have a more compact habit 

of growth than ‘Barcelona’ and are more precocious.  These are characteristics sought in 

modern cultivars by utilising products of photosynthesis more efficiently in the production 

of nuts and kernels rather than tree growth. 

 

2.3.3 Breeding programs 

 

Although most of the commercial cultivars grown in Europe are from local selections, 

several plant improvement programs have been undertaken in the last 50 years.  These 
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have included selections from wild types to produce cultivars suited to organic production 

(Schepers and Kwanten, 2005), the evaluation of introduced cultivars from other lands 

(Solar and Stampar, 1997), clonal selections (Monastra et al., 1997; Rovira et al., 1997) 

and breeding through open (Tombesi et al., 1994) and controlled (Botu et al., 2009) cross-

pollination.  Public breeding programs commenced in Italy in the 1960s, in France, Spain 

and Romania in the1970s and in Turkey in the 1990s (Mehlenbacher, 1994).  In Oregon, a 

breeding program was initiated in 1969, following a decade of cultivar evaluation. 

 

In these breeding programs, the main objectives were generally to produce higher yielding 

cultivars for both the in-shell and kernel markets but other attributes are commonly 

included, such as lower suckering, later bud-burst and tolerance or resistance to pests and 

diseases, depending on the local situation (Mehlenbacher, 1994).  In Romania, Miletic et 

al. (1997) tried to evaluate cultivars for their sensitivity to the arid conditions of eastern 

Serbia.  In Holland, Wertheim (1994) aimed for high yields and considered 2 t/ha as the 

minimum economic production requirement. 

 

Examples of the objectives in a cultivar breeding program are those of the Oregon State 

University (Mehlenbacher, 1994): 

 

a. Resistance to eastern filbert blight 

b. Cultivars for the kernel market 

 Resistance to big bud mite 

 Round nuts of medium size 

 High percentage kernel 

 Precocity and high nut yields 

 Easily blanched kernels 

 Few nut and kernel defects 

 Early maturity 

 Free-falling nuts 

 

Breeding programs need to be complemented by programs in which the seedlings 

produced are compared with existing standard cultivars.  Such cultivar and hybrid 

evaluations generally include assessments of nut and kernel yields, kernel percentage, and 

kernel quality.  Some include assessments of yield efficiency.  Progress is slow in 

breeding, due to the number of years taken for trees to bear nuts.  It is accentuated by the 

number of characters that are required for the selection of improved types. 
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In Oregon, kernel quality is assessed by cracking a sample of 100 nuts per treatment to 

obtain nut and kernel weight (g), the number of blank nuts as well as kernel defects, such 

as kernels that are shrivelled or poorly-filled, are mouldy, have black tips or are twins 

(McCluskey et al., 2001).  Thompson et al. (1978) devised a method for assessing 

blanching ability by heating whole kernels in an oven at 130-150°C for 15 minutes 

followed by rating the ease of pellicle removal on a 1-7 scale, with 1 indicating complete 

removal and 7 indicating no removal of pellicle. 

 

 

2.3.4 Cultivars available for evaluation in Australia 

 

Discussions with propagators, growers and those who had imported cultivars from 

overseas led to the identification of 30 varietal types that could be available for evaluation 

in this research.  These included imported cultivars and Australian selections with 

potential for the in-shell market, the kernel market and as pollinisers.  A general 

description of the origins of these varietal types and their key horticultural and botanical 

characteristics, as obtained from the literature and discussions with growers and 

propagators, is presented in Appendix A.   

 

The correct identification of hazelnut cultivars in research studies is essential in order to 

compare the results of new research with that of published research.  As the author of the 

thesis was not familiar with the cultivars available for evaluation, there was a need to 

develop a method of identification.  Thompson et al. (1978) developed a system to 

describe hazelnut cultivars based on a wide range of heritable plant characteristics.  This 

was subsequently expanded and adopted internationally in a booklet published by 

Bioversity International, FAO and CIHEAM (2008).  Some of the highly heritable 

characteristics from these systems were used to verify that the cultivars in this research 

were true to type.  The characteristics chosen and how the data was gathered are explained 

in Chapter 3 Methods, Section 3.5.1 ‘Cultivar characteristics’. 

 

 

2.3.5 Predicting cultivar performance in the Australian environment 

 

There are 2 key considerations that need to be taken into account when assessing the 

potential of cultivars for production in Australia.  These are the market segments they 
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might suit and their potential nut and kernel yields.  Based on the attributes and 

performance of the cultivars reported in this literature review and in Appendix A, the 

cultivars available for evaluation could be placed into 1 of the following 4 categories or 

market segments: 

 the confectionery (industrial) sector (≤15mm diameter kernels); 

 general kernel use in baking and health foods;  

 the in-shell market; or  

 as a polliniser. 

 

Some cultivars have attributes that make them suitable for more than 1 use; for example, 

as ‘Lewis’ produces a small kernel with a thin pellicle which is readily blanched 

(McCluskey et al., 2001), it could be acceptable to both the confectionery trade and the 

health food market segments.  The Australian selection ‘Wanliss Pride’ produces a fairly 

large, attractive, shiny nut that is commonly sold in-shell.  However, it is also used in the 

baking and confectionery trade in Australia.  In Oregon, ‘Butler’ is commonly used as a 

polliniser for ‘Ennis’ (Lagerstedt, 1980) as well as being suited to the in-shell market. 

 

Cultivars for the confectionery market 

Currently the production of small (≤15mm) diameter kernels for the Australian 

confectionery market is limited, with most of the larger confectionery companies 

importing all their kernel requirements.  However, there are several cultivars of overseas 

origin that would appear to have potential for this market and are worthy of evaluation 

(Table 2.7). 

 
Table 2.7 Potential cultivars for the blanched, roasted confectionery market 

Attributes: Small kernels (<15mm diameter) round, plump, and readily blanched 
 

Cultivar 

Female 

anthesis 

Vigour of 

growth 

Yield 

potential 

Kernel 

% 

Other comments 

‘Lewis’ Mid Medium High 44-47 High yield efficiency 

‘Montebello’ Early Medium   Relatively small tree 

‘Negret’ Mid Low-High Medium-

High 

55 Relatively small tree, 

important cultivar in Spain 

‘Riccia di 

Talanico’ 

 

Mid 

-  

Medium 

-  

Italian cultivar 

‘Tonda di 

Giffoni’ 

Early Medium-

High 

Medium-

High 

46-48 Important cultivar in Italy, 

relatively small nuts 

‘Tonda 

Romana’ 

Mid-Late Low-Medium Medium-

High 

44-48 Relatively small tree from 

Italy 

‘TGDL’ Mid Low-High Low-High 45-52 High quality kernels 

‘Whiteheart’ Late Low Medium 47-48 Grown in New Zealand 

‘Willamette’ Early High High 50 High yield efficiency 
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Cultivars for general kernel use, baking and health foods 

Cultivars with medium-sized kernels that can be used for the snack and health food 

markets, as well as in baking and general catering, are shown in Table 2.8.  ‘Barcelona’ is 

a very productive cultivar in Oregon (Thompson, 1981) with wide adaptation and may 

perform well in Australia.  ‘Atlas’ (Trimmer, 1965), ‘TBC’ and ‘Tonollo’ (Trimmer, 

1965) are cultivars that have yielded well in Australia.  High nut yields of ‘Casina’ have 

been obtained in Oregon (McCluskey et al., 1997) and of ‘Segorbe’ in France 

(Bergoughoux et al., 1978).  An evaluation of all these cultivars, along with the Australian 

selections ‘Eclipse’ and ‘Square Shield’, should provide some very valuable data on 

comparative yields and kernel quality. 

 

Table 2.8 Potential cultivars for the health food and general catering markets. 

Attributes: Kernels ≤17mm diameter, good flavour, smooth, round with thin pellicle. 
Cultivar Female 

anthesis 

Vigour of 

growth 

Yield 

potential 

Kernel 

% 

Other comments 

‘Atlas’ Early High High - Nuts similar in size to 

‘Barcelona’ 

‘Barcelona’ Mid High High 42-44 Wide adaptation 

‘Casina’ Late Medium -

High 

High 56 Small nuts and kernels,  

poor blanching 

‘Eclipse’ - - - - Medium size nuts 

‘Segorbe’ Late High Medium - 

High 

40-45 Small nuts, and kernels, 

 poor blanching 

‘Square 

Shield’ 

- - - - Medium size nuts 

‘TBC’ - Medium Moderate - Medium sized nuts 

‘Tonollo’ Mid High High - Similar to ‘Barcelona’ 

 

Cultivars for the in-shell market 

‘Ennis’ is a high yielding cultivar grown in Oregon for the in-shell market (Lagerstedt, 

1980) and would appear to have high potential for the Australian situation.  However, 

‘Royal’ may also perform well in Australia.  How these 2 cultivars compare with the local 

cultivar ‘Wanliss Pride’ is unknown.   
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Table 2.9 Potential cultivars for the Australian in-shell market 

Attributes: Medium-large size, shiny, brown nuts 
 

Cultivar 

Female 

anthesis 

Vigour of 

growth 

Potential 

nut yield 

 

Other comments 

‘Butler’ Mid-Late High High Attractive blocky nuts 

 

‘Ennis’ 

 

Late 

 

Medium 

 

High 

Large, attractive nuts  

50% >22mm 

‘Hall’s Giant’ Late High Low-high Nuts with thick shell 

‘Hammond #17’ - Medium High Similar to ‘Butler’ 

‘Royal’ - - - Large, attractive nuts 

‘Victoria’ - High - Medium–large nuts 

 

‘Wanliss Pride’ 

 

Mid 

 

Medium 

 

High 

Attractive large nuts, 

straggly tree growth 

‘White American’ -  

Medium 

 

High 

Attributes similar to 

‘Wanliss Pride’ 

‘Woodnut’ - Small tree  Potential polliniser 

 

‘Hammond#17’, which was found as a very high-yielding tree in a garden near Orange, 

has nuts similar to Butler, with some potential for the in-shell market.  As with other 

cultivars discussed above, no comparative data on the growth, nut yields and kernel 

quality is available for Australian conditions.  The potential cultivars available for 

evaluation for the in-shell market are shown in Table 2.9. 

 

Polliniser cultivars 

Some cultivars may not have attributes of high quality or high yield but may be valuable 

as pollinisers because they shed large quantities of pollen, may shed pollen late in the 

season or may be genetically compatible with a range of main crop cultivars.  Such 

cultivars have been placed in Table 2.10. 

 

Table 2.10 Cultivars grown mainly as pollinisers, commonly with low yield potential  
 

Cultivar 

Pollen 

shed 

Female 

anthesis 

Vigour of 

growth 

S-alleles Comments 

‘Daviana’ Mid-Late Late Medium 3 11 Erect growth habit,  

medium size, long nuts 

‘Kentish Cob’ Late Late Medium 10 14 Long nuts 

‘Jemtegaard 5’ Late Late High 2 3 Medium size, round nuts 

‘Merveille de 

Bollwiller’ 

Late Late Medium 5 15 Fairly large nuts, 

variable yield 

‘Turkish Cosford’ Mid - - - Used to pollinate ‘TBC’, 

small nuts (Cox, 2010) 

‘White Avelline’ Late - Low-

Medium 

5 10 Small tree, small nuts 

 

2.3.6 Conclusions on cultivar merits 

 

In regions that experience mild winter climates, cultivars behaved in a protandrous 

manner; it is therefore likely that this will occur in Australia due to the relatively mild 
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winter temperatures of southern Australia compared with the continental climates of 

Europe.  If the mild Australian winter climate causes pollen shed to occur during the late 

autumn and early winter, it is likely that attributes of early to mid-season female anthesis 

could be important to ensure that they receive adequate quantities of pollen for pollination, 

especially if potential polliniser cultivars are early in pollen shed.   

 

Vigour of growth might be an important factor in production as female flowers are borne 

on wood of the previous season.  As soil type influences growth, with a loam soil being 

the most favourable, cultivars with high vigour or the ability to grow in clay soils might be 

important as many Australian soils have a duplex soil profile, often with a heavier textured 

‘B’ horizon at 150-200mm depth.  Such a profile might be unfavourable to root growth, 

particullarly for cultivars with low vigour of growth.   

 

High nut yield potential would obviously be desirable and a high kernel percentage, to 

give a high yield of kernels for cultivars that are to be sold into the kernel market.  

Another advantage of cultivars with a high kernel percentage is that they generally have 

relatively thin shells which are more easily separated form the kernel during processing.  

Air separation is commonly used after nut cracking to separate kernels from the cracked 

shells. 

 

There is limited information in the literature on interaction effects of the environment on 

the growth and productivity of cultivars.  Some cultivars, such as ‘Barcelona’, seem to 

display wide adaptation, growing vigorously with high nut yields in Sicily (Baratta et al., 

1994), Croatia (Miljković and Prgomet, 1994), Oregon (McCluskey et al., 1997) and Chile 

(Grau and Bastias, 2005).  However, the productivity of some cultivars, such as ‘TGDL’ 

was found to vary with the environment in which they were grown.  ‘TGDL’ grew and 

yielded well in Serbia (Miletic et al., 1997) and Romania (Turcu and Botu, 1997) but was 

of low vigour and yield in Oregon (McCluskey et al., 1997).  Differences in growth and 

production recorded between environments for a given cultivar appeared to be caused by 

differences in both climatic and soil factors.  Management factors related to fertilizers, 

irrigation, planting density, pruning or other cultural practices could also have influenced 

cultivar performance.  It is considered that, as with most crop species, it is not possible to 

predict the performance of cultivars without evaluating them under the potential range of 

environments in which they might be grown. 
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Part 4 Overall Conclusions 

 

In Chapter 1, Introduction, it was stated that the general aims of the research that forms the 

basis of this thesis were to:  

 

 determine the most suitable hazelnut cultivars that could be used for the 

establishment of a hazelnut industry in south-eastern Australia; 

 assess the effects of geographical region and climate on hazelnut production and 

varietal performance; 

 assess the productive potential of hazelnuts (Corylus avellana L.) in Australia. 

 

This Literature Review is now considered in the context of these general aims of the 

research, to frame key research questions.  This review guided the research methodology 

and the management practices at the field sites. 

 

 

2.4.1 The effects of climate and soils 

 

The first part of this chapter reviewed studies on the effects of climate and soils on 

hazelnut production generally.  Climatic conditions were found to have a major impact on 

the growth and productivity of hazelnuts.  The review led to the development of some 

general climate indices (Table 2.1) that were considered desirable for commercial hazelnut 

production.  These were used to guide the selection of the 5 field sites used. 

 

Soil type is an important factor in hazelnut production.  Soils that are slightly acid to 

neutral with a loam texture are free-draining and have a depth of at least 600 mm, 

preferably 1-2 m, are highly desirable.  These general parameters should be considered in 

the selection of field sites to ensure satisfactory tree growth. 

 

It is recognised that there are likely to be confounding effects between climate and soil 

types on the growth and productivity of hazelnuts.  That is, it may be very difficult to 

determine whether differences observed between sites, in some attributes of production, 

are related to climate or soil conditions. 
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2.4.2 Growth, development and yield potential 

 

The second part of the Literature Review focussed on the physiology of growth and 

development in hazelnuts and how this is influenced by environmental conditions.  A 

model was developed, showing the periods of key growth and development (Table 2.5).   

 

Temperature patterns in late autumn and winter appear to be critical in influencing floral 

phenology.  The literature showed that the amount of chilling and the post-chill heat 

requirements to break the dormancy of male and female flowers vary between catkins and 

female inflorescences, cultivars and seasonal conditions.  It appears that factors 

influencing the time of pollen release and flowering are complex and not sufficiently well 

understood to accurately predict phenology.  That is, it is not yet possible to model 

phenology of various cultivars for different climates. 

 

Hazelnuts do not seem to be able to take up moisture from the soil sufficiently quickly to 

cope with conditions of high evaporation, such as might arise in periods of low humidity 

and high temperature, coupled with strong wind.  Moisture deficits can cause the closure 

of stomata, with a decline in the intercellular CO2 concentration resulting in decreased 

photosynthesis (Tromp, 2005).  The literature clearly showed how moisture stress can 

cause reductions in growth, nut development and kernel fill, depending on the period and 

duration of the moisture deficit.  The few studies on water relations in hazelnuts suggest 

they have difficulty maintaining turgor under conditions of high evaporative demand.  It 

was concluded that the inclusion of supplementary irrigation would be highly desirable for 

the proposed study sites. 

 

 

2.4.3 Cultivar evaluation 

 

An assessment of the relative merits of cultivars was undertaken in the final section of the 

literature review.  Unfortunately, much of the data available on Australian varietal types is 

limited and anecdotal.  The literature on overseas cultivars indicates that some have wide 

adaptation, whilst others seem to be suited to specific environmental conditions of climate 

or soils.  It seems likely that cultivars that are early to mid-season in female anthesis and 

are of high vigour might be those most suited to the Australian environment.  Cultivars 
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that are late into female anthesis may suffer from a lack of pollen from other cultivars in 

the orchard and hence not reach their full yield potential. 

 

Many characteristics such as vigour of growth, nut size, shape, colour and kernel 

blanching ability are genetically determined, but are influenced by environmental 

conditions.  For example moisture stress during nut development can influence nut 

weights (Mingeau et al., 1994 and Bignami and Natali, 1997). 

 

The Literature Review identified interactions between the growth, floral phenology and 

nut yields of cultivars and the environment.  It is considered that data from the literature is 

insufficient to predict cultivar productivity in a new location with any precision.  

Therefore, there is a need to conduct research with a wide range of cultivars over several 

environments and seasons to try and understand how cultivars perform and are influenced 

by environmental conditions. 

 

As the cultivars available for the study were drawn from a number of sources, there was a 

need to include a method of identification to ensure they were true to name. 
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2.4.4 Research questions 

 

The review of literature has shown that there are several areas where knowledge is 

currently inadequate to predict how cultivars will grow, develop and yield in Australia.  

The following key questions were formulated to achieve the aims of this thesis: 

 

A.  Tree growth 

1. How vigorously will the cultivars grow and how will their growth rates vary 

between sites and seasons? 

B.  Floral phenology 

1. When will the cultivars come into anthesis and how will the floral phenology differ 

between cultivars and across sites and seasons?  

2. How will environmental conditions influence floral phenology? 

C.  Nut yields 

1. When will the cultivars commence bearing nuts, what will be the development of 

yield over years from planting and what will be their yield potential? 

2. What will be the variation in nut yields between cultivars and the environments in 

which they are grown? 

D.  Kernel quality 

1. How will kernel attributes vary between cultivars and how will these attributes be 

influenced by environmental conditions? 

 

The general methods developed to address the above research questions are explained in 

the next chapter. 
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CHAPTER 3 - METHODS 
 

3.1 Introduction 
 

The background to the Australian hazelnut industry was given in Chapter 1.  In that 

chapter it was explained that although the first hazelnuts were introduced to Australia in 

the 19
th

 century, plantings had been limited to a few small orchards in Victoria and NSW.  

During the 1980s there was a renewed interest in industry development and several 

hazelnut cultivars of European origin were imported by individuals and some by 

government agencies.  However, there had been no systematic evaluation of this material, 

nor had there been any significant research to study how hazelnuts performed in the 

Australian environment.  In the 1990s there were still relatively few orchards with little 

Australian production, yet more than $20 million worth of hazelnuts were being imported 

annually. 

 

In Chapter 2, a review of the literature on the effects of environmental conditions on the 

growth, development and productivity of hazelnut cultivars was conducted.  This included 

a review of the cultivars and Australian selections available for evaluation in Australia, 

with descriptions of the cultivars in Appendix A.  The review identified that the 

phenotypic response of cultivars is variable under a range of environmental conditions, 

demonstrating a need to evaluate cultivars at more than 1 site, in order to quantify the 

extent and possible causes of interactions between cultivars and environmental conditions. 

 

The principal research methodology used for this study was to assess the growth, floral 

phenology, nut production and kernel quality of a range of cultivars at 5 different field 

sites.  Some additional experiments were conducted to investigate some issues that arose 

from the field studies, to elucidate the possible mechanisms that caused the observed 

effects.   

 

This chapter outlines the methods used for the 5 field experiments that provided the main 

data for this thesis.  It explains where the field experiments were located, which cultivars 

were evaluated and the cultural practices used at the field sites.  This research focused on 

the evaluation of genetic resources under a range of environmental conditions with the 

same orchard management methods being used at all the sites, as much as possible. 
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3.2 The field sites  
 

Five experiments were established in South-eastern Australia at locations where it was 

known that hazelnuts could be grown, as there were existing plantings at each of the 5 

sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Location of the 5 field experimental sites in South-eastern Australia  
Note: In the Northern Hemisphere, key production areas lie in the latitude range 40-45

°
N 

 

The 5 sites were chosen principally to represent different rainfall and temperature 

patterns, but the sites also had different soil types.  The key climatic parameters identified 

in the Literature Review (Table 2.1), are shown in Table 3.1, along with other climatic 

data and the soil types at the sites.  Two sites were in NSW, at Orange and Moss Vale, 2 

in Victoria, at Myrtleford and Toolangi and 1 in Tasmania at Kettering (Figure 3.1).  

Three sites were on land owned and managed by State Government authorities and 2 were 

on private land.  The general climatic characteristics of the districts where the sites were 

established are shown in Table 3.1. 

 

Orange 

Myrtleford 

Toolangi 

Moss Vale 

Kettering 
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Table 3.1 Climatic characteristics of the localities where the hazelnut field experiments 

were established, including climate criteria developed from the literature review, (Table 

2.1). 
 

 

Attribute 

Orange 

(Orange 

Ag. Inst.) 

063254 

Moss Vale 

(Hoskins 

Street) 

068045 

 

Myrtleford 

(Post Office) 

082034 

Toolangi 

(Mount  

St Leonard) 

086142 

 

Kettering 

(Kingston) 

094036 

Distance from coast 

(direct - km) 

 

200 

 

40 

 

200 

 

60 

 

2 

Altitude (m ASL) 922 675 223 595 52 

Latitude  33.3° S  34.5° S 36.7° S 37.6° S 37.6° S 

Mean min temp 

coldest month °C 

 

1.5°C 

 

1.3 

 

2.1 

 

3.8 

 

2.4 

Lowest recorded 

temp °C (>-5°C) 

 

-5.6 

 

-6.4 

 

N/A 

 

-5.0 

 

-7.2 

Mean temp oC  

coldest month (July) 

 

5.2 

 

6.6 

 

7.3 

 

6.1 

 

7.5 

Total chill hours  

(0-7°C) May - Sept 

 

1370 

 

1237 

 

1133 

 

1327 

 

1217 

Lowest temp Oct °C  

(> -3°C) 

 

-2.0 

 

-2.8 

 

N/A 

 

N/A 

 

N/A 

Mean max temp Nov 

°C (>21°C) 

 

21.1 

 

22.6 

 

24.5 

 

18.0 

 

17.6 

Mean max temp Dec 

°C (>21°C) 

 

24.4 

 

25 

 

28.5 

 

20.8 

 

19.8 

Mean max temp 

hottest month °C 

 

26.5 

 

25.8 

 

30.8 

 

23.2 

 

26.9 

Highest Jan/Feb 

temp °C 

 

38.3 

 

38.3 

 

N/A 

 

42 

 

36.6 

Mean number of 

days/annum ≥35°C 

 

0.7 

 

2.0 

 

N/A 

 

0.9 

 

1.1 

Mean temp oC 

hottest month 

 

19.4 

 

18.9 

 

20.9 

 

17.5 

 

16.3 

Mean RH Jan >70% 53% N/A 44% N/A N/A 

Mean annual rainfall 

(> 800 mm) 

 

934 

 

965 

 

905 

 

1358 

 

674 

Mean annual 

evaporation (mm) 

 

1460 

 

1500 

 

1460 

 

1020 

 

985 

Growing period rain 

(Sept–Jan) (mm) 

 

415 (44%) 

 

376 (39%) 

 

339 (37%) 

 

602 (44%) 

 

293 (44%) 

Three wettest months 

in succession 

 

July–Sept 

 

Jan–Mar 

 

June–Aug 

 

Aug–Oct 

 

Oct–Dec 

 

General rainfall 

pattern 

Winter – 

spring 

dominance,  

Summer – 

autumn rain, 

dry spring 

Winter – 

spring rain, 

dry summer 

Late winter – 

spring 

dominance 

Spring – early 

summer 

dominance  

Annual rainfall 

variability 

 

0.68 

 

0.7 

 

0.66 

 

0.49 

 

0.7 

Mean rainfall March 

(mm) <50mm 

 

55 

 

93 

 

60 

 

88 

 

52 

Mean number of rain 

days in March 

 

6.8 

 

11 

 

6 

 

12.9 

 

9.3 

 

Soil type 

 

Krasnozem 

 

Red podsol 

 

Alluvial 

 

Krasnozem 

Yellow 

podsol 

Source of climatic data: Commonwealth Bureau of Meteorology, Climate data on-line 2010 

www.bom.gov.au/climate/data/.  The closest Bureau of Meteorology recording stations to the sites were 

used.  Note: N/A not available 

 

Although the sites were selected to investigate interactions between cultivars and climate 

on tree growth and nut yields, it is recognised that the differences between the soil types at 

the sites were likely to have an effect and confound these interactions.  The characteristics 

of the soils were assessed and nutrient levels were monitored.  Standard procedures for 

http://www.bom.gov.au/climate/data/
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site management were implemented, as much as it was feasible, to minimise variation due 

to management. 

 

 

3.2.1 Description of the field sites 
 

Orange (149.08°E, 33.32°S, 910 m ASL)  

This site was on land owned by the then NSW Department of Agriculture (subsequently 

NSW Department of Primary Industries) at the Orange Agricultural Institute, 3 km south 

of the city of Orange on the Central Tablelands of NSW.  It was flanked by Forest Road 

on the eastern side and Cadia Road to the south-east.  The site was level and had been an 

apple orchard, which was bulldozed in the year prior to planting, with the piles of dead 

trees having been burnt.  The site had very little wind protection (Plate 3.1) except from 

the south-east, where a row of old hazelnut trees had previously been planted from 

genotypes brought from the experimental site at the Glen Innes Research Station in 1971.  

The land was limed at 5 t/ha and cultivated before planting, which commenced in July 

1995.  The trees were planted in rows with a north-east to south-west orientation to 

provide the best fit into the land area available.  The experiment comprised 4 replicates of 

16 cultivars in a randomised block design, with 4 trees per treatment (cultivar) plot; only 

the centre 2 trees were used to obtain yield data.  A row of buffer trees was planted on 

each side of the outer rows, with a buffer tree also being planted at the end of each row.  

The layout of the individual trees is shown in Appendix B.  In 1998, an additional 2 rows 

of hazelnut trees were planted on the south-eastern side of the experimental block, 

adjacent to the outside buffer row.  These were trees that had been imported by the 

company Ferrero.   

 

A double row of native Casuarina trees (Casuarina cunninghamiana) was planted in 1995 

on the south-western, north-western and north-eastern sides of the experimental block; 

these were set back about 10 m from the outer trees of the block to provide additional 

wind protection. 

 

An Environdata automatic weather station was located on the western side of the site 

(Plate 3.1).  This provided readings of temperature, relative humidity, rainfall, wind run 

and direction, and solar radiation on an hourly basis. 
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The soil was a krasnozem developed from tertiary basalt (Tables 3.2 and 3.3).  A drip 

irrigation system was installed in the year of planting, with one 4 L/hr dripper adjacent to 

each tree.  In the spring of 2002, the drip irrigation system was converted to micro-

sprinklers (5 m
2
 coverage) with 1 sprinkler per tree as per the other 3 mainland sites.  

Water was supplied from a dam at the research centre.  Irrigation strategies at each site are 

described in Section 3.8. 

 

The site was managed by Lester Snare, the Senior Technical Officer (Horticulture) 

stationed at the Orange Research Institute.  An annual calendar of operations was prepared 

for site management.  This was standardised annually for all sites.   

 

 
 

Plate 3.1 Hazelnut trees in their first growing season after planting at the Orange site.  The 

trees were mulched with old hay.  The Environdata automatic weather station is to the right 

of the picture, with the automatic rain gauge located on the ground.  The site had very little 

wind protection from SW winds that are common in winter. 

 

Moss Vale (150 42°E, 34 52°S, 690 m ASL) 

This site was located on the property of Jim and Lauren Gleeson, Filbert Farm, 20 km 

south of the township of Moss Vale on the Southern Highlands of NSW (Figure 3.1).  The 

site had a very slight slope to the south and was reasonably well-protected from the wind, 

being in a valley surrounded by woodland and forest (Plate 3.2).  The site had been 

principally pasture that had been used for grazing, although it had, in earlier years, been 

used for growing potatoes.  The site was limed before planting, at 5 t/ha, and cultivated.  

The trees were planted in July 1996, in rows with a north–south orientation. 
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The experiment comprised 4 replicates of 12 cultivars in a randomised block design, with 

2 trees per treatment; both were used to obtain yield data.  A row of buffer trees was 

planted at each end of the site with buffer trees also being planted at the end of each row.  

The layout of the individual trees is shown in Appendix B.  An Environdata automatic 

weather station was located on the northern side of the site.   

 

 

 

Plate 3.2 The Moss Vale site in November, 1996, the first year of leaf.  The hazelnut plants 

are protected by polythene bags to reduce damage from rabbits and hares.  The tree rows 

had been treated with the herbicide Roundup®, the strips between the tree rows were sown 

to a mix of clovers and ryegrass. 

 

The site was fenced with rabbit netting and additionally had an electric fence to exclude 

kangaroos, wallabies and deer that roamed the bushland and forest of the area.  The soil 

was a red podsol (Tables 3.2 and 3.3).  The site had a supply of irrigation water from a 

nearby small, spring-fed dam.  A sprinkler system was installed in the year of planting 

with a micro-sprinkler adjacent to each tree.  The site was managed by the owners of the 

property, using an annual calendar of operations for site management worked out as part 

of the experimental protocols but with some adjustments for special circumstances such as 

pest infestations. 
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Myrtleford (146.71°E, 36 56°S, 260 m ASL) 

The site was on land at the Ovens Research Station, owned and operated by the Victorian 

Department of Agriculture, 5 km south of the township of Myrtleford in the Ovens Valley 

of North-eastern Victoria.  It was on the flood plain of the Ovens River (Plate 3.3).  The 

valley, which was about 1.5 km wide at this point, ran in a north-west to south-easterly 

direction between 2 ranges of hills.  The site was level and reasonably protected from 

wind, with a poplar plantation on the south-western side and some large gum trees to the 

south, along an anabranch of the Ovens River.  The site had been planted to a block of 

Paulonia trees (Paulonia fortunei) for timber.  These were removed in the year prior to 

planting; some timber had been harvested and the remaining trees were bulldozed and 

burnt.  The site was limed at 7 t/ha, cultivated before planting and treated with the 

insecticide Lorsban ® (active ingredient chlorpyriphos) to control cockchafer grubs.  The 

trees were planted in rows, with a north-west to south-east orientation, in July 1996.  The 

experiment comprised 4 replicates of 24 cultivars in a randomised block design, with 2 

trees per treatment; both were used to obtain yield data.  A row of buffer trees was planted 

on each side of the outer rows with 2 buffer trees also being planted at the ends of each 

row.  The layout of the individual trees is shown in Appendix B.  An Environdata 

automatic weather station was located on the eastern side of the site. 

 

The site was fenced to exclude cattle, which occasionally grazed the adjoining land.  The 

soil was a deep alluvium on the valley floor (Tables 3.2 and 3.3).  The site had a supply of 

irrigation water from the Ovens River.  A sprinkler system was installed in the year of 

planting with a micro-sprinkler adjacent to each tree.  The overall management of the site 

was the responsibility of the research station manager.  Initially, day-to-day operations 

were supervised by the local horticulturalist, Dan Ridley, and subsequently by Dr Audrey 

Gerber.  An annual calendar of operations was prepared for site management, based on the 

standard used for all sites. 
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Plate 3.3 Trees in their first growing season, November 1996, at the Myrtleford site.  This site 

was on the floor of the Ovens Valley. 

 

Toolangi (145.50°E, 37 57°S, 610 m ASL) 

This site was on land at the Toolangi Potato Research Station that was owned by the 

Victorian Department of Agriculture.  It was about 2 km south of the settlement of 

Toolangi at 1015 Myers Creek Road.  The closest township was Healesville, about 10 km 

to the south.  The research station is on the south-western side of the Yarra Ranges, which 

lie to the south of the Great Dividing Range.  The site was on the lower slopes of Mount St 

Leonard (1010 m) to the east.  The climate was strongly influenced by altitude and 

proximity to Port Phillip Bay and Bass Strait, 60-70 km to the southwest (Figure 3.1). 

 

The site had been under pasture for many years.  It sloped gently to the west (Plate 3.4) 

and was protected by wet sclerophyll eucalypt forest on the northern and western sides and 

most of the lower part of the south side.  However, the top south-eastern corner of the site 

was exposed to southerly winds, which occurred generally following the passage of a cold 

front and were most persistent in the winter and spring. 

 

The soil type was a deep krasnozem, forest soil with a high organic content and friable 

structure (Tables 3.2 and 3.3).  The site was fenced on all sides to limit intrusion by 

wallabies and kangaroos, but it was visited by wombats that pushed under the fences and 

did some damage to trees on the southern side. 
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Plate 3.4 The Toolangi research site in November 1996 in the second growing season, looking 

down-slope to the west 

 

The trees were planted in rows with an east-west orientation.  The experimental design 

was similar to that at Orange, with 4 replicates of 16 cultivars in a randomised block 

design, with 4 trees per treatment; only the centre 2 trees were used to obtain yield data.  A 

row of buffer trees was planted on each side of the outer rows with a buffer tree also being 

planted at the end of each row.  The layout of the individual trees is shown in Appendix B.  

An Environdata automatic weather station was located on the southern side of the site. 

 

Irrigation water was available from dams on the research station.  A micro-sprinkler 

irrigation system was used with 1 micro-sprinkler per tree.  The overall management of the 

site was the responsibility of the research station manager.  An annual calendar of 

operations was prepared for site management, in the same manner as for all sites, with 

variations to address any particular site needs. 

 

Kettering (147.26°E, 43.11°S, 50 m ASL) 

This site was not selected until 1998, later than the other sites, due to operational reasons.  

It was in a small, recently-planted hazelnut orchard owned by John and Connie Zito on 

Saddle Road, about 1 km west of Kettering, which is in the Channel District, 34 km south 

of Hobart.  The site was in the valley of the Little Oyster Cove Rivulet and about 1 km 

from Oyster Bay in the D’Entrecasteaux Channel (Figure 3.1 and Plate 3.5).  The land 

sloped gently to the east, with wooded hills to the north, a vineyard to the west and 

wooded hills to the south.  The climate was maritime, being close to the sea.  It was 

affected at times by strong, gusty south-westerly winds. 



 101 

 

 

 

Plate 3.5 The Kettering research site in February 2003, trees are in their fourth season of 

growth.  This was the most maritime site being about 1 km from the D’Entrecasteaux 

Channel to the east. 

 

Prior to the establishment of the existing hazelnut orchard, the site had at some time in the 

past been an apple orchard.  Young hazelnut trees were removed in the centre of the 

orchard to make way for the research site.  Twelve rows of trees were planted in 1999.  

These were planted in an east-west direction, the same as the orchard trees.  Due to 

limited space, only 20 cultivars were planted with 2 trees per replicate and 3 replicates in 

a randomised block design.  The layout of the individual trees is shown in Appendix B.  

An Environdata automatic weather station was located on the northern side of the site. 

 

The soil was a yellow podsol with a grey-brown fine sandy loam surface soil overlying a 

cracking clay with impeded drainage.  A description of the soil profile is given in Tables 

3.2 and 3.3.  The description of this soil type is in general agreement with that given by 

Nicolls and Dimmock (1965).  A drip irrigation system was installed in the year of 

planting, with 1 4 L/hr dripper adjacent to each tree.  Water was supplied from a dam on 

the property.  The site was fenced in the year 2000 to exclude rabbits and wallabies, the 

latter having caused some damage to young trees.  The site was managed by the 

landowner, John Zito, using an annual calendar of operations for site management.  This 

was, as far as possible, the same for all sites, but some variations were required with 

fertiliser usage due to poor soil drainage. 
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3.3 Soils of the field sites 
 

The soil profile at each site was described from soil samples taken with a 100 mm 

diameter auger down to 600 mm depth, from 4 sampling points within each site.  A 

description of the profiles at each site is given in Table 3.2.   

 

Table 3.2 General description of soil profiles at the 5 field sites.  Soil pH values were 

measured prior to liming 

 
 Orange Moss Vale Myrtleford Toolangi Kettering 

 

Soil type  

 

Krasnozem 

 

Red podsol 

 

Alluvial 

 

Krasnozem 

Yellow podsol 

A horizon 0–300 mm, 

light brown 

clay loam, pH 

5.5; well-

structured 

0–200 mm, 

dark reddish 

brown sandy 

loam, pH 4.5–

5.0 

Brown sandy 

loam, no 

significant 

texture or 

colour changes 

down the soil 

profile,  

pH 4.5–5.0; 

well-drained. 

0–300 mm, 

brown clay 

loam and pH 

5.0; friable and 

well-structured 

0–250 mm, 

grey brown 

fine sandy 

loam, pH 5.0; 

weak structure 

B horizon Red light clay, 

pH 6.0, well-

structured, 

some mottling. 

Reddish brown 

sandy clay 

loam, pH 5.5 

Red brown 

light clay, pH 

5.5, well-

structured. 

Yellow-brown 

clay, pH 5.5-

6.0, poorly 

drained 

Notes: pH was measured with an Innoculo Soil pH Test Kit® (CSIRO developed) results equivalent to pHw 

 

The soils at both Orange and Toolangi were volcanic in origin, having been developed 

from basaltic lava flows.  The basaltic rock had been weathered over millions of years to 

form deep, red krasnozem soils, Table 3.2.  The texture of the A horizon at these sites was 

a clay loam overlying a light clay.  The soil at Toolangi had a high organic carbon content 

with a more friable structure than at Orange. 

 

The Moss Vale site was on a relatively well-drained red podsol derived from sedimentary 

rock (Plate 3.6), whereas the Kettering site was on a yellow podsol, which was poorly 

drained.  Podsolic soils typically have a duplex profile with a heavier-textured, more 

clayey subsoil, or B horizon, which can have poor drainage characteristics.  An example 

of the profiles for Moss Vale and Myrtleford are shown in Plate 3.6.   
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Plate 3.6 Examples of soil profiles extracted from top 600 mm of soil with a 100 mm diameter 

auger.  The Moss Vale soil (left) was classified as a red podsol.  The Myrtleford soil (right) 

was an undifferentiated alluvial sandy loam. 

 

 

The soil at Myrtleford was alluvial, on the floodplain of the Ovens River.  The soil was a 

deep sandy loam but with some variation in texture down the profile, due to the changing 

deposits of material that had been spread across the floor of the Ovens Valley, over time.  

Generally, this alluvial soil had a coarser texture than the krasnozem soils (Table 3.2). 
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3.3.1 Soil sampling and analysis  
 

Prior to planting, 25 soil samples were taken across each of the sites from the top 10 cm of 

soil and combined to produce a composite sample of about 500 g for each site.  The 

composite soil samples from each site were analysed for their level of available nutrients 

(Table 3.3).  The soil pH and nutrient data was used to determine lime and fertiliser 

requirements for the sites.  All sites were limed before planting to reduce any potential 

adverse effects of soil acidity.  Olsen (1995) considered that pHw 5.0 (1:10 soil: water) is 

the minimum that is suitable for hazelnut growing in Oregon.  In Australia, pH is 

generally measured in a 1:10 calcium chloride solution (pHCa).  Values for pHCa are 

generally 1.0-0.5 units lower than those for water.  The pHCa values indicated that the 

soils at all the sites were moderately acid and would be likely to benefit from the 

application of lime to raise their pH to the minimum desirable.  Five tonnes/ha of ground 

limestone were applied before planting at all sites, except Myrtleford, where 7 tonnes/ha 

was applied and incorporated into the soil by cultivation.  A further 7 tonnes/ha of lime 

was applied at Orange in 2001 with an additional 2 tonnes/ha being applied in 2004, as 

manganese toxicity was suspected to be a problem at that site.  These later broadcast 

applications were not incorporated. 

 
Table 3.3 Soil analysis data for the field sites, prior to liming and planting 

 
  

Orange 

 

Moss Vale 

 

Myrtleford 

 

Toolangi 

 

Kettering 

Minimum 

Desirable 

Levels 1 

pHCa (1:5 soil 

CaCl2) 

5.7 4.3 4.5 4.5 5.5 pHw 5.0  

Phosphorus (P) 

Bray test (mg/kg) 

21.0 9.0 7.0 3.0 141.0 N/A 
(3)

 

Total carbon (%) 2.0 3.8 3.3 6.6 3.5 N/A 

Potassium (K) 

meq/100g 

0.6 0.3 0.6 0.5 1.0 0.2 

Calcium (Ca) 

meq/100g 

6.8 3.9 5.6 3.8 12.6 5.0 

Magnesium (Mg) 

meq/100g 

0.7 1.4 2.3 0.8 2.7 0.5 

Sodium (Na) 

meq/100g 

<0.1 0.2 <0.1 0.1 0.11 <5  

Aluminium 

meq/100g 

<0.1 0.6 0.2 1.4 <0.1 <5 
(2)

 

Total exch. 

cations (mg/kg)
2
 

 

8.1 

 

6.4 

 

8.8 

 

6.6 

 

4 

 

N/A 

Ca/Mg ratio 9.7 2.8 2.4 4.8 4.7 >2.0 

Boron (B) 

(mg/kg) 

<2 <2 <2 <2 <2 N/A 

Desirable levels for hazelnuts;  Source: (1) Olsen, 1995, (2) Aluminium sensitive crops.  Peverill et al., 

1999.  (3) Pastures 8mg/kg (Abbott and Vimpany, 1986).  N/A Not available  
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The available phosphorus level varied considerably from low levels, less than 10 mg/kg, 

as recorded at Toolangi, Myrtleford and Moss Vale, to a very high level of 141 mg/kg at 

Kettering.  This very high level was possibly due to previous applications of chicken 

manure to the site when it was an apple orchard.  The desirable minimum level of 

phosphorus for hazelnuts is unclear.  Olsen (1995) recorded no response to phosphorus 

fertilisers in Oregon, possibly because Oregon soils were already relatively high in this 

element.  In Australia, temperate pasture species generally respond to applied phosphorus, 

when soil levels are below 8 mg/kg (Abbott and Vimpany, 1986).  No data was available 

on desirable level of soil boron; it is most readily available in soils that are high in organic 

matter, medium- heavy texture grade and a pH range 5.0-7.0 (Glendinning, 1999). 

 

Potassium and calcium levels were generally considered adequate, with an appropriate 

Ca/Mg ratio.  Sodium levels were low, indicating that soils were neither sodic nor saline.  

Available aluminium was extremely high at Toolangi and relatively high at Moss Vale, 

being 20% and 9%, respectively, of the total exchangeable cations.  No data has been 

found on the sensitivity of hazelnuts to aluminium.  However, when soil pHCa levels are 

above 5.0, aluminium toxicity is not usually considered to be a problem (Abbott and 

Vimpany, 1986).  As the growth of hazelnuts is favoured by soils that are not very acid, it 

is possible that hazelnut trees could be sensitive to aluminium, hence the recommendation 

to apply lime before planting (Olsen, 2001).  As nutrient levels were considered to be 

satisfactory at the time of planting, based on current knowledge, no fertiliser was added at 

planting.  However, fertilisers were applied in later years, as discussed in Section 3.7. 

 

 

3.4 Experimental design and cultivars 
 

A total of 26 hazelnut cultivars (i.e. main treatments, Table 3.4) were evaluated for tree 

growth, floral phenology, nut yields and some aspects of kernel quality, within a 

randomised block design which was used across the 5 sites.  There were 4 replicates at 

each field site, except at Kettering where there were only 3 replicates.  The trees were 

planted in rows 5 m apart with 3 m between trees within the rows, giving a planting 

density of 660 trees per hectare. 
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Table 3.4 Cultivars planted at the hazelnut field sites for yield assessment 
 

 

Cultivar 

 

Potential 

use 

 

Country 

of origin 

Original 

source of  

material 1 

Site planted and supplier of 

planting material 2 

OR MV MY TL KT 

‘American 

White’  

Kernel/ 

In-shell 

Australia/ 

Turkey 

 

I. Tokolyi 

   

OK 

  

 

‘Atlas’ 

Kernel/ 

In-shell 

 

Australia 

 

NSW Ag, Orange 

 

MP 

 

MP 

 

MP 

 

MP 

 

 

‘Barcelona’ 

Kernel/ 

In-shell 

 

USA 

 

Oregon, USA 

 

RS 

 

RS 

 

RS 

 

RS 

 

MP 

 

‘Butler’ 

Polliniser 

/In-shell 

 

USA 

 

Oregon, USA 

RS 

& 

MP 

RS RS MP MP 

‘Casina’ Kernel Spain Oregon, USA CO CO CO CO MP 

‘Daviana’ Polliniser England Oregon, USA   RS   

 

‘Eclipse’ 

 

Kernel 

 

Australia 

Milan Paskas, 

Victoria 

MP  MP MP MP 

‘Ennis’ In-shell USA Oregon, USA RS RS RS RS MP 

 

‘Hall’s Giant’ 

Late 

polleniser 

 

Germany 

 

Oregon USA 

 

RS 

 

RS 

RS 

& 

MP 

 

RS 

 

‘Hammond 

 #17’ 

Kernel/ 

In-shell 

 

Australia 

S. Hammond, 

Orange, NSW 

   

SH 

  

SH 

‘Lewis’ Kernel USA Oregon, USA BW  BW  MP 

‘Merveille de 

Bollwilller’ 

Late 

polleniser 

 

France 

 

Knoxfield, Victoria 

   

MP 

  

MP 

‘Montebello’ Kernel Italy Knoxfield, Victoria   MP  MP 

‘Negret’ Kernel Spain Knoxfield, Victoria RS  RS RS  

‘Royal’ In-shell USA Oregon, USA   RS  MP 

‘Segorbe’ Kernel France Knoxfield, Victoria MP MP MP MP MP 

‘Square Shield’  

Kernel 

 

Australia 

Milan Paskas, 

Victoria 

 

MP 

  

MP 

 

MP 

 

MP 

‘TGDL’ Kernel Italy Knoxfield, Victoria MP  MP MP MP 

 

‘TBC’ 

 

Kernel 

 

Australia 

I. Tokolyi/ 

J. Brown, Victoria 

 

JBr 

 

JBr 

 

JBr 

 

JBr 

 

MP 

Tonda di 

Giffoni 

Kernel Italy Italy JBe JBe JBe JBe JBe 

‘Tonda 

Romana’ 

 

Kernel 

 

Italy 

 

Knoxfield, Victoria 

 

MP 

 

MP 

 

MP 

 

MP 

 

MP 

 

‘Tonollo’ 

Kernel/ 

In-shell 

 

Australia 

 

NSW Agriculture 

  NSW 

Ag 

  

 

‘Victoria’ 

 

In-shell 

 

Australia 

T. Baxter, Knoxfield, 

Victoria 

 

MP 

 

MP 

 

MP 

 

MP 

 

MP 

‘Wanliss Pride’ Kernel/ 

In-shell 

Australia/ 

Turkey 

 

T. Cerra, Victoria 

JG 

& 

MP 

 

JG 

 

JG 

 

JG 

 

MP 

 

‘Whiteheart’ 

 

Kernel 

New 

Zealand 

 

New Zealand 

     

MP 

 

‘Willamette’ 

 

Kernel 

 

USA 

 

Oregon, USA 

 

BW 

 RS 

& 

MP 

  

MP 

Footnotes: 

1. As most cultivars were imported, an attempt was made to identify the source of the original imports or, 

where this was unknown, the main importer or point of entry into Australia. 

2. Key to suppliers of planting material: MP – Milan Paskas, RS – Richard Salt, BW – Bruce West,  

CO – Chris Offner, OK - Ollie Kroll, SH – Simon Hammond, JBr – Janet Brown, JBe – Jim Beattie, JG – 

Jim Gleeson, NSW Agriculture (subsequently NSW Department of Primary Industry). 

The cultivar supplied as ‘Tonda Romana’ was found not to be true to type and has been called “Sicilian 

type”. 

 

Additional data, on floral phenology only, was obtained from 4 additional cultivars (Table 

3.5) that were included in the buffer rows of trees surrounding the treatment plots.  It was 
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considered that floral phenology would not be influenced by being in a border row, but 

nut yields could be. 

 

Table 3.5 Cultivars planted in buffer rows, to obtain data on floral phenology 
 

Cultivar 

 

Main use 

 

Country of origin 

Source of planting 

material 

Jemtegaard 5 Polleniser Oregon, USA Milan Paskas 

 

Kentish Cob 

Polleniser, green nut 

harvest 

 

England 

 

Milan Paskas 

 

White Avelline 

Polleniser, gardens for nut 

production 

 

Europe 

 

Milan Paskas 

Woodnut Polleniser Australia Milan Paskas 

 

The cultivars evaluated were mainly those suited to the kernel market but included those 

suited to the in-shell trade and others whose main role was as pollinisers.  A key objective 

of the study was to try and source as many cultivars as possible, particularly those 

imported into Australia in recent years, which are of significance in Europe and the USA.  

To facilitate the collection of cultivars for these studies, a presentation was made at the 

Australian Hazelnut Growers’ annual conference in 1994 to explain the research project 

and to seek co-operation from propagators and importers of hazelnut plants in order to 

source material for the proposed research. 

 

The cultivars included in the field experiments were mainly those of European and North 

American origin but included some Australian selections that have been given names such 

as ‘Atlas’, ‘Tonollo’ and ‘Tokolyi/Brownfield Cosford’ (‘TBC’).  The planting material 

was obtained chiefly from specialist hazelnut propagators but some material was obtained 

from growers.  Most plants were available as bare-rooted whips (Plate 3.7) but a few had 

been grafted onto rootstocks of other cultivars of the European hazelnut (Corylus avellana 

L.).  These grafted plants had a metal tie around the stem of the trees just above the graft 

and were planted with the graft below the ground to encourage them to be self-rooting, 

that is, to form roots on the scion wood.   
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Plate 3.7 A typical whip at planting.  Roots were carefully spread before covering with about 

50 mm of topsoil. 

 

As not all cultivars were available at the beginning of the research and there was limited 

space at some sites, not all of the key 26 cultivars were planted at all sites.  Moss Vale had 

only the core set of 12 cultivars.  These 12 cultivars were common to all sites.  At Orange 

and Toolangi, an additional 4 cultivars were planted with a further 8 added at Myrtleford.  

There were 20 cultivars planted at Kettering (12 core and 8 additional).  The 4 mainland 

sites were planted first, as initially it had not been possible to find a suitable site in 

Tasmania.  Each of the mainland sites comprised 4 replicates of the cultivar treatments in 

a randomised block design (Appendix B).  At Orange and Toolangi there were 4 trees of 

each cultivar in each replicate, whereas at Moss Vale and Myrtleford there were only 2 

trees per cultivar per replicate, Table 3.6.  Planting at the Orange and Toolangi sites was 

commenced in July 1995 while planting commenced at Myrtleford and Moss Vale in July 

1996.  Planting did not commence at Kettering until 1999.  At Kettering, it was decided to 

use only 3 replicates of 20 cultivars with 2 trees per replicate, due to limited space. 
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Table 3.6 Summary of the experimental design at each site and tree orientation 
Design features Orange Moss Vale Myrtleford Toolangi Kettering 

Year of planting 1995 1996 1996 1995 1999 

 

Number of replicates 

 

4 

 

4 

 

4 

 

4 

 

3 

Number of cultivar 

treatments 

 

16 

 

12 

 

24 

 

16 

 

20 

Number of trees per test 

plot 

 

4 

 

2 

 

2 

 

4 

 

2 

Number of in-row buffer 

trees 

 

2 

 

0 

 

0 

 

2 

 

0 

Number of trees used for 

yield assessment  

 

2 

 

2 

 

2 

 

2 

 

2 

 

Orientation of tree rows 

 

NE-SW 

 

N-S 

 

NW-SE 

 

E-W 

 

E-W 

Note: At ALL sites, only 2 trees per plot were used for growth and yield assessments.  Where there were 4 

trees per treatment plot, only the 2 central trees were used for these assessments.   

 

The initial objective was to plant 4 trees per cultivar plot but at some sites it was only 

possible to plant 2 trees, with no buffer trees within the rows, due to the difficulty of 

obtaining sufficient planting material as well as limitations of space.  As all sites were 

planted at a common tree density it was considered that the border effects within the 

experimental rows would be minimal.  Only 2 trees per plot were sampled for yield data at 

all sites.  At the Oregon State University, an experimental design was used for the 

evaluation of cultivars and new selections in which single tree treatments were used with 

8 replicates (McCluskey et al., 1997). 

 

At least 1 buffer row was used to surround the treatment trees at all sites, except at 

Kettering where the experimental site was within an existing orchard of hazelnut trees.  

These buffer rows included a range of hazelnut pollinating cultivars.  This design was 

used to reduce any edge effects on the treatment trees and to maximise the period and 

diversity of pollen shed throughout the block, in an attempt to minimise yield limitations 

from inadequate pollination. 

 

It was not possible to plant all cultivar treatments in the main year of planting due to the 

unavailability of some cultivars.  This applied particularly to the cultivars ‘Willamette’ 

and ‘Lewis’ at Orange and Myrtleford as, at that time, these cultivars were relatively new 

releases from the breeding program at Oregon State University and had only recently been 

imported into Australia.  At Kettering, it was possible to plant these 2 cultivars in the 

same year as the others.  All sites were planted with rows 5 metres apart and trees 3 

metres apart down the rows (Plate 3.2); at a semi-dense planting of 660 trees per hectare.  

This density was used to minimise the area of land required for the research yet provide 
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sufficient space for tree development without overcrowding.  Trees were planted in July 

or August when they were dormant. 

 

 

3.5 Measurements 

 

3.5.1 Cultivar characteristics 
 

Cultivar names were based on the information provided by those who provided the 

planting material.  However, observations on a range of genetically determined 

characteristics were used to assess whether the cultivars were true to type.  The characters 

selected were based on those proposed by Thompson et al. (1978) and subsequently 

Bioversity, FAO, CIHEAM (2008).  Fifteen key descriptors (Table 3.7) were selected for 

this validation.  The United States Department of Agriculture (USDA) has a 

comprehensive collection of hazelnut cultivars at Corvallis in Oregon.  The characteristics 

of many of these cultivars have been documented and are available from the USDA, 

Agricultural Research Service at, www.ars.usda.gov/cor/catalogs/corcult.html.  The 

characteristics listed in Table 3.7 were noted for all the cultivars studied in this research 

and compared with those for the same cultivars in the hazelnut germplasm repository at 

Corvallis.  These comparisons are tabled in Appendix A of this thesis. 

 

Nut samples were sent to Oregon State University to obtain the opinion of Professor 

Mehlenbacher on whether the imported, named cultivars were true to type.  Based on 

these comparisons of characteristics and the opinion of Professor Mehlenbacher, the only 

cultivar that it was considered to be incorrectly named was that provided as ‘Tonda 

Romana’.  It was not possible to provide the specific identity of this genotype but it 

showed the characteristics of Sicilian types and was probably closely related to 

‘Montebello’.  In this thesis it has been referred to as “Sicilian-type”.  In 1998, trees of 

‘Tonda Romana’ were imported into Australia by Ferrero Australia and planted at Orange; 

during their growth and subsequent development they exhibited the typical characteristics 

of ‘Tonda Romana’. 

 

http://www.ars.usda.gov/cor/catalogs/corcult.html
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Table 3.7 Fifteen plant descriptors adopted from Bioversity, FAO and CIHEAM (2008) to 

describe and identify the cultivars used in the study. 
Descriptor type Score range Reference cultivars  

Growth descriptor 

Tree vigour  1 (Low ) 

9 (Very high) 

‘Imperial de Trebizonde’  

‘Segorbe’ 

Tree growth habit 1 (Very erect) 

5 (Drooping) 

‘Daviana’  

‘Imperial de Trebizonde’ 

Bud descriptors 

Bud colour 1 (Green) 

3 (Reddish) 

‘Segorbe’ 

‘Merveille de Bollwiller’ 

Bud shape 1 (Conical/pointed) 

3 (Globular) 

 

‘Segorbe’ 

Date of vegetative bud break Date when 50% buds 

are enlarged 

 

Nut and kernel 

Involucre (husk) length compared to 

nut length 

3 (Shorter) 

7 (Longer) 

‘Jemtegaard 5’ 

‘Du Chilly’ 

Predominant nut number per cluster 1 (one nut) 

4 (Three to four) 

‘Daviana’ 

‘Negret’, ‘Segorbe’ 

100-nut weight (g) Actual weight  

Nut shape 1 (Oblate) 

6 (Long sub-

cylindrical) 

‘Imperial de Trebizonde’ 

‘Du Chilly’ 

Nut shell colour 3 (Light brown) 

5 (Dark brown) 

‘Ennis’ 

‘Negret’ 

Shell stripping 0 (Absent) 

7 (Many) 

‘Fertile de Coutard’ 

‘Ennis’ 

Size of nut basal scar in relation to 

nut size 

3 (Small) 

5 (Medium) 

7 (Large) 

‘Segorbe’ 

‘Ennis’ 

‘Merveille de Bollwiller’ 

100-kernel weight (g) Actual weight  

Kernel fibre texture 3 (Lightly corky) 

5 (Medium corky) 

‘Segorbe’ 

‘Fertile de Coutard’ 

Kernel blanching 0 (None) 

9 (Very good) 

‘Ennis’ 

‘Negret’ 

 

It was not possible to use DNA ‘bar-coding’ to identify cultivars. 

 

 

3.5.2 Tree growth 
 

A key question identified (Section 2.4.4) in relation to tree growth was: 

How vigorously will the cultivars grow and how will their growth rates vary between 

sites and seasons? 

 

General observations of tree growth were made throughout the period of the experiment.  

In April of each year, the butt circumferences of all treatment trees were measured 10-15 

cm above the ground.  These measurements were used to make comparisons of tree 

growth between years and between cultivars, as well as to determine yield efficiency.  

Yield efficiency was determined from the accumulated nut yields (kg) 7 years from 
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planting, divided by the trunk cross-sectional area (TCSA) measured in cm
2
 in April of 

that seventh year, i.e. just after harvest.  A similar technique was used by McCluskey et al. 

(2005) although the number of years over which nut yields were accumulated varied in 

their experiments. 

 

 

3.5.3 Bud break 
 

The dates when the vegetative buds had enlarged and the scales had started to open, 

showing the green of the leaves inside (Figure 3.8), were recorded on a weekly basis at all 

sites in all seasons. 

 

 

 

Plate 3.8 Buds of ‘Barcelona’ at the bud break stage 

 

3.5.4 Floral phenology 
 

The key questions (Section 2.4.4) in relation to floral phenology were:  

3. When will the cultivars come into anthesis and how will the floral phenology differ 

between cultivars and across sites and seasons?  

4. How will environmental conditions influence floral phenology? 

The following phases of floral phenology were systematically recorded. 

 

Pollen shed 

Periods of pollen shed and female anthesis were recorded at weekly intervals each year at 

all sites.  These periods were first recorded for most trees, in the second winter after 

planting.  Pollen shed involves the phases of catkin extension, leading to extended catkins 

shedding pollen and eventually complete dehiscence with dry catkins.  These phases do 

not occur simultaneously with all catkins (Plate 3.10) nor are there sharp changes in 
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development, so that identifying the phases involves some degree of judgment rather than 

absolute precision.   

 

As flowering varied across cultivars, study sites and seasons and because phenological 

developments occurred over a period of about 10 weeks, it was necessary to develop a 

standardised system that could be used by those involved in recording these changes at all 

sites and for all years.  Although pollen shed could be considered to have commenced 

when a few catkins were shedding pollen, the commencement of pollen shed was recorded 

as the date when about 10% of the catkins had started to shed pollen.  Bergoughoux et al 

(1978) described this as the Fm 1 stage of individual catkin development, the beginning of 

discharge of pollen.  The end of pollen shed is harder to define than the beginning, as the 

catkins slowly lose their pollen, making it difficult to be precise when they have finished 

shedding.  To try and overcome this problem, it was decided to consider that the end of 

pollen shed was when only about 10% of the catkins were still shedding, the remainder 

having shed all their pollen, the Fm 2 stage as described by Bergoughoux et al (1978).  

The period of pollen shed was between the dates of commencement and completion. 

 

The stage of pollen shed was assessed weekly for all cultivars.  A similar system of 

weekly monitoring of pollen shed was used by Santos and Silva (1994), although, in their 

case, they considered pollen shed had started when 5% of the catkins were shedding 

pollen.  They also noted the issue of staggered or asynchronous development in flowering 

on a given tree. 
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Plate 3.9 Clusters of catkins, upper right to lower left, unopened, extending and fully open.  

The catkins on the far left on a further branch have begun to dry out at the completion of 

pollen shed. 

 

 

Female anthesis 

Records were kept of the development of female flowers.  There was a difficulty in 

defining the commencement of female anthesis, as potential female flowers are 

indistinguishable from vegetative buds.  The date when several (3-4 per branch) female 

flowers with extended stigmas were first observed on the trees was considered to be the 

beginning of female anthesis.  This was described by Bergoughoux et al. (1978) as the Ef 

2 stage.  It was not possible to describe this in percentage terms of receptive flowers as 

female flowers are not visible before they exert their stigmas.  The end of female anthesis 

was recorded as the date when the stigmas of most flowers were desiccated and there were 

few flowers remaining with exerted stigmas.  This end point tended to be unclear as, 

towards the end of anthesis, stigmas had a withered, dark purple appearance.  Similar 

problems were reported by Bergoughoux et al. (1978).  The recorded dates provided an 

estimate of the commencement and duration of female anthesis. 
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These methods were used at all sites in all seasons.  The method of data collection was 

explained to the field staff and collaborating growers, who monitored developments in 

floral phenology and bud break.  Occasional visits were made to the sites in winter to 

validate the methods being used.  The author collected all the data at the Orange site.  As 

observations were made weekly, this system was found to be relatively reliable across 

sites, observers and seasons. 

 

Catkin abundance  

The relative number of catkins per cultivar gives some indication of the potential of that 

cultivar as a polleniser.  A relative score 1 (low) – 5 (high) was used with 5 being the 

rating for the cultivar that appeared to have the greatest number of catkins at the site, in 

the year of recording.  Unfortunately, the relative number of catkins does not give any 

indication of pollen viability or pollen numbers, which are also important considerations, 

nor does it give any indication of compatibility of pollen.  A similar scoring system of 1-7 

for catkin abundance was recommended in Bioversity, FAO and CIHEAM, (2008), with 1 

as sparse and 7 as dense. 

 

 

3.5.5 Nut yields and yield efficiency 
 

The key questions (Section 2.4.4) in relation to nut yields were: 

3. When will the cultivars commence bearing nuts, what will be the development of 

yield over years from planting and what will be their yield potential? 

4. What will be the variation in nut yields between cultivars and the environments in 

which they are grown? 

 

Nut yields were obtained by collecting all of the fallen nuts from under the pair of 

treatment trees for each cultivar in each replicate during late summer to early autumn, 

March – April.  The nuts were dried at 30-35°C for 3 days and then cleaned; any husks 

were removed before weighing and recording. 

 

In the early years of nut production, nuts at the Orange and Myrtleford sites that had fallen 

were gathered from the ground at weekly intervals during the period of nut fall, starting in 

late February in the years 2000, 2001 and 2002 at Orange and 2001 and 2002 at 

Myrtleford.  The nuts from each cultivar for each date of collection were dried at 30-35°C, 
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counted and weighed.  A random sample of 50 nuts was taken from each of the weekly 

collection of nuts from the higher-yielding cultivars.  These were cracked out to determine 

the proportion of blank nuts.  This data was used to determine the periods of peak nut fall 

for each cultivar, the proportion of blank nuts and when the blank nuts fell. 

 

Yield efficiency was assessed from the cumulative nut yield for the tree of each cultivar, 

seven years after planting, divided by the trunk cross-sectional area (cm
2
) of the tree in the 

autumn of that seventh year. 

 

 

3.5.6 Kernel assessments 
 

The key question (Section 2.4.4) in relation to kernel quality was:  

How will kernel attributes vary between cultivars and how will these attributes be 

influenced by environmental conditions? 

 

Nut samples were taken for kernel assessments.  For the higher-yielding cultivars, a 

composite random sample of at least 100 nuts was taken from the total yield of nuts from 

each replicate for the assessment of kernel quality.  For lower-yielding cultivars, it was 

often only possible to take 1 composite sample from the trees across all replicates. 

 

Two cracking boards were made from 10 mm thick plywood boards (Plate 3.10).  Fifty 

holes that were 24 mm in diameter were drilled in one of these at 40 mm centres in 5 rows 

of 10 holes.  In the second board, holes were 32 mm in diameter and were at 60 mm 

centres; this board was for large nuts.  A small handful of nuts was placed on the boards 

and spread until all the holes were filled.  The nuts in each hole were cracked using a 

sharp blow with a small hammer.  After cracking the 2 samples of 50 nuts, 100 nuts in 

total, the number of holes, in which there were no kernels, were counted to obtain a 

measure of the number of blank nuts.  All the well-filled kernels were counted and 

weighed to obtain an average kernel weight.  The remaining kernels were assessed for any 

defects, these included shrivelled or poorly-filled, those with black tips, mould, brown 

stain and twin kernels.  The numbers of defective kernels in each category were counted 

and recorded.  Kernel percentage was calculated from the weight of well-filled kernels 

divided by the weight of 100 nuts. 
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Plate 3.10 Plywood boards with holes drilled to hold individual nuts.  The small hammer was 

used to crack nuts.  The board on the left was used for large nuts. 

 

Blanching characteristics were assessed by heating samples of whole kernels in an oven at 

a temperature of 140–150°C for 15 minutes, followed by rubbing the blanched kernels in 

a cloth to remove any loose skin or pellicle.  Ratings of the degree of blanching were 

made using the 1–7 rating scale that has been used in the Oregon State University cultivar 

evaluation programme (McCluskey et al, 2001), where 1 = 100% removal and 7 = nil 

removal of the pellicle. 

 

Some kernel samples were sent to the NSW Agriculture laboratories in Wagga Wagga 

(subsequently Department of Primary Industry NSW) for determination of their chemical 

composition, particularly their fatty acid composition, oil content and levels of α 

tocopherol, to provide some indication of variation between cultivars and seasons as well 

as a comparison with overseas data.  These samples were not replicated.  The methods 

used were: 

 Fatty Acid Profile WWA1 Method 2-1702 

 Free Fatty Acids Method OACS AC 5 -41 

 Α Tocopherols (Vitamin E)  Method OACS Ce 8-89 
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3.6 Weather records and climate data 

 

Five automatic weather recording stations from Environdata Australia Pty. Ltd., (Percy St, 

Warwick, Queensland) were installed, at 1 per site.  The weather stations measured air 

temperature, relative humidity, wind run, wind direction, solar radiation and rainfall.  

There were 3 memories; 1 was for recording mean data from the instruments on an hourly 

basis.  A second memory recorded the maximum and minimum temperature, maximum 

and minimum relative humidity, the total wind run, average wind direction, total solar 

radiation and total rainfall on a daily basis.  It also calculated total evaporation based on 

the Penman formula, the total chilling hours, i.e. the hours when the temperature was in 

the range 0–7°C.  The third memory recorded the intensity of rainfall by recording the 

frequency the tipping buckets emptied; each tip was equivalent to 0.2 mm of rain.   

 

The instruments were calibrated by Environdata before installation, but were checked for 

accuracy twice yearly, with a complete clean of the weather stations and instruments 

annually.  The memories were downloaded monthly, which provided an opportunity to 

ensure the instruments were working correctly.  Occasionally the weather stations failed 

to record, mainly as a result of battery failures.  They were promptly repaired and put back 

into service.  Any missing data was obtained from other sources, such as records 

maintained at research stations or from the closest weather station operated by the 

Australian Bureau of Meteorology.  The instrument that proved least reliable was the 

relative humidity sensor; all other instruments were generally found to be reliable and 

operated well with few faults. 

 

The weather data recorded was used principally to describe the climate of the sites, how 

this varied between sites and seasons and how climate affected crop phenology, 

development and some aspects of production. 

 

 

3.7 Leaf analysis, soil samples and fertiliser treatments 

 

During February of each year, from the second growing season after planting, composite 

leaf samples of at least 100 fully expanded leaves were obtained from each site.  These 

samples were collected at random across each site and analysed for the total content of 

selected elements.  This data was compared with desirable levels for hazelnuts as reported 
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by Olsen (2001) and used to assess the general nutrient status of the experimental trees 

and to determine fertiliser requirements at each site. 

 

Samples from the top 0–100 mm of soil were collected, in March 2003 and again in 

March 2006, for the mainland sites, and in March 2008 for the Kettering site, to assess the 

available nutrients in those years and to compare them with the nutrient status of soil 

samples taken at the commencement of the experiments.   

 

No fertiliser was applied to young trees in the year of planting at any of the sites, as the 

roots of young hazelnut trees are considered to be very sensitive to fertiliser at this early 

stage.  In subsequent years, Nitram ® (ammonium nitrate; 34% N) was sprinkled around 

the trees in the spring, at the rates shown in Table 3.8.  As trees came into production, an 

NPK mix of Pivot 400 ® was used to boost levels of phosphorus (P) and potassium (K) 

which may have been removed in harvested nuts.  Nitrogen fertilisers are the main 

fertilisers recommended for young developing hazelnut trees (Olsen, 2001). 

 

Table 3.8 Typical rates of fertiliser elements applied per tree at the field sites.  The actual 

fertiliser used varied slightly with sites and circumstances. 
Year from 

planting 

Rate of element (g/tree) 

Nitrogen (N) Phosphorus (P) Potassium (K) Sulphur (S) 

3 10 - - - 

4 15 - - - 

5 20 - - - 

6 25 - - - 

7 onwards 30 5 8 9 

 

The level of nutrients measured in the leaf samples was used as a basis for determining 

fertiliser applications to meet the nutrient requirements of the trees.  No nutrient 

deficiencies were observed, although high levels of manganese were recorded at Orange 

and it was possible these might have had a detrimental effect on tree growth at that site. 

In Tasmania, a slow-release fertiliser was used from 2001 onwards, providing the same 

rate of nutrients as at other sites (Table 3.8).  The slow-release fertiliser was used on that 

site because it was suspected that damage from nitrogen fertiliser had occurred following 

very high rainfall which saturated soils in September and October, 2000. 

 

3.8 Irrigation 

 

Micro-sprinkler irrigation systems were installed at all sites except Orange and Kettering, 

where drip irrigation was initially used.  In the spring of 2002, the irrigation system at 
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Orange, that had comprised two 4L/hour drippers per tree, was changed to a system of a 

single 30L/hour micro-sprinkler per tree in order to provide a greater distribution of water 

within the tree rows.  This change was made to match the irrigation systems of all the 

other mainland sites.  Drip irrigation was used throughout the commercial orchard at 

Kettering, necessitating the use of drip irrigation on that study site.   

 

The amount of irrigation water applied during the irrigation season was recorded weekly.  

The frequency and rates applied were influenced by rainfall and the amount of water 

available for irrigation.  In the months of December–February inclusive, the equivalent of 

about 25 mm of rain was applied per week, when less than 10 mm of rain had fallen.  The 

aim was to try and maintain available soil moisture levels in the top 600 mm of soil above 

50% of field capacity.  The approximate quantities of irrigation water applied per tree, in 

the growing season, the months of August- February over the years 2000/01–2007/08, are 

shown in Table 3.9. 

 

Table 3.9 Total rainfall (mm) August –February and approximate quantities of irrigation 

water applied as litres (L) per tree at the 5 sites, on a per season basis. 
 

 

Seasons 

Orange Moss Vale Myrtleford Toolangi Kettering 

Rain 

mm 

 

L/tree 

Rain 

mm 

 

L/tree 

Rain 

mm 

 

L/tree 

Rain 

mm 

 

L/tree 

Rain 

mm 

 

L/tree 

2000/01 633 240 655 200 775 840 767 200 634 90 

2001/02 521 1100 816 200 538 300 703 0 858 0 

2002/03 328 1700 354 1050 219 2160 313 0 538 200 

2003/04 552 1050 566 500 834 960 N/A N/A 638 140 

2004/05 672 300 621 600 766 480 N/A N/A 592 60 

2005/06 781 500 N/A N/A 587 1440 N/A N/A 576 240 

2006/07 N/A N/A N/A N/A N/A N/A N/A N/A 514 160 

2007/08 N/A N/A N/A N/A N/A N/A N/A N/A 427 190 

Note: N/A - Not applicable as site no longer being used for research 

 

At the Orange, Moss Vale and Myrtleford sites, relatively high rates of water were applied 

in 2002/03 to try to compensate for the severe rainfall deficits in that season.  The low 

rainfall at Moss Vale limited water supplies in the dam used for irrigation and, as a 

consequence, the amount of irrigation applied was less than desirable, in that very dry 

season.  The effects of this are discussed in the chapters on tree growth and nut yields.  At 

Toolangi, the water supplies were limited and were in greater demand for other research 

programs, making it impossible to irrigate the hazelnut research site in the very dry season 

of 2002/03.  The summer of 2006 was very dry at Kettering, hence the high level of 

irrigation applied; it was also dry in the summer of 2008.  However, water supplies were 

limited in that year with little being available for irrigation. 
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At a tree density of 660 trees per hectare, irrigation levels of 1600 L/tree are equivalent to 

1 megalitre of water per hectare.  It can be seen that, at Myrtleford, water use was 2160 

L/tree in the very dry season of 2002/03, i.e. 1.4 ML/ha.  More detailed records of rainfall 

during the period of the experiment are presented in the chapters on tree growth, nut 

yields and kernel characteristics. 

 

 

3.9 Orchard management 

 

After planting, the young trees were mulched to minimise moisture loss from the soil 

around the trees.  Straw and old hay of low nutrient status were used for this purpose.  The 

stems of the trees were painted with a dilute mixture of white acrylic paint to minimise 

sunburn.  The weeds in the tree rows were sprayed with Roundup ® (glyphosate) and 

hand-weeded as necessary.  The strips between the trees were mown to encourage a short 

grass and clover sward. 

 

Suckers were removed from the base of each tree by hand in the first 2 to 3 years to 

maintain a single stem.  In subsequent years, Sprayseed ®, a paraquat plus diquat contact 

herbicide mixture, was used at regular intervals to kill young suckers in the spring and 

early summer.  This was supplemented by hand-cutting, as required. 

 

Pruning of trees was undertaken from about the third year of planting to shape trees into 

an open-vase form on a single stem and to remove any limbs that affected orchard 

operations.  At Myrtleford, it was necessary to do significant pruning each winter from the 

seventh year from planting, to minimise limbs crossing within the rows between cultivars 

and across the rows (Plate 3.11).  This was necessary to minimise the mixing of nuts from 

adjacent cultivars at nut fall and to facilitate mechanical harvesting. 
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Plate 3.11 Trees were pruned at Myrtleford in July 2003, 7 years after planting, to remove 

cross-over branches and to reduce spread across the rows. 

 

 

3.10 Pests and diseases 

 

Site managers made observations of pests and diseases throughout the experimental 

period and took action to manage any pest and disease problems. 

 

3.10.1 Pests 

 

A number of pests were recorded from the study sites over the period of the research.  

Collected specimens were identified by the Australian Scientific Collections Unit, Orange 

Agricultural Institute, DPI NSW.  These observations were then incorporated into 

BioLink, an Australian database.  Nearly all of the accessions in that collection relating to 

hazelnuts were sourced over the duration of the research project.   
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Recorded pests included: 

 painted apple moth (Teia anartoides); 

 fruit tree borer (Marogo melanostigma); 

 green peach aphid (Myzus persicae); 

 hazelnut aphid (Myzocallias coryli). 

 

Infestations of aphids were controlled at some sites with the insecticide Pirimor ®.  This 

insecticide was only used when aphids were considered to be at damaging levels.  The 

hazelnut aphid (Myzocallias coryli) was of greatest concern at Kettering, where it seemed 

more difficult to control than at other sites and caused black sooty mould on the leaves of 

trees in autumn. 

 

Borers generally affected unhealthy trees.  The Orange site, where the trees had made 

relatively poor growth, had relatively high borer counts.  No borers were recorded at 

Myrtleford, Toolangi or Kettering, with only a few at Moss Vale.  Borers are a serious 

pest, as the larvae can kill whole trees by girdling or ring-barking the branches or trunks.  

Ring-barking of branches occurred on a few trees at Orange.  No preventative insecticide 

treatments were available for use.  The pest was controlled manually by poking a piece of 

wire down the hole when evidence of the insect was found. 

 

Big bud mite (Phytoptus avellanae Nal.), a serious pest of hazelnuts in Europe and some 

cultivars in North America, (AliNiazee, 1997; Ozman and Toros, 1997), was observed by 

the author on old collections of hazelnut trees in Tasmania in 1998.  Infected trees were 

found in the Hobart Botanic Gardens, an old arboretum at Perth in the Northern Midlands 

where a plant nursery was once located, and at a site adjacent to the North Esk River at 

Hadspen.  It appears this pest is relatively widespread in Tasmania in older plantations 

and was seen in 1 plant nursery.  It was not initially present at the study site at Kettering 

but by 2005 some infected trees were found in the commercial orchard adjacent to the 

research site and subsequently were found in the study site.  It is suspected the pest was 

introduced in hazelnut stock in the early years of plant introduction into Tasmania.  In 

1998 and 1999, a number of bud and leaf samples were collected from the research sites 

in Tasmania and on the mainland.  Big bud mite was only found on samples from 

Tasmania (Snare and Knihinicki, 2000). 
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3.10.2 Diseases 

 

The major disease recorded from the study sites was the bacterial disease, hazelnut blight 

(Xanthomonas arboricloa pv. corylina).  This was most prevalent at Orange, with some 

minor occurrence at other sites.  Copper oxychloride as either Kocide ® or Cuprox ® was 

applied at Orange annually in May from 2004 at 50% leaf-fall to try to protect the young 

developing trees.  It seems that damage to stems caused by hail can present opportunities 

for bacterial spores to enter the plant and cause infection, the effects of which may not be 

seen until the following season. 

 

3.10.3 Other pests 

 

Other pests included hares, deer and wallabies that damaged young plants from time to 

time.  An electric fence was erected around the Moss Vale site to supplement the existing 

rabbit and stock-proof fence, as deer and wallabies were pests at that site, which abutted a 

State Forest.  Rabbit netting and electric fencing was erected around the Kettering site, 

where rabbits and wallabies were a problem.  Wombats caused some minor damage at 

Toolangi. 

 

Sulphur crested cockatoos (Cacatua galerita) were a major pest at harvest time, causing 

large losses of nuts at Orange, Toolangi and eventually at Myrtleford in 2006, as 

discussed under nut yields.  This pest was managed at Moss Vale through the use of bird-

scaring tactics.  Sulphur crested cockatoos seem to be less common in Tasmania. 

 

 

Additional experiments 

 

As well as the main field experiments, some additional investigations examined in greater 

depth some of the phenomena observed in the field.  This included the use of growth 

cabinets to investigate the effects of temperature on floral phenology and a nutrient culture 

experiment to study the effects of manganese on the growth of young trees.  Details on 

these additional studies are presented in the appropriate chapters. 
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Data and statistical analyses 

 

All data was entered into spreadsheets and checked for errors and consistency.  Data 

analyses were mainly done using GenStat Release 12.1, with some regression analyses 

using Microsoft Excel 2003.  The main procedures used were analysis of variance 

(ANOVA) for comparisons between cultivars and sites on data collected on tree growth, 

time of flowering, nut yields and kernel quality.  Regression analyses were used to assess 

the effects of environmental conditions, mainly temperature and rainfall effects on floral 

phenology, tree growth, nut yields and kernel quality. 
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 CHAPTER 4 - TREE GROWTH 
 

 

4.1 Introduction 
 

Hazelnut cultivars vary markedly in their relative vigour, growth habit and tendency to 

produce suckers at the base of the trunk (Mehlenbacher, 1991b).  Vigour is a relative term 

and is often based on observations and comparisons with reference cultivars (Bioversity, 

FAO and CIHEAM, 2008) rather than objective measurements.  Although measurements 

of trunk circumference are relatively easy to obtain and give an indication of relative tree 

vigour, they do not provide a measure of overall tree size.  Santos et al (1994) found that 

the crown volume and the total stem mean area of 11 hazelnut cultivars grown as multi-

stem trees in Portugal were not highly correlated.  Despite these limitations, measurements 

of trunk cross-sectional area (TCSA) are commonly used to assess tree growth and yield 

efficiency (Westwood, 1993) and (McCluskey, et al., 1997). 

 

Cultivars that are considered to be of high vigour include ‘Barcelona’ and ‘Hall’s Giant’ 

(Mehlenbacher 1991b).  ‘Ennis’ and ‘TGDL’ are considered to be of intermediate vigour 

and ‘Imperial de Trebizonde’ (syn ‘Wanliss Pride’) is of low vigour (Bioversity, FAO and 

CIHEAM, 2008).  However, there are reports of cultivars performing differently under 

different pedoclimatic conditions.  For example, Grau and Bastias (2005) reported high 

vigour of growth of ‘TGDL’ at Los Robles in Chile on a “low stress” site, whereas in 

more “stressful” situations it was of low vigour.   

 

Although some parts of Australia have similar climates to hazelnut growing regions of 

Europe and Oregon, Australian soils are generally very different.  Most Australian soils 

are ancient and have been developed in situ from the parent material; many are highly 

leached and have duplex profiles, with heavier-textured sub-soils (Charman and Murphy, 

1991).  The growth of cultivars in Australia may be considerably different from their 

growth overseas and may differ between regions in Australia, due to either differences in 

soil type or climate. 
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This chapter investigates the growth of hazelnut cultivars under varying seasonal 

conditions and the different soil types on the 5 field sites as described in Chapter 3, 

Methods.  It aims to answer the question: 

 How vigorously will the cultivars grow and how will this vary between sites and 

seasons? 

 

 

4.2 Methods 
 

There were 3 main factors that were likely to influence tree growth at the study sites: 

 Genetics (Cultivars) 

 Time (Development of trees over years from planting) 

 Environmental conditions (Soils and climates of the study sites) 

 

In order to assess the potential effects of these 3 variables, the trunk circumferences of all 

trees in the experimental blocks were measured annually, 10-15 cm above the ground, as 

stated in Chapter 3, Methods, (3.5.2 Tree growth).  This was converted to trunk cross-

sectional area (TCSA), and used as an indication of tree growth.  Although TCSA has 

some limitations as an estimate of tree growth, it is a commonly used, simple method.  In 

addition to these measurements, observations and ratings of relative tree growth were 

made. 

 

A combined analysis of variance of the annual TCSA measurements obtained over 7 years 

for 8 cultivars that were common to all 5 sites was conducted.  The 8 cultivars were 

‘Barcelona’, ‘Ennis’, ‘Hall’s Giant’, ‘Segorbe’, the “Sicilian type”, ‘Tonda di Giffoni’, 

‘TBC’ and ‘Victoria’.  The main factors were cultivars, sites and years from planting, with 

years from planting considered as a split plot for analysis. 

 

Separate analyses of variance were also conducted on annual measurements of TCSA for 

all cultivars at each site.  Years from planting were again treated as split plots. 
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4.3 Results and Discussion  
 

The analysis of variance of the annual measurements of TCSA of 8 cultivars at the 5 sites 

over 7 years showed that there were highly significant differences (P=<0.001) in the mean 

TCSA of the cultivars with years from planting (Figure 4.1).  However, there was a 

significant (P<0.001) interaction between cultivars and sites, indicating that some cultivars 

grew better than others at some sites.  Although the interaction effects were statistically 

significant, they were minor compared with the effects of time, cultivars and sites. 

 

The mean annual TCSA of all the cultivars increased each year from planting over the 7 

years, Figure 4.1.  Quadratic and linear functions accounted for 99% and 98%, 

respectively, of the variation for all 8 cultivars. 

 

Mean annual TCSA across 5 sites
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Figure 4.1 Mean increase in TCSA for 8 cultivars across the 5 study sites over 7 years from 

planting. 

 

On average, ‘Barcelona’ had the highest growth rate of the 8 cultivars and the “Sicilian 

type” the lowest.  Examples of growth rate differences between cultivars and sites and the 

interaction effects between these are shown in Figure 4.2.   
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4.3.1 Cultivar comparisons 
 

There was a significant (P<0.001) cultivar x site interaction effect in relation to the growth 

of the cultivars, with no single cultivar having the highest growth rate at every site. 

 

At Orange ‘Barcelona’ had a similar TCSA to ‘TBC’, with both cultivars being greater 

than the others.  However, at Moss Vale, the mean TCSA of ‘TBC’ and ‘Tonda di Giffoni’ 

were significantly greater than ‘Barcelona’.  At Myrtleford, ‘Barcelona’, ‘TBC’, ‘Tonda di 

Giffoni’ and ‘Victoria’ had the highest mean TCSA.  ‘Barcelona’ had the highest mean 

TCSA at Toolangi.   
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Figure 4.2 Mean TCSA of 8 cultivars grown at each of the 5 study sites over a period of 7 

years from planting. 

 

It is difficult to hypothesise on the reasons for these differences.  However, the climates 

and soil types at the 5 sites were different, indicating that environmental conditions could 

influence the growth and subsequent productivity of cultivars.  

 

Generally, the vigour of growth of the cultivars, as assessed by TCSA, lay on a 

continuum, ranging from those with high growth rates, such as ‘Barcelona’, to those with 

low growth rates, such as ‘Wanliss Pride’ (Figure 4.3).   
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Figure 4.3 Mean trunk cross-sectional area (cm
2
) of cultivars at Myrtleford and Kettering, 

over 9 years from planting. 

 

Reference cultivars recommended for relative tree vigour include ‘Fertile de Coutarde’ 

syn. ‘Barcelona’ and ‘Merveille de Bollwiller’ syn ‘Hall’s Giant’ for high vigour, ‘Ennis’ 

(intermediate), ‘Negret’ and ‘TGDL’ (low) with ‘Impérial de Trébizonde’ syn ‘Wanliss 

Pride’ as very low (Bioversity, FAO and CIHEAM, 2008). 

 

Although cultivars could be placed in groups based on their relative growth rates, these 

seem rather arbitrary, based on the interaction effects between sites and tree growth, along 

with the observations that within sites there is general grading in cultivar vigour from high 

to low.  However, the data on mean TCSA values can be separated into high growth rates, 

LSD = 13.8  
(P=0.05) 

LSD = 11.3 
(P=0.05) 
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intermediate (75% of the highest cultivar), low (50% of the highest cultivar) and very low 

(25% of the highest cultivar).  On this basis, ‘Barcelona’ and ‘Tonda di Giffoni’ are in the 

high growth category and ‘Ennis’ is in the intermediate category at both sites.  However, 

‘Negret’, ‘TGDL’ and ‘Wanliss Pride’ varied between sites but were generally of low 

vigour with low growth rates at both Myrtleford and Kettering.  These cultivars are 

generally considered to be of low vigour (Mehlenbacher (1991b). 

 

‘Barcelona’ grew consistently well at all sites.  Other cultivars that generally had high 

growth rates included ‘Atlas’, ‘Butler’, ‘TBC’, ‘Segorbe’, ‘Tonda di Giffoni’, ‘Tonollo’, 

and ‘Victoria’, although their relative growth rates varied between sites, illustrating the 

interaction effect between cultivars and sites.  The cultivar ‘Hammond#17’ grew well at 

Myrtleford, where it had a similar growth habit to ‘Butler’.  ‘Hammond#17’ grew very 

vigorously at Kettering (Figure 4.3). 

 

The cultivar ‘Wanliss Pride’ made poor growth at all sites, particularly at Orange, where 

many plants died in the first and second years.  Replacement plants of ‘Wanliss Pride’ also 

died with none of the original trees remaining at the end of the experiment. 

 

The “Sicilian type” was of intermediate vigour, resulting in a small compact tree.  It 

produced high nut yields for its size with a high yield efficiency, as discussed in Chapter 

7.  ‘Willamette’ was a relatively small, compact tree as described by Mehlenbacher et al. 

(1991). 

 

Habit of growth 

Observations of relative tree height and spread were made at all sites in the early years of 

growth.  The relative shape or spread of the cultivars did not vary greatly between sites 

and was considered to be principally a genetic characteristic, although modified by 

environmental conditions.  The typical form of growth of the cultivars is given in Table 

4.1 for trees in their fourth growing season at Myrtleford.  This was at a stage when it was 

considered that trees were able to express their individual habit of growth, prior to them 

meeting down the rows (Plate 4.1) when competition between trees might have influenced 

their growth form. 
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Table 4.1 Relative vigour and growth habit of cultivars at Myrtleford in their fourth 

growing season (14 December, 2000) 
 

 

Cultivars 
TCSA 

(cm
2
) 

Relative 

height 

1 (low) – 5 

(high) 

Relative 

spread 

1 (erect) – 5 

(spreading) Growth habit 

‘Butler’ 74 5 4 Very vigorous, semi dense 

‘Segorbe’ 71 5 4 Vigorous, dense foliage 

‘TBC’ 68 4.5 4 Dense, large leaves 

‘Barcelona’ 68 5 3 Relatively open  

‘Tonda di 

Giffoni’ 67 4.5 4 Semi-dense foliage 

‘Victoria’ 64 4.5 3 High vigour, dense foliage 

‘Atlas’ 60 4.5 4 Relatively dense foliage 

‘Tonollo’ 59 3.5 4 Open  

‘Ennis’ 58 4.5 4 Dense foliage 

‘Daviana’ 49 3.5 3 Relatively dense  

“Sicilian type” 47 3.5 4 Relatively open 

‘Hall's Giant’ 47 4.5 3 Relatively open 

‘Hammond#17’ 45 4.5 3 Semi dense 

‘Royal’ 44 3.5 3 Compact, dense 

‘TGDL’ 41 3.5 3 Erect, open 

‘Eclipse’ 41 2.5 4 Spreading open habit 

‘Casina’ 38 3.5 3 Compact 

‘Negret’ 33 2.5 2 Relatively low vigour, dense 

‘Square Shield’ 33 3 1 Erect, open  

‘Wanliss Pride’ 17 2 5 Relatively open, spreading 

 

This data showed a good relationship between TCSA and height (R
2
 = 0.77), with an 

increase of 0.05 relative units per cm
2
 increase in TCSA (Figure 4.4). 
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Figure 4.4 Relationship between relative tree height (1 low – 6 high) and TCSA. 

 

There was no relationship between TCSA and the spread of the crown, which is in 

agreement with the studies of Santos et al (1994).  However, tree shape and an 
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approximation of tree volume can be obtained by multiplying relative height by relative 

spread.  Relative volume was found to be related to TCSA (R
2
 = 0.69), it increased at 0.25 

relative units per cm
2
 increase in TCSA (Figure 4.5).  
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Figure 4.5 Relationship between relative tree volume (height x spread) and TCSA. 

 

Although ‘Wanliss Pride’ had a low TCSA, it had a relatively high tree volume, due to its 

spreading habit of growth.  In comparison, ‘Negret’ and ‘Square Shield’ both had a very 

low tree volume, due to their short stature and erect habit of growth.  The implications of 

high vigour, high values of TCSA and tree shape on nut yields will be discussed in 

Chapter 7, Nut Yields. 

 

The cultivars ‘Lewis’, ‘Montebello’ and ‘Willamette’ were not included in the initial year 

of planting at Myrtleford.  As a result, their growth was very erect due to competition with 

the earlier-planted trees.  Ratings of their relative growth and descriptions of their habit of 

growth have not, therefore, been included in Table 4.1. 

 

 

Wanliss Pride 

Negret 

Square Shield 



 134 

4.3.2 Site effects on growth 
 

There were highly significant differences (P<0.001) between the sites in the increase in the 

mean TCSA (cm
2
) for the 8 cultivars over the 7 years from planting, Figure 4.6.  There 

was a linear relationship for increase in TCSA for all sites (R
2
 ≥ 0.98).  The highest 

average annual increase in TCSA for the cultivars was 20.6 cm
2
 at

 
Myrtleford; the lowest 

was 9.1 cm
2
 at Orange.   
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Figure 4.6 Annual increase in mean trunk cross-sectional area (cm
2
) of  

8 cultivars over 7 years from planting at the 5 study sites 

 

At Myrtleford, the high rate of growth resulted in the canopies of most cultivars meeting 

within the tree rows in the fifth growing season (Plate 4.1).  As the TCSA of woody plants 

increases, the relative growth rate decreases as the relative proportion of the trunk mass 

increases faster than the photosynthetic area.  Thus the trees at Myrtleford with their 

highest increase in TCSA become relatively woodier at an earlier age and it would be 

expected they would reach full canopy and maximum nut yields at an earlier age, as 

discussed in the next chapter. 
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Plate 4.1 Trees at Myrtleford in the summer of their fifth growing season.  At this stage most 

cultivars were just meeting down the tree rows. 

 

There are 3 factors that could account for the differences between the sites: 

 Site management 

 Climate 

 Soils 

 

It is likely there would be interactions between these; however, their effects are initially 

discussed separately. 

 

Site management 

As discussed in the methods, common management plans were developed for the sites to 

try to minimise differences between sites in tree growth and productivity.  However, there 

were some differences in irrigation practices with Toolangi and Kettering using drip 

irrigation systems whereas Myrtleford and Moss Vale used micro sprinklers throughout 

the period of research.  At Orange a drip system was used initially on the young trees 

changing to a micro-sprinkler system after 4 years. Availability of water supplies also 

affected levels of irrigation as discussed in this chapter and those on nut yields and kernel 

quality.  Thus methods and levels of irrigation confounded differences between sites in 

management, rainfall and the availability of soil moisture. 
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4.3.3 Climate effects on tree growth 
 

Key climatic factors that affect the growth of plants are temperature, moisture supply and 

solar radiation (Westwood, 1991).  Strong winds may also have an adverse effect on the 

growth of hazelnuts as reported by Bergoughoux et al. (1978).  Major differences between 

the sites in these climate characteristics might account for the differences in tree growth 

between the sites.  Records from the weather stations at each site were used to obtain mean 

values for temperature, growing degree days (GDD >10°C), solar radiation, evaporation, 

rainfall and wind run for the months of October – February each year (Table 4.2).  These 

months are considered as being the main months for the growth of hazelnut trees in 

Australia. 

 

Table 4.2 Mean monthly air temperature (°C), solar radiation (MJ/m
2
), evaporation (mm), 

rainfall (mm) and wind run (km) over the months of October – February. 

 Orange Moss Vale Myrtleford Toolangi Kettering 
Mean temperature (°C) 14.8 17.2 18.7 14.6 14.5 

Mean GDD >10°C 722 1081 1317 701 679 

Solar radiation (MJ/m
2
) 22.7 21.1 22.1 18.7 16.4 

Evaporation (mm) 122 104 110 119 107 

Mean rainfall (mm) 71 85 68 85 77 

Wind run (km) 2530 2510 2406 2710 2325 

 

The highest mean increase in TCSA was obtained at Myrtleford, followed by Toolangi 

and Moss Vale, which were very similar.  The mean monthly temperatures at Moss Vale 

were considerably higher than those at Toolangi, which was very similar to Orange and 

Kettering, yet tree growth was considerably higher at Toolangi than those centres, Figure 

4.6.  Analyses were done to assess if there was any correlation between the increase in 

TCSA at the study sites and any of the climatic variables shown in Table 4.2.  No 

significant relationships were found between these climatic variables and tree growth, 

although it is recognised that temperature and rainfall in the growing season can affect tree 

growth.  It is possible that within the temperature range of the sites, the differences in the 

mean temperatures between the sites were not having a limiting effect on growth. 

 

Mean monthly evaporation rates were similar across all sites.  They were higher than mean 

monthly rainfall at all sites.  Wind run was high at all sites; this is discussed later in this 

section. 
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Rainfall effects on tree growth 

Although the mean growing season rainfall, October – February, was similar across sites 

(Table 4.2) and was not correlated with increase in TCSA, there were large differences 

between months and seasons. 

Very low rainfall was recorded in the winter and spring of 2002 in South-eastern 

Australia.  It was particularly dry that year at Moss Vale in the 5 months of July - 

November (Figure 4.7).  This is a period when the available soil moisture store should be 

increasing prior to trees making active shoot and trunk growth, following bud break in 

September - October.  The estimated soil moisture was calculated from rainfall and 

evaporation recorded on the site, with a crop factor of 0.3 until bud break in September.  

Values of 0.5 and 0.6 were used for the months of October and November, based on the 

work of Mingeau and Rousseau (1994).  Irrigation was applied in November, equivalent to 

approximately 50 mm of rainfall.  Evaporation rates rose rapidly in October and 

November, with the estimated quantity of available soil moisture store (SMS) declining to 

very low levels in the months of October and November (Figure 4.7). 
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Figure 4.7 Estimated available soil moisture for the months of May – November, 2002 

 

Due to the low winter and spring rainfall at Moss Vale, the spring that fed the irrigation 

dam did not flow and there was limited irrigation water available to make up for the low 

rainfall during the critical period of growth and nut development from October - February.  

Irrigation usage was a total of 2820 L/tree, Table 3.9, Chapter 3. 
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The relative rate of increase in the TCSA of the 11 cultivars grown at Moss Vale shows a 

decline over the 8 years following planting in 1996 (Figure 4.8).  A decline in the relative 

rate of increase in TCSA is common in woody plants (Tromp et al., 2005), as the 

proportion of actively growing tissue declines in proportion to the woody material 

produced in earlier years.  In the dry spring of 2002, the trees were subjected to 

considerable moisture stress, particularly in November, with relatively little new shoot 

growth.  The rate of increase in TCSA declined to a greater extent than expected, based on 

the trend line, Figure 4.8.  Lower increments in the increase of TCSA of hazelnut trees in 

Italy due to low rainfall (161mm) during the growing season, in their case April – 

September, were reported by Bignami and Natali (1997). 

 

In the following year at Moss Vale, the September – November rainfall was 334 mm 

which appeared to favour tree growth, resulting in a greater relative increase in TCSA, 

suggesting some compensatory growth. 
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Figure 4.8 Relative rate of increase in TCSA (cm²) of 11 cultivars at Moss Vale planted in 

1996, compared with total rainfall (mm) in the months of September – November 

 

At Myrtleford, the rainfall was also below average in the 2002 growing season, only 198 

mm in the 4 months of August to November, compared with the mean of 445 mm.  

However, at that site, more water was available for irrigation with a total of 4240 L/tree 

being used through that growing season (Chapter 3, Table 3.9).  The combination of 

slightly more rainfall and a higher level of supplementary irrigation at Myrtleford had less 
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adverse effect on tree growth than at Moss Vale.  At the other sites, the rainfall deficits in 

that season were less severe with little impact on tree growth. 

 

Excessive soil moisture 

In contrast to dry seasonal conditions, some young trees died at Kettering, as the result of 

abnormally high rainfall in the spring of 2001.  A total of 267 mm of rain was recorded for 

the months of June, July and August with a further 342 mm of rainfall being recorded in 

September and October of that year.  This caused the poorly-drained soil to become 

saturated.  The damaging effect of rainfall in this period was most likely due to the poor 

drainage of the clay sub-soil at that site (Table 4.4).  Under conditions of high rainfall, 

poor soil drainage leads to low levels of oxygen in the soils, which can inhibit or stop root 

growth and the up-take of nutrients (Russell, 1961) and (Westwood, 1993).  These 

observations are in agreement with those of Thompson (1981) and Germain and 

Sarraquigne (2004), who reported that hazelnut trees do not tolerate poorly-drained soils. 

 

The wet conditions experienced in September 2000 at the Myrtleford site, which was 

flooded for approximately 2 days with the trees standing in about 500 mm of water, did 

not appear to have any adverse effect on tree growth and neither did the 628 mm of 

rainfall at Moss Vale in August 1998.  It appears that damage is more likely to occur when 

poorly-structured clay soils are saturated for an extended period in the spring, when the 

trees are making active growth. 

 

Frost effects 

In October 2003, severe damage to the buds and young leaves of the trees was observed at 

the Orange site, probably due to a late spring frost.  A minimum temperature of -4.7°C 

was recorded at the site on 29 September 2003.  Ratings of the severity (0 nil – 5 severe) 

of the damage were noted for 18 cultivars in all 4 replicates.  The effects ranged from very 

severe, major damage to newly-developed leaves for the cultivars ‘TGDL’, ‘Tonda di 

Giffoni’ and ‘Lewis’, to none for the late-leafing cultivars, ‘Hall’s Giant’ and ‘Ennis’.  

The level and causes of the damage are discussed in the next chapter, in Part B, Section 

5.6, ‘Bud Break’. 

 

Despite the severe level of damage on some cultivars, such as ‘Barcelona’ and ‘Tonda di 

Giffoni’, this did not appear to have affected overall seasonal growth, as reflected in the 

TCSA of these cultivars in the following autumn, May 2004, 9 years after planting.  
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However, many growing points had been killed by the frost in the badly-affected cultivars, 

resulting in the production of many side shoots. 

 

Wind 

Hazelnut trees can be adversely affected by strong and persistent winds, particularly in the 

spring (Bergoughoux et al., 1978).  This was very obvious at Toolangi, with trees in the 

top south-western corner of the site being considerably smaller and more bent than those 

further down the slope, where there was greater wind protection.  Another factor causing 

poor growth at Orange could be attributed to wind effects, as initially that site had very 

little shelter from wind.  At the time of planting, the Orange site was far windier than the 

Myrtleford site (Figure 4.9).  However, 8 years after planting, total annual wind run at 

Orange had been reduced by over 60% (Figure 4.9), due to the combined effects of the 

casuarina trees (Casuarina cunninghamiana) that had been planted as a wind break and 

the developing hazelnut trees themselves.   
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Figure 4.9 Total annual wind run at the Orange and Myrtleford sites and mean monthly 

wind at the Orange, Myrtleford and Kettering sites (km) 

 

At most sites, strong winds in spring and summer caused damage to both leaves and 

developing shoots of young trees, with some leaf scorch being observed in summer, 

associated with hot dry winds.  At most sites, the windiest period of the year was in the 

spring (Figure 4.9). 

 

The hazelnut trees at the Kettering site were planted in a young orchard and received some 

protection from the surrounding orchard trees.  As a result, the mean monthly wind run at 

Kettering was, on average, less than that at Orange (Figure 4.9), yet the trees at that site 
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made poor growth.  Although strong winds were observed to cause some reduction in tree 

growth in the top south-western corner of the site at Toolangi, it was concluded that winds 

at Orange were not likely to be a major factor contributing to the poor growth at that site. 

 

 

4.3.4 Conclusions on climate 
 

It was concluded that the main climatic factor influencing tree growth across the sites was 

related to inadequate rainfall or soil moisture in early spring when trees were making 

active shoot growth.  Excessively wet conditions in the spring, associated with poorly 

drained soils, also impaired tree growth. 

 

The frost at Orange, in 2004, demonstrated that a severe frost in spring at early leafing can 

be very damaging to young trees.  The recommendation of Germain and Sarraquigne 

(2004), to avoid locations where the minimum temperature after leafing out should be no 

less than -3°C, is considered to be valid.   

 

Strong winds were observed to adversely affect tree growth, but were not considered to be 

a major factor influencing differences in tree growth between the sites.  Differences in 

mean temperatures, solar radiation and wind run between sites did not appear to be major 

factors affecting tree growth.  However, availability of soil moisture was significant, 

particularly on a seasonal basis.  

 

 

4.3.5 Soil effects  
 

As the significant differences observed in tree growth between sites did not seem to be 

related to differences in mean temperatures, solar radiation, and wind run between sites, 

the question arises, did soil type have a significant effect? 

 

Soil type was reported as having a very significant effect on the growth and production of 

Corylus avellana L. by Woodroof (1967), Lagerstedt (1981), Thompson (1981), 

Mehlenbacher (1994), Botu and Tucu (2001), and Germain and Sarraquigne (2004b).  

Desirable soil attributes are considered to be: deep (at least 1.2 m), loam texture (sand – 

clay loams), well-drained, fertile, with pH 6-7.  Heavy clay soils should be avoided, 

particularly if poorly-drained (Woodroof, 1967 and Thompson, 1981).  Using these 
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characteristics, parameters for suitable soil attributes were developed for site assessment, 

Table 4.3.  A limitation of these soil attributes is that they are developed from studies 

conducted on soils in Europe and North America with no mention of the effects of soils 

with duplex profiles.  As the bulk of hazelnut roots are in the surface 0.6 m (Thompson, 

1981) and (Germain and Sarraquigne, 2004), soils that have a duplex profile with an A 

horizon that is 250-300 mm deep overlaying a clay B horizon, may have limitations in 

their suitability.  A point score was given for each attribute based on the emphasis given in 

the literature.  The physical attributes of texture, depth and drainage seem to be the 

attributes most emphasised; they are also the attributes that are the most difficult to 

change.  Soil pH can be amended with liming and fertility with the addition of fertilisers. 

 

Table 4.3 Key parameters to assess the suitability of soils for hazelnut production 
Key attribute Comments Max points 

Texture  Loam, range sandy – clay loams 4 

Deep>1.0 m Majority of roots in top 0.6 m going down to at least 1.2 m.  

A duplex profile with clay B horizon is probably a major 

limitation 

 

4 

Good drainage 

and aeration 

Positive indicators are red colour (good aeration), no 

mottling, stable structured (little dispersion or slaking of soil 

crumbs) 

 

4 

Fertility  Desirable levels for hazelnuts see Table 4.5 (Olsen, 1995)  1 

 

pH 6.0-7.0 Slightly acid to neutral 1 

 

Soils of the study sites 

The characteristics of the soils at the study sites and the levels of elements in the surface 

100 mm were assessed, as described in Chapter 3, Methods.  There were large differences 

between the soils of the field sites with an alluvial soil at Myrtleford, krasnozem soils 

developed from basalt at Orange and Toolangi and podsolic soils at Moss Vale and 

Kettering, Table 4.4.  All sites, except Myrtleford, had duplex soils. 
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Table 4.4 General description of soil profiles at the 5 field sites.  Soil pH values were prior to 

liming. 
 Study sites 

 Orange Moss Vale Myrtleford Toolangi Kettering 

Soil type  Krasnozem Red podsol Alluvial Krasnozem Yellow podsol 

A horizon 0–300 mm, red 

brown clay 

loam, pH 5.5; 

well structured 

0–250 mm, 

dark reddish 

brown sandy 

loam, pH 4.5–

5.0 

Brown sandy 

loam, without 

separate soil 

horizons down 

the profile, 

pH 4.5–5.0; 

well drained. 

0–300 mm, 

brown clay 

loam and pH 

5.0; friable and 

well structured 

0–250 mm, 

grey brown 

fine sandy 

loam, pH 5.0; 

weak structure 

B horizon Red light clay, 

pH 6.0, well 

structured, 

some mottling. 

Reddish brown 

sandy clay 

loam, pH 5.5 

Red brown 

light clay, pH 

5.5, good 

structured. 

Yellow-brown 

clay, pH 5.5-

6.0, poorly 

drained 

 

A subjective assessment of the suitability of the soils for growing hazelnuts was made, 

using the parameters developed in Table 4.3.  It was very difficult to make an objective 

assessment on the characteristics of texture and depth in the duplex soils.   

 

Table 4.5 Assessment of the suitability of the soils at the study sites based on 5 key 

attributes. 
Key attribute Orange Moss Vale Myrtleford Toolangi Kettering 

Texture  Clay loam -

clay 

Sandy loam – 

clay loam 

Sandy loam Clay loam – 

light clay 

Sandy loam - 

clay 

Deep>1.0 m Duplex - B 

clay  

Duplex – B 

clay loam 

Deep alluvial Duplex – B 

light clay 

Duplex,- B 

clay 

Drainage and 

aeration 

B horizon 

mottled (some 

limitation) 

Reddish clay 

loam 

(acceptable) 

Sandy loam 

well drained 

Well 

structured 

(acceptable) 

Poor drainage 

Fertility  Acceptable Acceptable Acceptable Acceptable Acceptable 

pH 6.0-7.0 5.5-6.0 4.5-5.5 4.5-5.0 5.0-5.5 5.0-6.0 

General 

limitations 

Heavy texture, 

depth and poor 

aeration 

Depth, less 

than desirable 

pH 

Less than 

desirable pH 

Less than 

desirable pH 

Texture, depth, 

drainage and 

aeration  

Overall score 

(Max 14) 

 

8 

 

11 

 

13.5 

 

10.5 

 

7.5 

 

The overall assessments of the suitability of the soils were in approximate alignment with 

the relative growth of the trees at the sites, with the best growth occurring at Myrtleford, 

intermediate growth at Moss Vale and Toolangi and the poorest growth at Orange and 

Kettering, Figure 4.6. 

 

At Orange, the cultivars ‘Wanliss Pride’, ‘TGDL’ and ‘Negret’ made very poor growth 

with many young plants dying and requiring replacement.  At Myrtleford (Figure 4.3), the 

growth of these cultivars was better but they were generally of low vigour.  In general, the 

trees at Orange and Kettering made poor growth (Figure 4.6).  It was considered this could 

have been related to either the clay texture of the B horizon at those sites (Table 4.5) 

impeding the growth of the tree roots or associated with nutrition. 
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The soil at the Orange site was a clay loam in the A horizon, overlying a light clay (Table 

4.4).  It was generally well-structured.  At the time of planting, the topsoil pHw was 5.5, it 

was one of the least acidic of the study sites; the subsoil (B horizon) was pHw 6.0.  The 

mottling of the sub-soil was indicative of poor drainage and aeration in a wet season.  In a 

pit dug on the site, nodules of manganese were observed in the B horizon which was 

indicative of high levels of manganese which can become readily available under 

anaerobic conditions during periods of waterlogging.  Manganese can become toxic to 

some plants, inhibiting their root growth (Glendinning, 1999). 

 

Soil nutrients 

As explained in Chapter 3, Methods, soil samples were taken at all sites in March, in the 

year prior to planting, to obtain initial levels of available nutrients, Table 4.6.  These were 

used to determine lime and fertilizer requirements.  Soils were subsequently sampled again 

at the completion of the studies at each site to obtain final nutrient levels.  

 

As soil pH levels were considered to be marginal at all sites prior to planting, all sites were 

top-dressed with ground limestone prior to planting.  The levels of pH appeared to rise 

from the initial to the final figures at all sites in response to liming (Table 4.6).  There is 

limited information on desirable levels of soil phosphorus (P) for hazelnuts, with few 

responses being reported from applications of this element (Tous et al, 1994).  Levels of 

available P appeared to increase during the study period (Table 4.6), presumably due to 

applications of this element in the fertiliser treatments.  Levels of phosphorus were 

assumed to be adequate. 

 

The levels of available potassium (K), calcium (Ca) and magnesium (Mg) in the soil were 

generally above the desired minimum level (Olsen, 1995).  The levels of calcium 

increased from the initial measurement over the period of the study, presumably due to the 

applications of ground limestone.  The levels of the elements K and Mg appeared to be 

relatively stable, indicating that either the draw-down of nutrients was low or the fertiliser 

applications matched or exceeded nutrient removal. 

 

Aluminium (Al) levels were below the level considered harmful to some sensitive crops 

(Peverill et al., 1999).  The Ca/Mg ratio was greater than 2.0, indicating a stable surface 

soil structure.  Apart from soil pH, it was considered that the available nutrient levels were 
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suitable for hazelnut production, as stated in the site suitability assessment (Table 4.5).  It 

was considered that any differences between sites in fertility were unlikely to have 

contributed to the difference in growth between the sites. 

 

Table 4.6 Estimated levels of available nutrients in soil samples collected from a depth of 0-

100mm across the sites prior to planting (initial) and in the last year of study at each site. 
 Study sites  

 Orange Moss Vale Myrtleford Toolangi Kettering Desirabl

e 

levels 
Element

s 

Initia

l 

Fina

l 

Initia

l 

Fina

l 

Initia

l 

Fina

l 

Initia

l 

Fina

l 

Initia

l 

Fina

l 

pHCa 5.7 7.3 4.3 5.2 4.5 5.2 4.5 5.2 5.5 5.8 pHw 5.0 

Total C 

(%) 

2 1.8 3.8 3.2 3.3 3.5 6.6 6.1 3.5 3.7 N/A 

P 

(mg/kg) 

21 76 9 18 7 12 3 4 141 120 N/A (1) 

8 (3) 

K 

meq/100

g 

0.6 0.78 0.3 0.35 0.6 0.5 0.5 1.8 1.03 1.2 0.2 (1) 

Ca 

meq/100

g 

6.8 12 3.9 8.4 5.6 9.8 3.8 11 12.6 13 5.0 (1) 

Mg 

meq/100

g 

0.7 0.95 1.4 1 2.3 2.5 0.8 1.8 2.65 3.1 0.5 (1) 

Al 

meq/100

g 

<0.1 <0.1 0.6 0.12 0.2 <0.1 1.4 0.31 <0.1 <0.1 <5 (2) 

Ca/Mg 

ratio 

9.7 12.2 2.8 8.4 2.4 4 4.8 6.1 5 4.2 2.0 (3) 

Source: Desirable levels are for hazelnuts.  (1) Olsen, 1995 (2) Aluminium sensitive crops.  Peverill et al., 

1999.  (3) Phosphorus (P) Bray (mg/kg) for pastures 8mg/kg (Abbott and Vimpany, 1986),  

N/A Not available, pHCa (1:5 soil:CaCl2 solution)  

 

Soil carbon, which reflects organic matter content, appeared to have remained fairly 

steady, even with the use of the herbicides down the tree rows to suppress weed growth, 

which is where the soil samples were collected for the final test. 

 

Leaf analyses 

In order to monitor the nutrient status of the plants at each site, composite samples of at 

least 100 leaves were collected annually in February, as explained in Chapter 3, Methods.  

These were analysed to determine their chemical composition.  The results obtained were 

compared with levels that were considered to be desirable, based on the studies of Weir 

and Cresswell, (1993) and Olsen (2001).  The major nutrients were generally within or 

close to the desired levels, Table 4.7, suggesting that there were no major nutrient 

deficiencies affecting plant growth. 
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Table 4.7 Range of levels (lowest – highest) of key elements in leaves taken annually (mid 

summer) from the 5 hazelnut study sites, compared with desirable levels;  

levels outside the desirable range are highlighted in red. 
 

 

Elements 

Sites  

Desirable 

Range
(1)

 

Orange Moss Vale Myrtleford Toolangi Kettering 

Site ranges, lowest–highest 

Nitrogen % 2.4-3.17 2.3-2.92 2.5-2.9 2.7-3.1 2.2-3.49 2.2–2.5 

Phosphorus % 0.12-0.17 0.12-0.19 0.12-0.38 0.13-0.29 0.31-0.45 0.14–0.45 

Potassium % 0.65-1.3 0.43-1.2 0.55-1.3 0.63-1.5 0.72-1.32 0.8–2.0 

Calcium % 1.25-1.9 1.04-1.60 0.94-2.1 1.15-1.8 1.17-2.0 1.0–2.5 

Magnesium % 0.13-0.22 0.16-0.33 0.14-0.6 0.12-0.23 0.21-0.3 0.25–0.5 

Sodium % 0.01-0.05 0.05-0.17 0.01-0.24 0.02-0.13 0.04-0.12 <0 0.1 
(2)

 

Sulphur % 0.1-0.2 0.15-0.21 0.1-0.23 0.1-0.22 0.13-0.23 0.12 - 0.2 

Boron ppm 38-67 25-68 20-57 44-69 20-53 30-75 

Copper ppm 7.3-11 5-10 3-11 6.7-17 4.8-9.9 0.8–2.0 

Zinc ppm 19-32 20-40 16-49 17-45 21-47 15 - 60 

Manganese ppm 490-1900 484-1050 162-530 230-550 46-327 26–650 

(1) Desirable range for hazelnuts, Olsen, 2001.  (2) Weir and Cresswell, 1993. 

 

It is difficult to properly define ideal levels of soil nutrients for plants.  Often only limited 

work has been done to define response curves, hence ‘desirable levels’ are only a guide.  

Comparison of values obtained and desirable ranges show that most nutrients were at an 

appropriate level.  The exception was manganese which was high at Orange and Moss 

Vale.  This nutrient is known to be toxic to plants (Glendinning, 1999). 

 

Phosphorus levels in the leaf samples were at the lower end of the desirable range, 

reflecting the low levels of available soil phosphorus identified in the soil tests.  An 

exception to this was Kettering which had high levels of phosphorus in both the soil and 

the leaves, Table 4.6.  Potassium and magnesium were also at the lower end of the 

desirable range at most sites, as was calcium, despite the moderately high levels of lime 

application.   

 

The levels of manganese varied considerably across sites and years within sites.  Some 

very high readings were obtained at both Orange (1900 ppm) and Moss Vale (1050 ppm) 

in the second year after planting.  These levels subsequently declined, presumably as a 

response to soil applications of lime prior to planting and subsequently at Orange.  

However, it is possible that some initial damage was done to trees at those sites. 
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The data on the nutrient content of the leaves (Table 4.7), coupled with that for available 

nutrients in the soil (Table 4.6), indicates that the level of nutrients was generally adequate 

for healthy growth of the plants at all sites and that inadequate nutrition was unlikely to 

account for the poorer growth of trees at Kettering and Orange compared with Myrtleford. 

 

The leaf analyses were performed on a composite collection of leaves from the sites so did 

not show any differences between cultivars.  However, in 2006, leaf samples were 

collected and analysed from ‘Wanliss Pride’ as well as the composite sample for the 

Orange site.  The ‘Wanliss Pride’ sample showed far higher levels of manganese, 1200 

ppm compared with the site sample that year of 490 ppm.  The ‘Wanliss Pride’ sample 

was lower in potassium, 0.53% compared with the site mean of 0.88%.  Other elements 

were similar.  Although this sampling was not replicated or repeated in subsequent years, 

it indicated that there could be differences between cultivars in their up-take of nutrients.  

It is recognised that, in other deciduous tree crops, rootstocks can influence the up-take of 

minerals (Westwood, 1993); therefore, it is possible that the low growth rates of ‘Wanliss 

Pride’ may have been due to either that cultivar being less effective in extracting 

potassium from the soil or it may have been related to an excessive uptake of manganese, 

which may have affected root growth.  It is uncertain if any damage to hazelnut roots 

might then enable some fungal pathogens in those roots, reducing their function. 

 

The effect of manganese on hazelnuts does not appear to be well-documented in the 

literature.  However, Grau et al. (2001) considered that poor growth of hazelnuts in Chile 

on some sites may have been due to high levels of manganese.  They found higher levels 

of foliar manganese in ‘TGDL’ than in ‘Barcelona’.  In some situations ‘TGDL’ had over 

1200 ppm, with more than 6000 ppm in some other cultivars.  Grau et al. observed visual 

symptoms of manganese toxicity in some situations but these did not seem to be directly 

related to foliar levels of manganese. 

 

Annual crops and pastures can vary in their tolerance to manganese, with lucerne, canola 

and phalaris being particularly sensitive (Glendinning, 1999).  Differential cultivar 

tolerance to soil manganese has also been reported for some agricultural plants, such as 

lucerne (Sale et al., 1993) and tropical beans (Gonzalez and Lynch, 1999).  It seems 

possible that some hazelnut cultivars, such as ‘Barcelona’, ‘TBC’ and ‘Tonda di Giffoni’, 

could be more tolerant of high levels of soil manganese than are cultivars such as ‘Wanliss 

Pride’, ‘Negret’ and ‘TGDL’. 
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Manganese availability is influenced by soil type.  Krasnozem soils developed on basalt 

are commonly high in manganese (Peverill et al, 1999).  When these soils are saturated 

with water and oxygen levels are low, manganese compounds are reduced and become 

soluble.  On drying, the manganese is oxidised, becomes insoluble and forms deposits and 

nodules in the soil (Charman and Murphy, 1991).  The availability of manganese is 

affected by soil pH, with manganese becoming less available as soil pH is increased 

(Uren, 1999).  The lime applied pre-planting at all sites raised soil pH by 0.5 to 1 unit 

(Table 4.6).  The general decline in the levels of manganese in leaves, particularly at 

Orange (Figure 4.6), was probably due to the effects of liming and the consequent rise in 

soil pH.  At that site, 5 tonnes of ground limestone were applied pre-planting, with a 

further 7 tonnes being applied in 2001 and 2 tonnes in 2004. 

 

Fluctuating manganese levels between seasons are possibly due to winter-spring rainfall, 

with higher levels of available manganese occurring as a result of relatively high winter-

spring rainfall, such as at Orange in 2000. 

 

There is the possibility that the high levels of manganese (Mn) in the first 7 years at 

Orange (Figure 4.10) might have caused a deleterious effect on the growth of the hazelnut 

trees in the early years of growth.  Foliar levels of manganese at that site were above the 

desirable range of 26 – 650 ppm reported for hazelnuts by Olsen (2001), although there 

was a general trend of declining levels during the study period.  As high levels of 

manganese at Orange may have had a deleterious effect on tree growth, it was decided to 

do a sand culture experiment with varying levels of manganese to investigate the effects of 

manganese on young hazelnut plants. 
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Figure 4.10 Levels of manganese in leaf samples collected annually in February from all 

sites. 

 

 

4.3.6 Manganese toxicity - sand culture experiment  
 

Sand culture experiments have been used to assess the tolerance of crops to manganese 

and the visual symptoms of toxicity.  A wide range of crop plants were reported by Hewitt 

(1966) to be tolerant of 0.5 ppm of manganese in sand culture experiments with some 

tolerating up to 5 ppm.  Levels above this were toxic to many crops.  It was decided to 

conduct a sand culture experiment with rates up to 50 ppm.  The aim of the experiment 

was to ascertain the response of young hazelnut trees to levels of manganese in the range 

0-50 ppm. 

 

Methods – sand culture experiment 

A small factorial sand culture experiment was conducted at Orange, which comprised 2 

cultivars (‘Barcelona’ and ‘Wanliss Pride’) and 6 levels of manganese (0, 0.5, 2, 5, 20 and 

50ppm).  There were 2 replications in a randomised block layout.  Twenty four (24) plastic 

tubs with a capacity of 40 L had 4 holes drilled in their base for drainage and were filled 

with coarse, washed river sand (Plate 4.2).  Dormant hazelnut whips of the cultivars 

‘Barcelona’ and ‘Wanliss Pride’ were placed in these tubs on 13 September, 2004.  

Further details of the methods used are given in Appendix C. 

 

Max desirable 

levels of Mn 
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Plate 4.2 Young trees of ‘Barcelona’ and ‘Wanliss Pride’ grown in a sand culture medium 

with a range of levels of manganese applied weekly to ascertain their effects on tree growth. 

 

On 5 October, when the trees were at the early leafing stage, 2 L of a Manutec ® 

hydroponic solution mix formulated for vegetables was applied to each of the tubs as a 

base nutrient treatment; this was repeated at weekly intervals for the duration of the 

experiment.   

 

The Manutec ® formulation was close in analysis to the standard solution used for sand 

and water studies for fruit trees at the Long Ashton Research Centre in the UK (Hewitt, 

E.J., 1966), (Appendix C). 

 

Applications of the manganese treatments were commenced in early November, when it 

was considered the trees had become established.  The manganese treatment solutions 

were made from manganese sulphate, providing a series of solutions containing 0, 0.5, 2.0, 

5.0, 20 and 50 ppm of manganese, as per Appendix C.  These solutions were applied 

weekly at 1 L per tub.  The manganese treatments were in addition to the 1 ppm of 

manganese in the Manutec® solution.  The 2 cultivars used were selected to try to assess 

any possible differences in cultivar tolerance.  Although the manganese sulphate increased 

the sulphur levels at the same time as the manganese, these increased levels of sulphur 
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were minor, apart from the 20 and 50 ppm levels of manganese, compared with the levels 

of sulphur provided by the Manutec® solution. 

 

The tubs were located in a sheltered garden.  In addition to the Manutec® and manganese 

solutions, they were supplied with water on a needs basis depending on weather 

conditions.  Observations of tree growth were made on a monthly basis.  No adverse 

effects were recorded on any trees during the growing period.  The trees were removed 

from the pots on 17 March 2005 and thoroughly washed to remove the sand from the 

roots.  The whole plants were weighed.  The roots were cut from the tops at the level of 

the sand surface and weighed, to give separate weights for tops and roots.  Regression 

analyses of levels of manganese (6) were conducted on shoot and root weights (Figure 

4.11). 

 

 

Results and Discussion 

Neither the linear or quadratic regressions of shoot or root weights to the levels of applied 

manganese were significant with either ‘Barcelona’ or ‘Wanliss Pride’.  The level of 

variation within the samples was relatively high, with low R² values, Figure 4.11. 

 

Both the root and shoot biomass of the ‘Barcelona’ was significantly greater (P=0.05) than 

that of the ‘Wanliss Pride’ (Figure 4.11).  Root biomass was greater than that of the shoots 

for both cultivars.  The ratio of shoots:roots was significantly greater (P=0.05) for 

‘Barcelona’ at 0.66 compared with 0.45 for ‘Wanliss Pride’.  The total plant biomass was 

an average of 781 g/plant for the ‘Barcelona’ compared with 408 g for the ‘Wanliss Pride’, 

reflecting the growth of these 2 cultivars in the field experiments. 
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Figure 4.11 Relationship between levels of manganese and the mean weights of shoots and 

roots for the cultivars ‘Barcelona’ and ‘Wanliss Pride’ 

 

There could be a number of reasons why there did not appear to be any response to the 

manganese treatments, viz: 

 There was insufficient replication of the treatments; 

 The rates of manganese were too low, although 50 ppm is quite high; 

 The manganese treatments were not applied from planting.  They were applied 

when the plants were established in early November, possibly hazelnut plants are 

most sensitive to manganese when they are developing their new roots 

immediately after planting; 

 The sand was well drained and consequently well aerated; poor aeration and poor 

root growth might increase the adverse effects of manganese; 

 Manganese may damage roots and enhance fungal infections that reduce root 

function.  In a well-aerated soil, like coarse sand, pathogenic fungi may not be 

active. 

 

Although the results of the experiment were considered inconclusive, they indicated that 

hazelnut trees do not appear to be highly sensitive to manganese, which is contrary to the 

initial hypothesis.  Future work needs to look at the interactions of manganese, aeration, 

temperatures and levels at planting, plus possible pathogens, to see what effects occur. 
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An aspect of interest from this experiment was the huge amount of fibrous root growth 

from both cultivars in all of the treatments, Plate 4.3, indicating the nature of root growth 

in a light-textured soil. 

 

 

 

Plate 4.3 Mass of fibrous roots produced by plants grown in sand with a nutrient solution 6 

months after planting 
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Physical soil factors 

If high levels of manganese were not the reason for the poor growth of ‘Wanliss Pride’ at 

Orange and no other nutritional effects were apparent, could the poor growth be attributed 

to physical soil factors?  

 

‘TGDL’ and ‘Negret’ grew poorly at Orange and ‘TGDL’ and ‘Wanliss Pride’ also 

showed low vigour at Kettering, where foliar levels of manganese were the lowest of all 5 

sites, Figure 4.10.  Negret’ was not grown at Kettering.  ‘TGDL’ is the main cultivar 

grown in the Langhe region of Italy, where the soils are mainly composed of marine 

sediments of Tertiary origin, such as marls, silts and sands (Tropeano, 1984).  Variable 

growth of this cultivar was reported by Grau et al (2001) in Chile.  In Oregon, ‘TGDL’ 

was reported to be of much lower vigour than ‘Barcelona’ but was similar to ‘Negret’ 

(McCluskey et al 1997).  ‘Negret’ is the main cultivar grown in Spain, where it grows as a 

relatively small bushy tree.  However, when grafted onto rootstocks of more vigorous 

genotypes, such as the non-suckering hybrid rootstock of ‘Dundee’, its vigour was 

increased markedly (Tous et al, 2009).  It seems that these cultivars are generally of 

relatively low vigour.  Even at Myrtleford, the site with the highest average growth rates, 

‘TGDL’ and ‘Negret’ lacked vigour compared with other cultivars.  It appears highly 

likely that the poor growth of ‘Negret’, ‘TGDL’ and ‘Wanliss Pride’ at Orange and the 

latter 2 cultivars at Kettering, was due to some physical soil factor, such as the relatively 

high clay texture of the B horizon at those sites (Table 4.5) and poor drainage in wet years, 

but this might have been accentuated by a poor up-take of some nutrients.   

 

 

4.4 General discussion and conclusions 
 

Cultivars 

There were significant differences between the hazelnut cultivars in their growth rates.  

These differences were primarily genetically influenced, as rankings did not change much 

with climate, soil type or other variations in growing conditions.  TCSA was found to be a 

useful measure of tree growth, correlating with semi-quantitative measures of whole tree 

growth.  Tree growth rates varied between sites, but similar rankings among cultivars 

occurred across sites.  The growth rates of cultivars generally lay on a continuum.  Those 

with high growth rates (high vigour) included ‘Barcelona’, ‘Butler’, ‘Hall’s Giant’ and 

‘Segorbe’, which were also reported as being of high vigour by Lagerstedt (1975), 
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Thompson et al, (1978) and Mehlenbacher (1991).  In contrast, cultivars with low growth 

rates (low vigour) included ‘TGDL’, ‘Negret’ and ‘Wanliss Pride’. 

 

The reasons for the variation in rates of growth between cultivars were not evident.  While 

significant differences in tree growth were found, this did not mean that those differences 

translated into nut yields, as will be investigated in subsequent chapters. 

 

Sites 

Sites had a large and significant effect on tree growth.  Growth rates varied two-fold, the 

highest being 20.6 cm
2
/annum, the lowest being 9.1 cm

2
/annum (Figure 4.6).  The reasons 

for this are unclear.  Differences between the sites in temperature and rainfall patterns 

were considered not to be significant factors.  However, there were individual season 

differences.  At 1 site, high moisture stress from very low soil moisture during the period 

of active shoot growth in October and November resulted in lower growth rates.  

Excessive moisture in early spring had an adverse effect on growth on the poorly drained 

soil at Kettering.   

 

The frost damage to trees at Orange indicated the importance of avoiding locations where 

late frost can occur.  It is considered the climatic parameter for the minimum air 

temperature in October should be -3°C, as recommended by Germain and Sarraquigne 

(2004).  This is discussed further in the next chapter. 

 

Although strong winds were observed to cause some damage to developing shoots and 

young leaves, wind was not considered to be a major factor contributing to differences in 

tree growth between sites. 

 

Site differences were considered to be related principally to soil type.  It was hypothesised 

that manganese toxicity may have been a factor influencing tree growth.  However a sand 

culture experiment failed to demonstrate any effect. 

 

The influence of soil texture, soil depth and aeration were not scientifically evaluated, 

although soil profiles in the top 600 mm of soil were described, including the 

characteristics of texture, colour, structure, drainage and pH. 
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The deep, well drained, sandy loam of Myrtleford appeared to be the most suitable soil 

type for root growth.  In contrast, the yellow podzolic soil at Kettering, with the yellow 

brown clay of its B horizon, was far less suitable, due to poor aeration and drainage.  

Although the sub-soil at the Orange site was probably better drained than at Kettering, as 

indicated by its red colour, its heavy texture may have impeded active root growth of the 

developing hazelnut trees.  However, the mottling and manganese nodules indicated poor 

aeration and waterlogging in some seasons.  Average rates of tree growth at this site were 

similarly low to the Kettering site. 

 

The ratio of top growth to root growth is considered to be relatively constant for a tree 

species (Westwood, 1993); therefore if a soil is unfavourable to root growth due to poor 

drainage, poor aeration or heavy texture, the top growth is likely to be restricted, such as 

occurred at Orange and Kettering, with potential impacts on productivity as discussed in 

Chapter 7. 

 

There appear to be few specific studies on the growth of hazelnut roots and the effects of 

soil texture and drainage on root and tree development.  It is considered there is a need for 

such studies in relation to soil type and the influence of root development on tree growth.  

There is also a need for studies on the uptake of water from the soil under conditions of 

high temperatures, low humidity and high evaporation. 

 

It is considered that parameters to assess the suitability of soils for hazelnut production, 

such as those listed in Table 4.3, should be evaluated.  There is a need for scientific studies 

to ascertain the effects of soil texture, structure, root impedance, drainage and aeration on 

growth rates, particularly in relation to duplex soils. 

 

The relationship between tree growth and nut yields is examined in Chapter 7, Nut yields, 

yield development and yield efficiency. 
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CHAPTER 5 - CULTIVAR FLORAL PHENOLOGY 
 

 

Introduction 
 

The pollination of hazelnuts (Corylus avellana L.) occurs during the winter.  The plant is 

monoecious, with separate male and female flowers on the same plant.  In winter, the 

catkins (male flowers) shed their pollen which is carried by the wind.  The stigmas of the 

female flowers (glomerules) become elongated and develop into structures that resemble 

small red spiders.  Pollen landing on these stigmas can pollinate the female flowers. 

 

Bud break, the time when the vegetative buds start to open, occurs in early spring 

following anthesis (flowering) and marks the beginning of the plant’s growing season. 

 

Both the processes of flowering and bud break occur after a period of chilling.  This 

probably causes growth inhibitors in the catkins, the staminate (female) flowers and the 

vegetative buds to decline to low levels, when other plant regulating compounds can 

stimulate their development.  This chapter examines the development of these plant organs 

and how they vary with cultivar, time and seasons.  The chapter has been written in 2 

parts; Part A examines the flowering process and Part B the timing of bud break. 

 

 

Part A Floral phenology 
 

5.1 Introduction 
 

Hazelnuts are grown for their nuts; an understanding of the processes of reproduction in 

hazelnut and how these are influenced by environmental conditions is important in 

evaluating genetic material.  The production of female flowers, their successful 

pollination, subsequent fertilisation and their development are keys to nut yields and 

productivity, as discussed in Chapter 2, Section 2.2.4 ‘Reproduction in Hazelnuts’ and 

illustrated in Figure 2.4. 

 

Corylus avellana L. is an anemophilous species with pollen grains being dispersed 

through the air by light winds and then captured by receptive stigmas.  Stigmas can be 

receptive for up to 2 months (Germain 1994).  Only a small percentage of the pollen grains 
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that land on the stigmas produce pollen tubes that reach the base of the style, resulting in 

pollination. 

 

Flowering generally occurs in winter after a period of chilling to break the dormancy of 

the catkins and staminate flowers.  It is considered that the chill requirements of catkins 

are generally lower than those for female flowers, (Kavardzhikov 1982, Mehlenbacher, 

1991a and Germain 1994).  The need for post-chill warmth to stimulate flowering was 

reported by Barbeau (1972), Kavardzhikov (1980), Mehlenbacher (1991a), Turcu et al 

(2001) and Tiyaynon (2008).  This post-chill warmth was generally considered to be 

greater for catkins than for female inflorescences. 

 

In a Mediterranean climate, such as SW France and Italy, most cultivars behave in a 

protandrous manner, (Bergoughoux et al. 1978) and (Manzo and Taponi 1982); that is, 

catkins shed pollen before female anthesis.  However, in more continental climates with 

colder winters, the degree of dichogamy, that is the period between pollen shed and female 

anthesis, is less, with many cultivars behaving in a homogamous manner (Germain 1994).  

Under very cold winter conditions, some cultivars become protogynous, that is female 

anthesis occurs before catkins shed pollen (Turcu et al. 2001). 

 

Hazelnuts are generally self-incompatible with incompatibility occurring between some 

cultivars (Germain 1994).  Incompatibility is determined sporophytically and depends on a 

series of alleles at a single locus, S, as discussed in Chapter 2, Section 2.2.4, 

‘Reproduction in Hazelnuts’.  The incompatibility alleles have been identified and 

published for a very wide range of cultivars (Mehlenbacher, 1997). 

 

Cultivars vary widely in the number of catkins they form, the amount of pollen they 

produce and the viability of the pollen (Mehlenbacher 1991b).  For a given cultivar, catkin 

abundance varies from year to year, due to fluctuations in shoot growth and crop load.  

Cultivars that generally produce many catkins include ‘Hall’s Giant’ and ‘Casina’ whilst 

‘TGDL’ and ‘Kentish Cob’ produce few catkins.  Some cultivars, such as ‘Daviana’, drop 

their catkins in autumn or early winter.  Other cultivars, such as ‘Negret’, produce little 

pollen, whilst ‘Barcelona’, ‘Ennis’ and ‘TGDL’ can produce defective pollen 

(Mehlenbacher, 1991b). 
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For successful pollination to occur in a cultivar, pollen from a compatible cultivar needs to 

be shed at the time when the stigmas of the recipient cultivar are exerted and receptive.  

Therefore, it is important to select genetically compatible cultivars with synchronous 

flowering to ensure pollination in commercial orchards.  As the timing of pollen shed and 

female anthesis, for any given cultivar, varies with climatic conditions, it is essential to 

ascertain the floral phenology of cultivars in new regions of production, such as Australia. 

 

This part of the chapter focuses on floral phenology, including observations on the relative 

abundance of catkins and how this varies between cultivars.  The timing and duration of 

pollen shed and female anthesis is assessed and how this varies between cultivars and 

seasons.  This chapter does not attempt to assess how climate, particularly temperature, 

might affect these phenomena; these effects are examined in the next chapter, Chapter 6, 

‘The effect of temperature on floral phenology’. 

 

The key questions to be answered in this chapter are: 

 What will be the phenological response of the cultivars being evaluated? 

 How will this response vary between seasons and sites? 

 

 

5.2 Methods 
 

 

5.2.1 Catkin abundance  
 

The relative number of catkins per cultivar may give some indication of the potential of that 

cultivar as a pollinator.  However, it does not give any indication of pollen viability, 

numbers, or compatibility.  Despite these limitations, an estimate was made of the relative 

number of catkins per cultivar by giving a relative score 1 (few) to 5 (many), with 5 being the 

rating for the cultivar that appeared to have the greatest number of catkins at a site in the year 

of recording, as suggested by Thompson et al., (1978).  Relative catkin abundance was 

estimated for all cultivars at all sites in early winter, before catkin extension.  In most cases, 

ratings of relative catkin abundance were undertaken from the second winter after planting. 
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5.2.2 Pollen shed 
 

The dates of commencement of pollen shed and female anthesis were recorded at weekly 

intervals for each cultivar in each year at all 5 study sites.  They were first recorded, for 

most trees, in the second winter after planting.  As flowering varied between cultivars, 

study sites and seasons, and these phenological developments occurred over a period of at 

least 10 weeks, it was necessary to develop a system that could be used at all sites by the 

people who were involved in recording these developments.  Although pollen shed could 

be considered to have commenced when a few catkins were shedding pollen, the 

commencement of pollen shed was recorded as the date when about 10% of the catkins, 

for a given cultivar, had started to shed pollen.  

 

 

 

Plate 5.1 Extended catkins at pollen shed.  To the left of the catkins is a female flower with 

fully exerted red stigmas.  Female inflorescences are compound buds, with a lower vegetative 

part. 

 

The end of pollen shed was harder to define than the beginning, as catkins slowly lose 

their pollen, making it difficult to be precise as to when they have finished shedding 

pollen.  To try to overcome this problem, it was decided to record the end of pollen shed 

as the date when it was estimated that less than 10% of the catkins were still shedding; the 

remainder having shed all their pollen.  The duration of pollen shed was between the dates 

of commencement and completion. 
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5.2.3 Female anthesis 
 

Records were kept of the development of female flowers.  As with catkins, there was a 

similar problem in defining the start of female anthesis; that is when female flowering had 

commenced, as potential female flowers are indistinguishable from vegetative buds.  The 

date when several female flowers were visible, with fully-extended stigmas as in Plate 5.1, 

was considered to be the beginning of female anthesis.  It was not possible to describe this 

in percentage terms of receptive flowers as female flowers are not visible before they 

exert their stigmas.  The end of anthesis was recorded as the date when the stigmas of 

most flowers were desiccated and there were few flowers remaining with exerted stigmas.  

This end point tended to be unclear as, towards the end of anthesis, stigmas had a 

withered, dark purple appearance.  The recorded dates provided an estimate of the 

commencement and duration of female anthesis.  The difference in dates for the 

commencement of pollen shed and female anthesis were used to determine the relative 

degree of protandry, measured in days. 

 

 

5.3 Results 
 

 

5.3.1 Catkin abundance 
 

The mean relative number of catkins for each cultivar was calculated for each study site, 

based on 4 years of records.  An overall mean for all sites was determined, Table 5.1.  

Cultivars that consistently had a very high number of catkins across sites and seasons 

included ‘Hall’s Giant’ (‘Merveille de Bollwiller’ syn.), ‘TBC’ (‘Tokolyi/Brownfield 

Cosford’), ‘Victoria’, ‘Woodnut’ and ‘Square Shield’.  These scored an average of more than 

4 points (maximum of 5 points).  However, there were many other cultivars that scored an 

average of greater than 3 out of 5.  There was generally little difference in the relative 

number of catkins for a given cultivar between sites. 

 

At the other end of the scale, ‘Wanliss Pride’, ‘Tonollo’ and ‘TGDL’ produced few catkins.  

Data was only available for ‘Kentish Cob’ from the Kettering site, where it had regularly 

produced a high number of catkins, although Mehlenbacher (1991b) reported this cultivar as 

a poor producer of catkins.  ‘Jemtegaard 5’ was only grown at 1 site, Orange, but produced 

many catkins late in the season with an average rating of 3.6.  Seven cultivars scored an 

average of more than 3.5 out of the maximum score of 5, Table 5.1. 
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Table 5.1 Mean values for relative catkin abundance (1=few - 5=many) produced by 

cultivars over a period of 4 years at all sites. 

 

Cultivars 

Overall 

Mean 

(Max 5) Orange Moss Vale Myrtleford Toolangi Kettering 

Cultivars with data from all 5 sites 

‘TBC’ 4.5 4.0 4.8 4.0 4.8 4.8 

‘Hall’s Giant’ 
(1)

 4.2 4.2 4.3 3.6 4.5 4.7 

‘Victoria’ 4.2 4.3 3.3 4.3 4.5 4.8 

‘Square Shield’ 4.0 3.9 2.5 4.1 4.8 4.7 

“Sicilian-type” 3.8 3.6 4.0 2.5 4.3 4.5 

‘Willamette’ 3.4 3.2 4.3 3.3 0.0 2.8 

‘Eclipse’ 3.4 3.8 1.5 3.4 3.8 4.5 

‘Ennis’ 3.1 4.1 4.0 2.8 1.5 3.3 

‘Lewis’ 3.1 3.7 2.7 3.0 0.0 3.2 

‘Tonda di Giffoni’ 3.0 3.3 3.0 2.5 3.5 2.7 

‘Segorbe’ 2.9 3.8 3.5 3.8 1.8 1.5 

‘Barcelona’ 2.6 3.0 3.8 2.1 1.8 2.2 

‘TGDL’ 2.1 2.0 1.3 1.0 3.8 2.3 

‘Wanliss Pride’ 2.0 1.4 3.5 1.0 2.3 1.8 

Cultivars with limited data  

‘Woodnut’ 4.0 3.1 - - - 5 

‘Royal’ 3.6 3.7 - 3.0 - 4.2 

‘Montebello’ 3.4 - - 2.6 -  

‘Casina’ 3.2 3.4 4.3 3.1 2.0  

‘Hammond#17’ 2.8 2.5 - 1.5 - 4.3 

‘Atlas’ 2.7 3.0 1.8 1.8 4.3 - 

‘Daviana’ 2.5 4.0 - 1.0 - - 

‘Negret’ 2.4 2.3 - 2.6 2.3 - 

‘Butler’ 2.3 2.9 2.8 1.2 2.5 - 

‘Whiteheart’ 2.2 1.7 - - - 2.8 

‘Tonollo’ 2.0 2.5 - 1.5 - - 

Note: (1) ‘Hall’s Giant’ is synonymous with ‘Merveille de Bollwiller’; there was very little difference 

between the 2 clones in catkin abundance 

 

‘Daviana’ dropped some of its catkins in autumn in some seasons; this loss seemed to be 

greater when the autumn was warm and dry.  ‘Hall’s Giant’ also dropped catkins in the dry 

autumn of 2005.  Mehlenbacher (1991b) reported that warm temperatures in early winter can 

cause catkin drop in some cultivars, such as ‘Daviana’ and ‘TGDL’, but did not report it for 

‘Hall’s Giant’. 

 

The scores of the relative number of catkins only provide an estimate of the apparent 

potential pollen-producing qualities of cultivars; they do not give information on the total 

production of pollen or pollen viability.  Differences in the appearance of catkins were 

observed; ‘TBC’, ‘Segorbe’ and ‘Lewis’ had large catkins and appeared to produce large 

quantities of pollen, whereas ‘Tonda di Giffoni’ had relatively small, thin catkins.   
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5.3.2 Floral phenology at the Orange site 
 

The 2 main factors influencing floral phenology at the Orange site were cultivars and the 

years in which the data was collected.  The years represented varying seasonal conditions, 

most likely representing different temperature patterns.  Analyses of variance were 

conducted on dates expressed as the day of the year (DOY) to the commencement of 

pollen shed and female anthesis, along with the duration of flowering (days) for 16 

cultivars over 7 years at the Orange site.  The degree of protandry was calculated annually 

from the difference in the dates between the commencement of pollen shed and female 

anthesis.  Significant differences (P<0.001) were found between the cultivars in the 

number of days to the commencement of both pollen shed and female anthesis, the 

duration of flowering and the degree of protandry (Table 5.2).  There was a significant 

difference between years (seasons) in the mean dates to the start of pollen shed and female 

anthesis for the cultivars and the duration of flowering.  There were no significant 

interaction effects between cultivars and years. 

 

Table 5.2 F values from an analysis of variance on floral phenology of 16 cultivars over 7 

years (1999-2005) at the Orange site  
 Start of 

pollen shed 

Duration of 

pollen shed 

Start of 

female 

anthesis 

Duration of 

female 

anthesis 

Degree of 

protandry 

Cultivars <0.001 <0.001 <0.001 <0.001 <0.001 

Years <0.001 <0.001 <0.001 <0.001 <0.001 

Cultivars x 

years 

N.S. N.S. N.S. N.S. N.S. 

Note: N.S.  Not significant P> 0.05 

 

 

Cultivar effects on flowering 

 

Pollen shed 

The mean day of the year (DOY) to the commencement of pollen shed for the 16 cultivars, 

for which there was 7 years of data, ranged over a period of nearly 10 weeks.  The earliest 

was ‘Tonda Gentile delle Langhe’ (‘TGDL’), commencing on 6 June (DOY 157) to the 

latest, ‘Hall’s Giant’ commencing on 14 August (DOY 226), Figure 5.1.  All of the other 

cultivars appeared to lie on a continuum of dates between these 2 cultivars. 
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Figure 5.1 Average day of the year (DOY) to the commencement of pollen shed for 16 

hazelnut cultivars grown at Orange over the period 1999–2005 
Note: The left hand end of the yellow bars indicates the commencement of pollen shed and the length 

indicates the duration.  The day of the year is the number of days from 1
st
 January ie, May 31

st
 = Day of the 

Year (DOY) 151 

 

As there was no interaction effect between cultivars and years, the sequence of pollen shed 

was consistent between the cultivars across the 7 different seasons.  This is very important 

for the selection of pollinisers, as it provides a high level of predictability of the relative 

date, compared with other cultivars, when pollen will be shed for a given cultivar. 

 

Female anthesis 

The commencement of female anthesis for the 16 cultivars ranged from the earliest, DOY 

185 (4 July), for ‘Atlas’, through to the latest DOY 240 (28 August) for ‘Ennis’ and 

‘Hall’s Giant’, Figure 5.2.  These latest cultivars were 55 days later than ‘Atlas’.  The date 

of commencement of female anthesis of ‘Square Shield’ was not significantly different 

from ‘Ennis’ and ‘Hall’s Giant’ (P = 0.05).  The dates for the commencement of female 

anthesis seemed to lie on a continuum (Figure 5.2) as they did for the commencement of 

pollen shed, but the order was different. 

 

The earliest cultivar to commence female anthesis, ‘Atlas’, was significantly earlier than 

the next earliest cultivars ‘Tonda di Giffoni’ and ‘Wanliss Pride’, Figure 5.2. 

 

LSD: Commencement of pollen shed = 8.1days  
(P=0.05) 

LSD: Duration of pollen shed = 7.2 days  
(P=0.05) 
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Figure 5.2 Average day of the year to the commencement of female anthesis for 16 cultivars 

grown at Orange over the years 1999 – 2005. 
Note: The left hand end of the bars indicates the commencement of female anthesis and the length, its 

duration 
 

There were significant differences (P=0.01) between cultivars in the duration of female 

anthesis.  The longest mean period was 40 days for the cultivar ‘Atlas’; the shortest was on 

average only 20 days for the cultivars ‘Hall’s Giant’, ‘Casina’ and ‘Ennis’, Figure 5.2.   

 

As there appeared to be a relationship between the date of commencement of female 

anthesis and its duration in Figure 5.2, a regression analysis was conducted on these 2 

variables.  The linear relationship was highly significant (P=0.01) accounting for 73% of 

the variation, Figure 5.3. 

 

It was found that the later the date that cultivars commenced female anthesis, the shorter 

the period of time the stigmas were exerted.  It is considered this was possibly an 

environmental effect related to the degree of chilling received by the cultivars that were 

late into female anthesis.  The later the cultivars commenced flowering, the greater the 

chilling they would have received, which might have stimulated a more synchronous 

development of their female flowers. 

 

Commencement of female anthesis  
LSD = 7.7 days (P= 0.05) 
Duration of anthesis LSD = 8.4 days  
(P= 0.05) 
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Figure 5.3 Relationship between the duration of female anthesis (days) and the day of the 

year anthesis commences 

 

Regression analyses were conducted on the relationship between the date of 

commencement of pollen shed and its duration.  In this case, no significant linear or 

quadratic relationships were obtained. 

 

Protandry 

At Orange, on average, all the cultivars behaved in a protandrous manner; that is the 

catkins commenced pollen shed before the stigmas were exerted from the female 

inflorescences.  ‘Ennis’ exhibited the highest degree of protandry with pollen shed 

commencing, on average, 59 days before female anthesis.  ‘Wanliss Pride’ was the least 

protandrous, with pollen shed commencing, on average, just before female anthesis 

(Figure 5.4), it was almost homogamous. 

 

As with other floral characteristics, the cultivars appeared to lie on a continuum ranging 

from highly protandrous to almost homogamous.  This data indicates that the onset of 

anthesis for catkins and female flowers operates independently suggesting different 

requirements for these organs.  Mehlenbacher (1991a) reported no relationship between 

the dates of commencement of pollen shed and female anthesis for a wide range of 

cultivars in Oregon, supporting this hypothesis.  The chill and post-chill heat requirements 

of catkins and female flowers are discussed in the next chapter, Chapter 6. 
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Figure 5.4 Average number of days that catkins commenced pollen shed before the 

commencement of female anthesis, protandry 

 

Although Figures 5.1 and 5.2 show the days when pollen shed and female anthesis 

commenced and Figure 5.4 shows the degree of protandry, they do not show how these 

processes are integrated.  The combination of days when both pollen shed and female 

anthesis commenced and the duration of these processes are shown in Figure 5.5.  Graphs, 

such as Figure 5.5, are very valuable in the selection of polliniser cultivars for main crop 

nut-bearing cultivars in a commercial orchard, when combined with information on their 

incompatibility, S-alleles.  This is discussed in the final chapter after the presentation of 

yield data and kernel quality in Chapters 7 and 8, respectively. 

 

LSD 11 days (P=0.05), shown as Y bars 
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Figure 5.5 Mean day of the year when pollen shed and female anthesis commenced, for 16 

cultivars grown at Orange over the years 1999-2005, along with the degree of protandry 
Note: The length of the T-bars indicates the standard errors for both the duration of pollen shed and female 

anthesis.   

Pollen shed    Female anthesis, exerted stigmas  

 

Many of the cultivars studied had shed most of their pollen by the beginning of August, 

DOY 213, yet there were several cultivars that did not have many flowers with exerted 

stigmas before that date, such as ‘Segorbe’, ‘Butler’ and ‘TBC’, Figure 5.5. 

 

Several cultivars that were late shedding pollen, such as ‘Jemtegaard 5’ and ‘Kentish 

Cob’, were not available in the initial year of planting but were planted later in the 

surrounding border rows at the Orange site.  Data on the floral phenology for these later-

planted cultivars was collected in the years 2003–2005 and is presented in Figure 5.6, 

along with ‘Barcelona’ and ‘Hall’s Giant’, as comparisons of early and late pollen-

shedding cultivars. 
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Figure 5.6 Mean day of the year when pollen shed and female anthesis commenced, for 

some potential polliniser cultivars grown at Orange, over the years 2003-2005, along with 

the duration of pollen shed and female anthesis.  This is compared with ‘Barcelona’ which 

commences female anthesis in mid-season. 

 

Mehlenbacher (1991a) reported dates for the start of pollen shed and when stigmas were 

first noted to be exerted, for a range of cultivars in Oregon, including 11 of the cultivars in 

this study.  His results were similar to those reported herein; ‘Tonda di Giffoni’ was early 

into female anthesis with ‘Casina’ and ‘Hall’s Giant’ being late in both locations.  Tiyayon 

(2008) reported similar results, in Oregon, to these where ‘TGDL’ was very early in pollen 

shed, ‘Barcelona’ was mid-season and ‘Hall’s Giant’ was late. 

 

Seasonal effects on flowering 

The analysis of variance (Table 5.2) conducted on the dates to the commencement of 

pollen shed and female anthesis and their duration (days) for 16 cultivars at Orange over 

the period (1999-2005) showed significant differences (P<0.001) between years in all 

these characteristics.  However, there were no significant interactions.  The earliest mean 

date for pollen shed was DOY 162 in 2003, the latest was some 40 days later in 2004 

(Table 5.3). 

 

Early August, many 
other cultivars had 
finished shedding 
pollen 
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Table 5.3 Seasonal differences in the mean day of the year for the commencement of pollen 

shed and female anthesis for 16 cultivars grown at Orange, over the years 1999 – 2005. 
 Earliest year Latest year Range 

(days) 

LSD  

(P=0.05)  Year DOY Year DOY 

Start pollen shed 2003 162 2004 202 40 5.4 

Start female anthesis 2003 208 2005 231 23 5.1 

Note: LSD for the comparison between years derived from the ANOVA, Table 5.2 

 

There was a greater range in the mean day to the commencement of pollen shed (40 days) 

than the commencement of female anthesis (23 days), over the 7 years of observations, 

Table 5.3.  The factors causing these differences in the dates to the commencement of 

pollen shed and female anthesis are not readily apparent; it is likely they are related to 

differences in temperature patterns relating to chilling and post-chill warmth between the 

seasons.  The effects of temperature on the floral phenology of hazelnuts are discussed in 

Chapter 6. 

 

 

5.4 Floral phenology across four sites 
 

An analysis of variance was done on the mean dates for the commencement of pollen shed 

and female anthesis of the 9 cultivars that were common to 4 sites, Orange, Moss Vale, 

Myrtleford and Toolangi, over 4 years (1999-2002), Table 5.4.  Kettering was excluded as 

this site was planted later than other sites. 

 

Table 5.4 Analysis of variance on floral phenology of 9 cultivars over 4 years (1999-2002) at 

the Orange, Moss Vale, Myrtleford and Toolangi sites, with levels of significance 
 Start of pollen 

shed 

Duration of 

pollen shed 

Start of female 

anthesis 

Duration of 

female anthesis 

Cultivars <0.001 <0.001 <0.001 <0.001 

Sites <0.001 <0.001 <0.001 <0.001 

Cultivars x sites <0.001 N.S. N.S. N.S. 

Note: N.S Not significant  

The only significant interaction was between cultivars and sites for the DOY to the 

commencement of pollen shed.  Over the 4 years, the sequence in which the 9 cultivars 

commenced pollen shed was very similar for all the sites, Fig 5.7.  The “Sicilian type” and 

‘Tonda di Giffoni’ were the earliest to commence pollen shed at all sites and ‘Hall’s 

Giant’ was the latest.  However, at Moss Vale and Toolangi, ‘Segorbe’ was recorded as 

commencing pollen shed at a significantly later date than ‘Barcelona’, whereas at Orange 

there was no significant difference between them. 
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Figure 5.7 Mean dates (DOY) to the commencement of pollen shed for 9 cultivars at the 

Orange, Moss Vale, Myrtleford and Toolangi sites in the years 1999-2002. 

 

At Toolangi, ‘Ennis’ was recorded as commencing pollen shed significantly later than 

‘Victoria’, whereas at the other 3 sites, there was no significant difference between them.  

As these discrepancies in the order of pollen shed were minor, less than the  

7-day period between making observations of development, it is possible that they were 

due to differences in observer interpretation of the stages of floral phenology, rather than a 

true effect. 

 

On average, pollen shed occurred 10-14 days earlier at Moss Vale than at the other 3 sites.  

Female anthesis commenced 20 days earlier at Moss Vale than Orange and Myrtleford, 

but was not significantly different from Toolangi.  It is likely these differences were 

associated with different temperature patterns between the sites rather than effects from 

other factors, as discussed in the next chapter. 

 

 

5.5 Cultivar summary – floral phenology 
 

The main factors that influenced the commencement of pollen shed and female anthesis 

and the duration of these processes were related to cultivars and seasonal conditions.  

Differences between cultivars are considered to be related to their differing chill 

LSD = 4.5 
(P=0.05) 

Site means  189       174   188   181 (DOY) 
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requirements to terminate dormancy and commence flower development (Kavardzhikov 

1982, Mehlenbacher 1991 and Germain 1994) and to their post-dormancy heat unit 

requirements for the further development of these floral structures (Barbeau 1972, 

Kavardzhikov 1982, Mehlenbacher 1991, Turcu et al 2001 and Tiyaynon 2008). 

 

There was a relatively predictable sequence of dates in which cultivars commenced both 

pollen shed and female anthesis across sites and seasons.  The order in which cultivars 

commenced pollen shed ranged from ‘TGDL’ (the earliest) to ‘Barcelona’, (early) 

‘Casina’ (late) with ‘Hall’s Giant’ being the latest.  Similar sequences in flowering were 

reported by Bergoughoux et al. (1978) in France, Santos and Silva (1994) in Portugal and 

Mehlenbacher (1991a) in Oregon.  The order in which cultivars commenced female 

anthesis was highly predictable, ‘Tonda di Giffoni’ was early and ‘Hall’s Giant’ was late. 

 

As the relative dates that pollen shed and female anthesis commenced is cultivar-related, 

this data was used as an aid in cultivar identification (Appendix A). 

The cultivars generally behaved in a protandrous manner.  Protandry was also reported in 

areas with relatively mild winter temperatures, similar to the study sites, such as southern 

France (Germain, 1994), Italy (Manzo and Taponi, 1982) and Oregon (Mehlenbacher, 

1991a).  There was a continuum in the degree that the cultivars were protandrous under 

the climatic conditions experienced, ranging from highly protandrous cultivars to those 

that were almost homogamous.  Variation in protandry was interpreted as an indication 

that the onset of anthesis, for catkins and female flowers, operates independently with 

different levels of chilling and post-chill warmth for these organs.  Mehlenbacher (1991a) 

considered that, within cultivars, the staminate and pistillate flowers had different chill 

requirements. 

 

The dates for the commencement of flowering were affected by seasons and locations, but 

the flowering sequence did not seem to vary between seasons and study sites.  Seasonal 

conditions, particularly temperature, were reported by Bergoughoux et al. (1978) and 

Germain (1994) to influence the commencement of pollen shed and stigma exertion.  The 

differences in the commencement of flowering between the locations were probably a 

reflection of differing temperatures rather than other environmental differences, such as 

soil type.  The chill and post-chill heat requirements of catkins and female flowers are 

discussed in Chapter 6. 
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Many of the cultivars studied had shed most of their pollen by the beginning of August 

(DOY 213) yet several cultivars did not have many flowers with exerted stigmas before 

that date.  This could have implications for pollination and nut production, as discussed in 

Chapter 7, ‘Nut Yields’.  The diversity in times of pollen shed and female anthesis would 

probably have been beneficial to the species in the wild by producing a range of ecotypes 

that fitted into a diverse range of winter climatic niches.  Some ecotypes may have had 

flowering patterns that avoided periods when staminate and pistillate flowers could have 

been damaged by frost, enabling these ecotypes to be fruitful.  

 

As the sequence that cultivars commenced flowering was relatively predictable across 

sites and seasons, the data obtained on floral phenology, combined with published 

information on the S-alleles (Mehlenbacher, 1997) should make it possible to select 

cultivars for effective cross-pollination for cultivars selected for nut production.  This is 

discussed in the final chapter (Chapter 9, ‘Conclusions’) which integrates aspects of 

growth, nut yield, kernel quality and floral phenology. 

 



 174 

Part B Bud break 
 

 

5.6 Introduction 
 

Bud break and leafing out closely follow flowering in hazelnuts.  This marks the 

beginning of active growth.  Dates of bud break vary between cultivars and seasons.  For 

example, in Oregon, bud break occurs from late February to early April for hazelnuts, 

depending on the cultivar (Mehlenbacher, 1991). 

 

As newly-developing leaves on hazelnut trees can be affected by late spring frosts, 

(Mehlenbacher 1991b, Cakirmelikoğlu and Caliskan, 1997) knowledge of dates of bud 

break is important, particularly for new regions of production. 

 

 

5.7 Methods  
 

Bud break was recorded at all sites in all seasons when bud scales were just beginning to 

expand or open, showing the green of the enclosed leaves, Plate 5.2.  This method of data 

collection was explained to the field staff and collaborating growers, who monitored 

developments in floral phenology and bud break of the cultivars.  Occasional visits were 

made to the sites in winter to validate the methods being used.  The author collected all of 

the data at the Orange site.  

 

 

 

Plate 5.2 Hazelnut bud at the bud break stage in spring 
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5.8 Results 
 

An analysis of variance was conducted on the recorded day of bud break for 9 cultivars 

grown at 4 sites, Orange, Moss Vale, Myrtleford and Kettering, over a period of 5 years 

(2000-2004).  There were significant differences between cultivars, sites and years, with a 

significant (P=0.01) interaction between sites and years (Table 5.5).  It is considered that 

the site x year interaction effect was associated with different temperature patterns 

between sites and seasons influencing the commencement of bud break.  Although this 

interaction was significant, the main effects of cultivars and seasonal conditions (sites and 

seasons) were considered to be the most important. 

 

Table 5.5 Analysis of variance on the day of the year to bud break for 9 cultivars at 4 

experimental sites over 5 years (2000-2004) 

 
Factors Level of significance 

Cultivars <0.001 

Sites <0.001 

Years <0.001 

Cultivar x sites (N.S) 

Cultivar x years (N.S) 

Sites x years 0.01 

Note: N.S., Not significant F value > P = 0.05 

 

5.8.1 Cultivar effects 
 

There were significant differences between the cultivars in the mean dates of bud break.  

The cultivars that were earliest into bud break were ‘Tonda di Giffoni’, followed by 

‘Wanliss Pride’ and the “Sicilian type” (Figure 5.8); the latest were ‘Ennis’ and ‘Hall’s 

Giant’. 
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Figure 5.8 Mean day of the year of bud break for 9 cultivars at 4 sites (Orange, Moss Vale, 

Myrtleford and Kettering) over 5 years (2000-2004) 

 

On average, across all sites and seasons, bud break for the cultivar ‘Tonda di Giffoni’ 

occurred on 20 August (DOY 232).  In contrast, ‘Hall’s Giant’, the latest cultivar into bud 

break, was on 22 September (DOY 268), about 1 month later than ‘Tonda di Giffoni’.  The 

sequence of dates that the cultivars came into bud break was similar to those reported by 

Thompson et al. (1978) in Oregon. 

 

LSD = 3.6 days 

(P=0.05) 

1 Oct 

1 Sept 
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Plate 5.3 Phenological differences in the time of bud break are quite marked between the 

earliest and latest cultivars.  The early leafing cultivar ‘Lewis’ (left) is well into leaf in early 

October compared with ‘Hall’s Giant’ (right). 

 

5.8.2 Years and sites 
 

The variation between years in the mean day to bud break was small, a range of only 6 

days, whereas there was a greater variation between sites.  On average, bud break was 

earliest at Kettering (DOY 247) compared with Orange (DOY 262), Table 5.6. 

 

Table 5.6 Mean day of the year (DOY) and date of bud break for 9 cultivars at 4 sites over a 

period of 5 years (2000-2004) 
 Sites LSD 

P=0.05  Orange Moss Vale Myrtleford Kettering 

Mean DOY to bud 

break 

 

262 

 

254 

 

249 

 

247 

 

2.4 

Mean date of bud 

break 

 

19 Sept 

 

11 Sept 

 

6 Sept 

 

4 Sept 

 

 

The cause of the difference between sites is unclear; it could be a response to temperature 

or daylength or a combination of the 2 as discussed in the next chapter. 

 

As the main differences in dates of bud break were between cultivars and sites with no 

significant interactions between cultivars and years or cultivars and sites, the data on 

cultivars was combined for 3 sites, Orange, Myrtleford and Kettering.  This provided 

mean dates of bud break across these sites for a total of 27 cultivars, which was used as an 

aid in cultivar identification, Appendix A. 
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5.8.3 Frost effects 
 

In locations with mild spring environments, early-leafing cultivars might have an 

advantage with a longer growing season.  However, newly-developing leaves on hazelnut 

trees can be damaged by late spring frosts (Bergoughoux et al., 1978, Mehlenbacher, 

1991a and Cakirmelikoğlu and Caliskan, 1997). 

 

In October 2003, severe damage to the buds and young leaves of the trees was observed at 

the Orange site.  Descriptions of these effects and ratings of the severity of the damage (0 

nil – 5 severe) were noted for 18 cultivars in all 4 replicates.  The effects ranged from 

none, for the cultivar ‘Hall’s Giant’, to very severe, major damage to newly-developed 

leaves for the cultivars ‘TGDL’, ‘Tonda di Giffoni’ and ‘Lewis’.  A regression analysis 

showed the mean ratings of the severity of damage to be negatively correlated with the 

date of bud break (P> 0.001) in that year.  That is, the earlier the date the cultivars were at 

bud break, the higher the rating of damage (Figure 5.9). 

 

It was considered the damage was related to late frost, as a minimum air temperature of -

4.7°C had been recorded at the site on 29 September, when the latest cultivars ‘Hall’s 

Giant’ and ‘Ennis’ were observed to be at the bud break stage.  Bergoughoux et al. (1978) 

reported that critical temperatures for frost damage after bud break are in the range -3 to -

4°C. 
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Figure 5.9 Relationship between the degree of frost damage noted at the Orange site in 

November 2003 and the date of bud break of 18 cultivars. 

Minimum air 
temperature -4.7°C on 

29 September 

1 September 
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To obtain further insights into the effects of frost after bud break, a comparison was made 

of minimum temperatures lower than -3°C after bud break for the early-leafing cultivar 

‘Tonda di Giffoni’ at the Orange site over the years 1999-2004, Table 5.7.  It appears there 

were 2 factors that affected frost damage.  These were the relative date of the frost after 

bud break and the severity of the frost.  A minimum temperature of  

-3.5°C, recorded 30 days after bud break of ‘Tonda di Giffoni’ in 2002, did not cause 

damage, nor did a minimum temperature of -4.1°C, 14 days after bud break in 1999, Table 

5.7. 

 

Table 5.7 Latest date that minimum temperatures were recorded below -3°C in the period 

1999 – 2004 at the Orange site, compared with the date of bud break for the cultivar 

‘Tonda di Giffoni’ 
 Years 

1999 2000 2001 2002 2003 2004 

 

Date of bud break 

 

30 Aug 

 

30 Aug 

 

27 Aug 

 

2 Sept 

 

25 Aug 

 

3 Sept 

Latest date temp < -

3°C 

 

13 Sept 

 

5 Sept 

 

26 Aug 

 

2 Oct 

 

29 Sept 

 

6 Sept 

Temp recorded -4.1°C -3.1°C -4.1°C -3.5°C -4.7°C -4.5°C 

Days after bud break 14 6 -1 30 35 3 

 

However, damage was recorded in 2003, when a minimum air temperature of -4.7°C was 

recorded 35 days after the bud break of the early-leafing cultivar ‘Tonda di Giffoni’.  It 

appears that the critical temperature for frost damage after bud break is about -4°C, as 

reported by Bergoughoux et al. (1978).  The data on the mean dates of bud break can be 

used as an aid to cultivar selection in areas where late frosts might occur.   

 

Frost damage was not reported at any of the other sites, but none of them recorded 

temperatures below -2°C after the end of August. 

 

 

5.8.4 Cultivar summary – bud break 
 

The date of bud break varied between cultivars from late August for ‘Tonda di Giffoni’ to 

late September for ‘Hall’s Giant’.  The date of bud break varied between years and sites 

but the order in which the cultivars commenced bud break was similar across seasons and 

sites.  The sequence in which cultivars commenced leafing out was similar to that reported 

by Thompson et al, (1978). 
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It was considered the dates of bud break were associated with the chill requirements to 

break dormancy and post-chill warmth to stimulate leaf development.  This is discussed 

further in the next chapter. 

 

Based on observed frost damage at Orange, it is concluded that a climate parameter of a 

minimum temperature of -3°C following bud break, as recommended by Bergoughoux et 

al. (1978), is an appropriate critical value for the selection of sites for hazelnut production, 

as discussed in Chapter 2 (Table 2.1).  As in these studies, bud break of most cultivars 

occurred from the end of August, a minimum temperature of -3°C is recommended as a 

critical climate parameter for the months of September and October in South-eastern 

Australia.  

 

The data on the mean dates of bud break can be used as an aid to cultivar selection in areas 

where late frosts might occur. 

 

 

5.9 Overall Conclusions 
 

There were quite large differences between the cultivars in the relative number of catkins 

they produced.  About half of the cultivars received a rating of more than 3 out of a 

maximum of 5 for catkin abundance.  This data, along with the results obtained on floral 

phenology and the literature on genetic compatibility, is valuable in the selection of 

cultivars as pollinisers. 

 

The data gathered across sites and seasons on the mean number of days to both pollen 

shed and female anthesis, along with the duration of pollen shed and genetic compatibility, 

can be used to select appropriate pollinisers for nut-bearing cultivars.  This is discussed 

further in the final chapter of this thesis. 

 

The data on frost effects at Orange and other sites supports the view that a climate 

parameter of a minimum temperature of -3°C following bud break is an appropriate 

critical value for hazelnuts that can be used in site selection, as proposed by Bergoughoux 

et al. (1978). 

 

The effects of chilling and post-chill warmth on the flowering and bud break of hazelnuts 

are examined further in the next chapter. 
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CHAPTER 6 - THE EFFECT OF TEMPERATURE ON FLORAL 

PHENOLOGY AND BUD BREAK 
 

 

6.1 Introduction  
 

In this chapter, there is some reiteration of the literature on factors affecting floral 

phenology, from the Literature review, Chapter 2.  This short review leads to the 

development of a hypothesis on the factors affecting flowering in hazelnuts.  This 

hypothesis is subsequently tested, as discussed in this chapter. 

 

 

6.1.1 Floral development 
 

In the previous chapter it was found that the sequence in which cultivars commenced 

pollen shed and female anthesis was very similar across seasons and sites.  However, there 

were marked differences between seasons in the date of commencement of anthesis of 

catkins and female inflorescences for any given cultivar. 

 

Hazelnuts are monoecious, with separate male and female flowers which have different 

temperature requirements for their development.  The main factor influencing the onset of 

anthesis appears to be related to the particular chill requirements of cultivars to break the 

dormancy of the catkins and female flowers (Mehlenbacher, 1991).  There is also a need 

for post-chill warmth to stimulate flowering.  Barbeau (1972), Kavardzhikov (1982), 

Mehlenbacher (1991a) and Turcu et al. (2001) considered catkins had lower chill 

requirements but greater post-chill warmth requirements than female inflorescences.  

These differences in the chill and post-chill warmth requirements of catkins and female 

inflorescences could explain why a cultivar can behave in a protandrous manner in mild 

winter climates and in a protogynous manner where winters are colder, as discussed in 

Chapter 2, Section 2.2.5.  For example, most European cultivars behave in a protandrous 

manner in maritime climates with relatively mild winters, such as southern France 

(Germain, 1994), Italy (Manzo and Taponi, 1982) and Oregon (Mehlenbacher, 1991a).  

However, these cultivars are more commonly protogynous in locations with very cold 

winter climates, such as Romania (Turcu et al, 2001). 

 

Seasonal differences in the timing of anthesis for a given location are also reported.  

Bergoughoux et al, (1978) reported that, in the Gironde region of France, the cultivar 
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‘TGDL’ normally commences pollen shed in the second week of December, but, if the 

autumn is very mild, pollen shed occurs a little after mid-November.  These seasonal 

differences in the commencement of anthesis of catkins and female inflorescences are 

presumably due to the same effects of temperatures on anthesis as those temperature 

differences that occur between various locations. 

 

The differences between seasons and locations could possibly be explained by the 

following hypothesis.  If catkins have low chill requirements and higher post-chill warmth 

requirements, then, in cold winter environments, pollen shed might be delayed due to a 

slow accumulation of post-chill warmth.  In contrast, if female flowers have higher chill 

requirements but require little accumulated post-chill warmth to stimulate their 

development, then in a cold winter environment, their development will be delayed to a 

lesser extent due to the slow accumulation of post-chill warmth.  That is, their stigmas 

would be exerted before the catkins are extended and shed pollen.  Thus, they would be 

protogynous in the colder winter climate but protandrous in the milder climate. 

 

As endodormancy is controlled by plant growth regulators inside the bud and different 

types of buds, such as flower and vegetative buds, can be at different stages of dormancy 

(Tromp, 2005) at the same date, it seems feasible that catkins and female flowers could 

have different temperature requirements for their phenological development. 

 

In other deciduous fruit and nut trees, there is widespread agreement that a period of 

chilling is required to break the dormancy of buds, as reported by Richardson et al (1974) 

on peach, Coullivon and Erez (1985) on apple, cherry, peach and pear, Fekler and 

Robitaille (1985) on sour cherry, Smith et al (1992) on pecan, Barone and Zappila (1993) 

on walnut and Rattigan and Hill (1986) and Egea et al (2003) on almond.  Post-chill 

warmth is then required for flowers to develop but the thermal sums for this process vary 

between species, cultivars and seasons.  For example, minimum threshold temperatures for 

peach and almond are reported to be 2.5°C and 4.5°C respectively (Sedgley, 1990).  

However, these may be estimates as it is likely that there is a sigmoid response to 

temperatures with a gradual decline to “threshold” temperatures. 

Under conditions where there was prolonged exposure to chilling, the post-dormancy heat 

requirements were reduced in apple, cherry, peach and pear (Couvillon and Erez, 1985) 

and (Herter el al., 2000).  Studies by Garcia et al (1999) on apricot in 2 differing climatic 

environments, 1 in Spain, the other in Italy, found that more heat could partially 
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compensate for a low amount of chilling  They found considerable differences between 

seasons, that were not predicted by models, using a specific number of chill units and 

growing degree hours for the cultivars.   

 

 

6.1.2 Dormancy of buds and dormancy release 
 

It is known that in most deciduous woody species, growth ceases in the latter part of 

summer and terminal buds subsequently form; growth of these buds will not be triggered 

until some appropriate climatic signal is obtained, typically through winter as chilling 

(Westwood, 1988).  The cessation of growth and development is in response to shortening 

day-length and a decline in temperature.  Tanino (2004) described the process of 

endodormancy induction as being complex with the path to endodormancy being a 

continuum, which starts early in autumn.  Endodormancy increases during the late autumn 

and winter, in association with an increase in the level of growth inhibitors such as 

abscisic acid (ABA).  Chilling is required to break or terminate endodormancy, with chill 

requirements varying depending on species and genotypes.  Temperatures in the range 0-

7°C appear to favour enzymic reactions that lead to a reduction in the inhibitory systems 

that influence endodormancy (Westwood, 1988).  At the termination of endodormancy, 

there is a rise in growth promoters relative to inhibitors and a sharp increase in respiration 

indicating that growth rates are increasing.  Endodormancy is commonly followed by 

ecodormancy, a period when temperatures may be too low for growth or development. 

 

In Corylus avellana L., female inflorescences are compound buds, the lower part being 

vegetative (Germain, 1994).  The chill requirements to initiate the development of 

vegetative buds were reported by Mehlenbacher (1991) to be greater than those of female 

inflorescences.  However, there was a correlation between the chill requirements of the 

vegetative buds and female inflorescences (ibid, 1991). 

 

Prolonged chilling was reported by Couvillon and Erez (1985) and Heide (1993) to 

decrease the post-chill warmth required for vegetative bud break in several deciduous 

species.  The base line temperature for post-chill warmth for vegetative bud break of a 

range of deciduous species was found by Heide (1993) to vary between species but a base 

value of 0°C was suggested for calculations.  All the species studied responded to long 

days, including Corylus avellana L. 
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Key questions in relation to dormancy are:  

 when does endodormancy commence in hazelnut trees? 

 what starting date should be used for the calculation of accumulated chill hours to 

terminate dormancy? 

 

In a study of microsporogenesis in hazelnuts, Tiyayon and Azarenko (2005) found the 

reproductive developmental process of catkins occurred earlier in those cultivars that were 

early to shed pollen compared with cultivars that were late to shed pollen.  However, all 

cultivars had produced microspores by 26 September in Oregon (close to the autumn 

equinox) when catkins were 23-40 mm in length and were considered to be dormant, that 

is, the catkins were fully developed but required the appropriate stimuli to expand and 

shed pollen.  In the studies in this thesis, calculations for the accumulation of chill were 

taken from 1 April (close to the autumn equinox), which is equivalent to 1 October in the 

northern hemisphere.  In general, there were few chill hours in March and leaf fall was not 

significant until the latter part of April.  Alonso et al. (2005) used chill units to determine 

chill requirements of almond and used a starting date when chill units were no longer 

negative. 

 

Rodriguez and Sanches-Támés (1986) monitored monthly levels of the growth regulating 

substances indole-3-acetic acid (IAA), abscisic acid (ABA) and total phenolic compounds, 

in Corylus avellana L. buds in Spain.  The highest levels of the growth retardant ABA 

occurred approximately at the onset of dormancy, with the lowest levels just before bud 

burst.  The opposite result was obtained for the growth stimulant IAA, being lowest in 

autumn, with a sharp increase just before bud break.  The proportion of IAA to ABA 

steadily increased from late autumn (November), with a very rapid increase in IAA in 

early spring (March). 
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6.1.3 Hypothesis 
 

It is hypothesised that a similar mechanism controlling the development of vegetative buds 

influences the development of catkins and female inflorescences.  That is, there is a 

critical balance between two principal growth-regulating substances:  

 

• an inhibiting substance – which declines over time due to the effects of chilling. 

• a stimulating substance – which appears to increase as temperatures rise.  It causes 

catkin extension and the exertion of stigmas, once chilling requirements have been 

satisfied. 

 

When the levels of the stimulating substances exceed those of the inhibiting ones, pollen 

shed or female anthesis will commence, Figure 6.1. 
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Figure 6.1 Concept of levels of growth regulators influencing flowering in hazelnuts and 

periods of endodormancy and ecodormancy  

 

If a cultivar requires a certain level of chilling followed by a certain accumulation of post-

chill warmth before catkin extension can occur, then, under cold winter conditions, the 

rate of development of the stimulating substance may be prolonged due to low 

temperatures and slow accumulation of warmth.  Under such conditions, further chilling 

could lead to further decline in the level of the restraining substance; the amount of the 

End of 
dormancy 

 Endodormancy            Ecodormancy 

Start of anthesis 
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stimulating substance required to overcome dormancy may then be less.  That is, less heat 

units may be required to produce a sufficient level of the stimulant to overcome the 

lessened effects of the retardant, due to the prolonged chilling, as reported by Couvillon 

and Erez (1985) for flowering in several fruit species. 

 

Under low winter temperatures, such as in Poland, once hazelnut flowers had received 

sufficient chill to overcome endodormancy, it was considered they had became 

ecodormant (Piskornick et al., 2001).  That is, they were awaiting suitable temperature 

conditions or accumulation of warmth for development, as proposed by Fuchigami et al 

(1982) and Alonso (2005) for almond. 

 

In general, it has been considered that temperatures in the range 0-7°C are required for the 

chilling requirements of hazelnut.  However, Tiyayon (2008) reported chilling occurred in 

the range 5-15°C, with chill unit (CU) values similar to those developed by Richardson et 

al. (1974).  In seasons or locations where the winter is relatively mild, but sufficiently cool 

to meet the required minimum amount of chilling, the mild winter temperatures may 

produce sufficient of the stimulant to lead to pollen shed.  This appeared to be the situation 

at Moss Vale, where winter temperatures were relatively mild compared with the lower 

winter temperatures of Orange, due to its higher altitude.  Pollen shed for a given cultivar 

generally occurred earlier at Moss Vale than at Orange, as stated in Chapter 5, Section 5.4 

‘Floral phenology across four sites’.  Thus, the variation in autumn and winter 

temperatures between years, with the consequent different levels of chilling and post-chill 

warmth, could account for differences in dates when pollen shed commenced for a given 

cultivar or set of cultivars.  The relatively cold winter days in Orange were likely to 

produce a longer period of ecodormancy than at Moss Vale. 

 

As female flowers are borne in vegetative buds, which are distinctly different and separate 

from catkins, it is considered feasible that the female inflorescences could behave 

differently from the catkins, although a similar mechanism might apply.  As catkins are 

relatively large organs compared with female flowers, it seems feasible that a greater 

amount of warmth (thermal time) might be required for the catkins to extend, whereas the 

stigmas, being quite small, may need relatively less warmth to cause exertion.  Tiyayon 

(2008) considered the optimum temperature for catkin development was 15°C. 

Meeting the basic chilling requirements of cultivars appears to be the key factor in 

releasing them from dormancy.  This appears to be genetically determined, thus the 
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relative sequence of pollen shed and female anthesis, as shown in Chapter 5, Table 5.4 for 

the cultivars in this study, is predictable over a wide range of sites and seasonal conditions. 

 

The aim of this chapter is to determine how autumn and winter temperatures influence the 

onset of anthesis of catkins and female inflorescences, by comparing phenological 

development in temperature-controlled growth cabinets with that in the field. 

 

 

6.2 Methods 
 

Two experiments were conducted in which temperature-controlled growth cabinets were 

used to try to determine the chill and post-chill heat requirements for the flowering of 8 

cultivars.  The experiments were performed using excised shoots from plants grown at the 

Orange research site.  The floral phenology of the cultivars in the growth cabinets was 

compared with that of the plants in the field.  The first experiment was conducted in 2002 

using a single Conviron® plant growth chamber operating at a constant temperature of 

15°C and then again in 2005 using the same growth cabinet, also at 15°C.  The timing of 

experiments related to when sufficient plant material could be obtained from the field and 

the availability of the growth cabinets. 

 

In 2002, single shoots that were 300-400 mm long were cut at weekly intervals from 27 

May until 29 July from each of 8 cultivars.  The cultivars selected (Table 6.1) covered a 

range of dates when pollen shed and female anthesis commenced; these included the 

cultivars ‘Atlas’ and ‘Tonda di Giffoni’, that were early into pollen shed, ranging through 

to the late-shedding cultivar ‘Hall’s Giant’.  The shoots were placed in buckets with water 

to a depth of about 100 mm.  The buckets with shoots were placed in the Conviron® plant 

growth cabinet (Plate 6.1) set at a constant temperature of 15°C (+/-1°C).  The day length 

was set at 10 hours light and 14 hours dark, similar to the photoperiod occurring in the 

field.  A temperature of 15°C was chosen, as it was considered the shoots would be 

unlikely to receive any further chilling and the minimum chill requirements could be 

determined from those received in the field prior to cutting.  The temperature of 15°C was 

equivalent to the maximum which could occur on a warm winter’s day, though the average 

daily temperature at Orange in winter is 5°C.  Tiyaynon (2008) considered 15°C was the 

optimum temperature for catkin extension. 

 



 188 

The number of catkins was counted at the time of placement in the growth cabinet.  Each 

week, the number of both the extended catkins and the female inflorescences with exerted 

stigmas were counted.  The water was changed weekly.  The cut branches were retained in 

the cabinet for a period of 5 weeks.  It was considered that chill requirements of the 

flowers had been met when 50% of the catkins had extended or when there were at least 4 

female inflorescences with exerted stigmas.  Once flowering had occurred in the field, for 

a given cultivar, shoot cutting was terminated.  Although the primary aim of this 

experiment was related to floral development, some observations were also made on the 

dates that vegetative bud swell first occurred in the growth cabinet. 

 

 

 

Plate 6.1 Cut shoots of hazelnut cultivars in buckets of water in a Conviron® growth cabinet.  

Some catkins are still closed whilst others are extended and shedding pollen. 

 

Observations of floral development were made in the field at the Orange site to ascertain 

the dates when 50% of the catkins were shedding pollen and when there were 

inflorescences with exerted stigmas.  This experimental technique was similar to that used 

by Mehlenbacher (1991a) to determine the chill requirements of hazelnut cultivars in 

Oregon. 

 

The second experiment was conducted in 2005, in a similar manner to the first.  Its 

purpose was to ascertain whether the results achieved in the first experiment were 
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reproducible.  However, in this experiment, 2 shoots of each of the 8 cultivars that were 

used in the 2002 experiment were cut at weekly intervals from 3 May–16 August.  The 

shoots were 400-500 mm long and 5 mm in diameter.  They were placed in buckets of 

water in the Conviron® growth cabinet, with the same settings as used in 2002. 

 

In both years, the accumulated chill hours (0-7°C), from 1 April to the cutting date when 

50% pollen shed was first observed in the growth cabinets, were obtained from the 

weather station at the Orange site.  These chill hours were considered to be the minimum 

chill requirement to break dormancy.  There were very few chill hours recorded before 

April in either of the years. 

 

Post-chill warmth, thermal time, was calculated in the growth cabinet and in the field from 

the cutting date when it was considered the chill requirements of the flowers had been 

achieved.  A base temperature of 0°C, as suggested by Heide (1993) for Corylus spp, was 

used to calculate units of “growing degree days” (GDD).  In the field, the GDD units were 

calculated from mean daily temperatures, using a base temperature of 0°C. 

 

 

6.3 Results and discussion 
 

6.3.1 Pollen shed 
 

The mean minimum number of chill hours to the first cutting date when more than 50% of 

the catkins shed pollen, that is the break of catkin dormancy of the 8 cultivars, was 565 

hours in 2002 and 460 hours in 2005 (Table 6.1).  This was a difference of 105 chill hours 

between the 2 years in the mean dates to the commencement of pollen shed, which were 

10 days apart. 

 

The mean day of the year to the commencement of pollen shed for all 8 cultivars occurred 

earlier for excised shoots in the growth cabinets than for shoots in the field.  This date was, 

on average, 38 days earlier in the growth cabinet compared with that in the field in 2002 

and 23 days earlier in 2005 (Table 6.1).  Pollen shed commenced earlier in both the 

cabinets and in the field in 2005, than it did in 2002. 
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In both years, ‘Atlas’ and ‘Tonda di Giffoni’ were the earliest to shed pollen, with the least 

number of chill hours, and ‘Hall’s Giant’ was the latest, with the greatest number of chill 

hours (Table 6.1). 

 

Table 6.1 Day of the year (DOY) to the end of dormancy of catkins with recorded chill 

hours to that date and the DOY to the commencement of pollen shed in the field, along with 

post-chill heat units for the years 2002 and 2005. 

 

2002 

 

 

 

Cultivars 

Earliest 

cutting date 

(DOY) to 

50% of 

catkins 

shedding 

pollen in the 

cabinet 

Total chill 

hours from 

1April to 

initial 

cutting date 

of 50% of 

catkins 

shedding in 

the cabinet 

DOY to 

50% of 

catkins 

shedding 

pollen in the 

field 

Post chill 

heat units 

GDD in 

cabinet 

Post chill 

heat units 

GDD in 

field 

‘Atlas’ 140 365 168 280 216 

‘Tonda di Giffoni’ 147 472 182 420 206 

‘Barcelona’ 154 565 189 315 200 

‘Segorbe’ 154 565 182 420 175 

‘Casina’ 161 619 217 420 284 

‘Ennis’ 161 619 196 210 166 

‘TBC’ 161 619 210 420 235 

‘Hall’s Giant’ 168 693 224 420 285 

Means 158 565 196 363 221 

      

2005 

Cultivars      

‘Atlas’ 130 258 171 420 335 

‘Tonda di Giffoni’ 137 338 178 420 331 

‘Barcelona’ 144 404 185 525 347 

‘Segorbe’ 144 417 185 525 284 

‘Ennis’  151 499 192 525 274 

‘Casina’ 158 569 213 525 344 

‘TBC’ 158 569 213 420 354 

‘Hall’s Giant’ 165 623 234 630 391 

Means 148 460 171 499 336 

 

The mean level of post-chill warmth required in the cabinet to stimulate at least 50% of 

the catkins to shed pollen, once endodormancy had been terminated, was greater in 2005 

(499 GDD), the year of lower accumulated chill hours, compared with 2002 (363 GDD) 

(Table 6.1).  This compared with an average of 336 GDD in the field in 2005 from the day 

when minimum chill to break dormancy was achieved until the day when 50% pollen shed 

commenced, compared with 221 GDD in the field in 2002.  It was considered that the 

lower heat requirements in the field, compared with the growth cabinets, and differences 

between the years could have been due to the extra chilling received in the field.  A 

reduction in the post-chill heat units following prolonged chilling was reported by 

Couvillon and Erez (1985) for a number of deciduous tree fruits and Herter et al. (2000) 
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for peach, with a decrease in total growing degree hours (GDH) for hazelnut (Tiyaynon, 

2008). 

 

As cutting dates progressed beyond the end of endodormancy, the amount of post-chill 

warmth required in the growth cabinets to stimulate pollen shed in the excised shoots 

decreased to zero, when pollen shed was occurring in the field (Figure 6.1). 

 

Regression analyses were used to investigate the relationship between the DOY when the 

branches were cut and the estimated post-chill heat requirements in the growth cabinets for 

the cultivars for each year and for the 2 years combined.  There were significant 

differences (P<0.001) in the linear regressions for the DOY when the shoots were cut and 

for the cultivars (Table 6.2).  In 2002, the slopes of the regression lines of the cultivars 

were not significantly different from one another, with a mean value of  

-8.7.  That is, on average, for each day that cutting the shoots was delayed after the 

minimum chill requirements had been met, the post-chill heat requirements for pollen shed 

were reduced by 8.7 GDD. 

 

Table 6.2 Levels of significance for variables influencing the post-chill heat unit 

requirements of pollen shed for 8 cultivars in 2002 and 2005 

. 
 

Variables 

Years  

2002 2005 Combined 

Cutting dates (DOY) <0.001 <0.001 <0.001 

Cultivars <0.001 <0.001 <0.001 

DOY x Cultivars N.S. (0.09) 0.01 0.002 

Years N.A. N.A. <0.001 

DOY x Years N.A. N.A. <0.001 

Years x Cultivar N.A. N.A. <0.001 

DOY x Years x Cultivars  N.A. N.A. N.S. (0.27) 

Percentage variation 91% 95% 94.5% 

Slope of line -8.7 -9.5  

 

In 2005, there were small but significant differences (P = 0.01) between cultivars and the 

dates of cutting, Table 6.2.  There were highly significant differences (P<0.001) in the 

regressions for the cutting dates and for the cultivars, as occurred in 2002.  In 2005, the 

average slope of the regression equations was -9.5. 

 

A combined regression analysis for both years was undertaken, Table 6.2.  All the two-

way interaction effects were highly significant (P<0.001).  The two-way interactions 

between the date of cutting and the cultivars showed the slopes of the regression lines 

were significantly different (P = 0.002) between the cultivars.  A small but significant 
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difference in the gradient of regression lines between the cultivars in 2005 can be seen in 

Figure 6.2 for the cultivars ‘Tonda di Giffoni’ and ‘Casina’ compared with the other 

cultivars.  In 2002, the gradients of the regression lines for cultivars were not found to be 

significantly different. 

 

  

 

Figure 6.2 Effect of date of shoot cutting (DOY) on the post-chill heat requirements (GDD) 

in growth cabinets at 15°C for 50% pollen shed of 8 cultivars of hazelnut. 

 

It is considered that the small differences between the gradients of the regression of the 

cultivars in 2005 could be attributed to greater variation that year.  In general, the analyses 

indicate that the post-chill heat requirements for catkin extension were not different 

between the cultivars; however, there were significant differences between the years 

(P<0.001). 

 

Using similar cutting techniques on hazelnut twigs and providing post-chill heat in growth 

chambers, Tiyaynon (2008) found no difference between several hazelnut genotypes in 

their post-chill heat requirements.  However, Turcu et al, (2001) reported that, in Romania, 

there were differences between cultivars in the post-chill GDD requirements for pollen 

shed, their mean values were 126 GDD, with a range of 50 GDD for their cultivars.  These 

values are far less than those required for pollen shed (Table 6.1) in these experiments.  

This may reflect the lower winter temperatures of Romania, possibly with prolonged 

chilling and consequently lower GDD requirements. 

6.3.2 Female inflorescences 
 

Female anthesis occurred after pollen shed for all 8 cultivars in both the growth cabinets 

and the field (Tables 6.1 and 6.3). 
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The initial cutting dates for the commencement of stigma exertion in the growth cabinets 

were less clearly defined than those for the commencement of pollen shed.  However, as 

with the start of pollen shed, the mean day of the year to the commencement of stigma 

exertion for all 8 cultivars occurred earlier for cut shoots in the growth cabinets than for 

shoots in the field.  This occurred 16 days ahead in 2002, compared with 29 days in 2005 

(Table 6.3).  Stigma exertion commenced 18 days earlier in the growth cabinet in 2005 

than in 2002, but only 5 days earlier in the field. 

 

Table 6.3 Day of the year (DOY) to the end of dormancy and commencement of stigma 

exertion with recorded chill hours to that date in 2002 and 2005 and the DOY to the 

commencement of stigma exertion in the field, along with post-chill heat units. 

 
 

 

2002 

 

 

 

Cultivars 

Earliest 

cutting date 

(DOY) to 

start of 

stigma 

exertion in 

the cabinet 

Chill hours 

from 1 April 

to DOY to 

start of 

stigma 

exertion in 

the cabinet 

 

 

 

DOY to start 

of stigma 

exertion in 

the field 

 

GDD in 

cabinet from 

DOY to start 

of stigma 

exertion in 

cabinet 

 

GDD in field 

from DOY 

to start of 

stigma 

exertion in 

the field 

‘Atlas’ 189 994 196 105 31 

‘Tonda di Giffoni’ 189 994 217 210 149 

‘Barcelona’ 203 1123 217 105 93 

‘TBC’ 210 1179 231 105 147 

‘Segorbe’ 217 1254 224 105 57 

‘Casina’ 224 1326 231 105 49 

‘Ennis’ 224 1326 245 105 141 

‘Hall’s Giant’ 224 1326 245 105 141 

Means 210 1190 226 118 101 

2005 

Cultivars 

     

‘Atlas’ 165 632 199 210 201 

‘Tonda di Giffoni’ 165 716 206 315 234 

‘Barcelona’ 186 936 213 210 159 

‘TBC’ 193 1041 213 210 157 

‘Segorbe’ 200 1194 220 210 163 

‘Casina’ 200 1194 234 210 229 

‘Ennis’ 200 1194 241 210 116 

‘Hall’s Giant’ 221 1375 241 210 116 

Means 192 1035 221 223 172 

 

The mean minimum number of chill hours to break the dormancy of the female 

inflorescences was 1190 hours in 2002, the earlier year to the completion of dormancy, 

and1035 hours in 2005, a difference of 155 chill hours.  The mean post-chill heat 

requirements in the growth cabinet were 118 GDD in 2002, the year with more chill hours, 

and 223 GDD in 2005.  These were much less than the mean post-chill heat requirements 

for pollen shed, which were 363 GDD in 2002 and 499 GDD in 2005. 

 



 194 

It was unclear whether there were differences between the cultivars in their post-chill 

GDD requirements.  The number of GDD required in the cabinet to stimulate stigma 

exertion did not appear to differ between cultivars in either year.  However, there was 

more variation between cultivars in the field in the calculated GDD in both years 

compared with the growth cabinets, suggesting there might be cultivar differences. 

 

 

6.3.3 Chill hour requirements to overcome dormancy 
 

In these controlled temperature experiments, the chill requirements of the cultivars varied 

between years and cultivars; they were less in 2005 than in 2002.  The chill requirements 

appeared to be the main factor influencing the relative timing of both male and female 

anthesis of the cultivars.  The chill requirements of the catkins were less than the female 

flowers, as reported by Bergamini and Ramina (1968), Fontanazza and Salleo (1968) and 

Mehlenbacher (1991a). 

 

Chill requirements of a range of cultivars were estimated by Mehlenbacher (1991a) using 

a similar technique to that used in these studies.  There were similarities in the relative 

chill requirements of the cultivars that were common to both this experiment and that of 

Mehlenbacher (1991a), Table 6.4. 

 

In both situations, ‘Tonda di Giffoni’ had relatively low chill requirements for catkins and 

female inflorescences compared with the other cultivars, and ‘Hall’s Giant’ had relatively 

high chill requirements (Table 6.4).  There were similarities in the sequence that the other 

cultivars fitted in between these 2 cultivars for both pollen shed and female anthesis.  

However, on average, the estimated minimum chill hours recorded at Orange for all 

cultivars were greater than those estimated in Oregon, particularly for pollen shed. 

 

 

 

Table 6.4 Estimated minimum chill hours required to break dormancy of catkins and female 

inflorescences in 2002 and 2005, compared with published figures for Oregon 

(Mehlenbacher, 1991a). 

 
Cultivars Orange  

Chill hours, Oregon 

(Mehlenbacher, 1991) Pollen shed 
Chill hours 2002 Chill hours 2005 

‘Tonda di Giffoni’ 472 338 170-240 

‘Barcelona’ 565 404 240-290 

‘Segorbe’ 565 417 240-290 
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‘Casina’ 619 569 290-365 

‘Ennis’ 619 499 240-290 

‘Hall’s Giant’ 693 623 290-365 

    

Female anthesis    

‘Tonda di Giffoni’ 994 716 600-680 

‘Barcelona’ 1123 936 600-680 

‘Segorbe’ 1254 1194 1170-1255 

‘Casina’ 1326 1194 1395-1550 

‘Ennis’ 1326 1194 1040-1170 

‘Hall’s Giant’ 1326 1375 990-1040 

 

 

6.3.4 Seasonal differences in flowering  
 

Seasonal differences 

The difference in the chill hour requirements estimated for the 2002 and 2005 seasons at 

Orange and those estimated by Mehlenbacher (1991a) for one season in Oregon indicate 

there is seasonal variation.  It raises the question, what are the minimum chill requirements 

and why do these vary between seasons? 

 

The method of calculating chill hours was similar.  Mehlenbacher (1991a) calculated 

accumulated chill requirements from the date that chilling commenced in autumn.  At 

Orange, the chill hours were accumulated from 1 April, as there were very few chill hours 

before that date.  The rates of accumulation of chill hours in 2002 and 2005 were very 

similar, at an average of 9.8 chill hours per day, over the period 1 April–30 June, Figure 

6.3.  The total chill hour accumulation by 30 June was just over 800 hours in each year.  In 

both years, there was a highly positive correlation (P=0.001) between the number of 

accumulated chill hours per day and the day of the year (DOY) over the period 1 April–30 

June, Figure 6.3.  Thus, the later the date of anthesis, the more chill the flowers received.   
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Figure 6.3 Mean daily temperatures °C and accumulated chill hours (0-7°C) recorded at the 

Orange site over the period 1 April–30 June, 2002 and 2005.  The arrows show the earliest 

mean cutting dates for the commencement of pollen shed in the cabinet, indicating the mean 

minimum chill requirements. 

 

All cultivars were later into flowering in 2002 than in 2005 and hence had greater chilling 

in 2002.  However, the mean temperature for the same period, 1 April–30 June, was 

slightly higher in 2005 (10.3°C) and declined more slowly at 0.12°C per day, compared 

with a mean of 9.3°C and a decline of 0.13°C per day in 2002, the year when flowering 

commenced at a later date.  Thus, there were, on average, more heat units per day from 1 

April to 30 June in 2005 compared with the same period in 2002.  The cultivars were 

earlier into anthesis in 2005, the year with the greater number of heat units per day. 
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Site differences 

The DOY when flowering occurred varied between sites as well as seasons, as reported in 

the previous chapter, Chapter 5, ‘Cultivar Floral Phenology’.  On average, pollen shed and 

female anthesis occurred earlier at Moss Vale than at Orange.  Mean temperatures and the 

accumulation of chilling hours over the months of April, May and June were very different 

between the 2 sites.  For example, in 2002, the accumulated chill hours in the period 1 

April–30 June (DOY 91-181) were 470 hours at Moss Vale, compared with 880 hours for 

Orange, Figures 6.3 and 6.4.  The mean temperature at Moss Vale for that period was 

11.3°C compared with 9.3°C for Orange.  In that year, 2002, the average date for the 

commencement of pollen shed in the field for 8 cultivars, common to both sites, was DOY 

177 at Moss Vale compared with DOY 195 at Orange.  Pollen shed occurred 18 days 

earlier at Moss Vale. 
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Figure 6.4 Mean daily temperatures °C, and accumulated chill hours (0-7°C) recorded at 

the Moss Vale site over the period 1 April–30 June, 2002. 

 

The earliest cutting dates for pollen shed at Orange were about 35 days earlier than for 

pollen shed in the field.  Based on this, it is estimated that at Moss Vale the average 

minimum chill hours for pollen shed for the 8 cultivars was 100-150 chill hours.  This 

figure is lower than that estimated for the earliest cultivar, ‘Tonda di Giffoni’, in Oregon 

by Mehlenbacher, (1991a), Table 6.4. 

It is concluded that, at Orange, there was ample chilling to break dormancy with less 

warmth to stimulate the development of the catkins, which delayed their development.  
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However, at Moss Vale, there was far less chilling, but presumably sufficient to break 

dormancy, with ample warmth to promote the production of the growth stimulant that led 

to the development of the catkins. 

 

In their studies on peach, Richardson et al (1974) found that temperatures in the range 2.1-

9.1°C were more effective in meeting the chill requirements.  Some temperatures outside 

this range were less effective and were assigned a lower weighting value of 0.5.  

Temperatures below 1.5°C were given a value of zero.  When temperatures rose above 

15°C there was a negation of chilling.  This chill unit (CU) system became known as the 

“Utah” model for calculating chill requirements of crops and was considered to be 

superior to the chill hours (0-7°C) for some crops.  However, Norvell and Moore (1982) 

considered this model required modification for high-bush blueberries (Vaccinium 

corymbosum L.).  Tiyaynon (2008) assessed this model for hazelnut and considered it 

slightly superior to the conventional chill hour model.  Temperatures of 15°C were not 

found to have a negative effect on the accumulation of chill hours in Corylus avellana L.  

This temperature was reported as being the optimum for catkin development (ibid, 2008). 

 

Calculations of “chill units” as described by Richardson et al (1974), were calculated for 

both years, 2002 and 2005, at Orange, to assess whether there were better correlations 

between the break of dormancy and these chill units, compared with the chill hour 

calculations (0-7°C).  The correlations were not found to be significantly different from 

the more conventional chill hours. 

 

 

6.3.5 Conclusions on floral phenology 
 

It is concluded that difficulties in estimating the chilling requirements of hazelnut flowers 

are related to: 

 the method of calculating chilling hours (chill hours vs. chill units); 

 determining the starting date for calculation; 

 determining the date when endodormancy is complete; and 

 the lack of visual signs of changes from endodormancy to ecodormancy. 
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Similarly, difficulties in estimating the heat unit requirements are related to: 

 determining the base temperature for calculations; and 

 knowing when to commence the calculation of the thermal sums. 

 

Several authors have reported difficulty in accurately predicting the flowering date of 

deciduous fruit trees using simple temperature models.  Garcia et al (1999), reported 

differences between years in the timing of flowering of apricot in Spain and Italy and 

concluded that forecasting flowering date, on the basis of chill and heat units, was 

unreliable.  Felker and Robitaille (1985) considered there was an overlap between chilling 

and heat unit accumulation influencing the flowering of sour cherry.  Chuine, Cour and 

Rousseau (1999) evaluated the effectiveness of a range of models to predict the flowering 

of temperate trees.  They concluded that the selection of the most appropriate model 

depended on the tree species and that there was no universal model that could be used for 

all species. 

 

It seems likely that, in hazelnut, the sequential model of chilling followed by post-chill 

warmth has limitations and that heat units prior to the completion of dormancy may have 

an effect on the commencement of flowering, as suggested by Tiyaynon (2008).  Such a 

concurrent model would be in line with the notion that the level and effect of a restricting 

chemical, such as ABA, declines with time due to chilling, whilst the level and effect of a 

stimulating chemical, such as IAA, is influenced by warmth with the level of that hormone 

slowly rising during winter (Figure 6.1).  These processes run concurrently, with an 

overlap point being reached when the effect of the stimulating chemical exceeds that of 

the restricting hormone, as shown by Rodriguez and Sanches-Támés (1986), and flowering 

subsequently commences.  As there are no obvious visual phenological signs of this point, 

it is not possible to determine it in the field. 

 

It is considered that more studies using growth cabinets operating at different temperatures 

could provide valuable data in gaining an understanding of the effects of temperature and 

temperature accumulation on post-chill thermal requirements.  This should be coupled 

with anatomical studies similar to those done by Tiyaynon (2008).  
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6.4 Bud break 
 

Very limited data was obtained on the chill requirements for bud break.  However, in 

2002, observations were obtained on the cutting dates when bud swell was first observed 

in 4 cultivars, Table 6.5.  In all cultivars, bud break was later than the exertion of stigmas.  

The first cutting date to bud break in the growth cabinet was on average 40-45 days earlier 

in the cabinet than in the field.  In that year, 2002, the calculated accumulated chill hours 

to terminate endodormancy ranged from 1050 hours with the early-leafing cultivar ‘Tonda 

di Giffoni’ to 1482 hours for the late-leafing cultivar ‘Hall’s Giant’.  These chill hours 

were far higher than those estimated by Mehlenbacher (1991a) which ranged from 680 for 

‘Tonda di Giffoni’ to 1040 for ‘Hall’s Giant’.  However, they are in agreement with 

reports that differences between cultivars in dates of bud break are related to the relative 

chill hour requirements of the cultivars to overcome dormancy.  These vary between 

seasons for any cultivar but the sequence the cultivars break into leaf is genetically 

determined (Tromp 2005). 

 

Table 6.5 Day of the year (DOY) to the end of dormancy and commencement of bud break 

with recorded chill hours to that date in 2002 and the DOY to the commencement of bud 

break in the field 

. 
 

 

Cultivars 

Cutting date 

for first 

observations 

in cabinet 

 

 

DOY 

cabinet 

Chill hours to 

cutting date in 

cabinet 

 

 

Date of bud 

break in field 

DOY 

Bud 

break in 

field 

‘Tonda di Giffoni’ 15 July 196 1050 2 September 245 

‘Wanliss Pride’ 5 August 210 1179 9 September 252 

‘Barcelona’ 5 August 217 1254 14 September 257 

‘Hall’s Giant’ 30 August 242 1482 7 October 280 

 

As ‘Hall’s Giant’ was one of the latest cultivars into leaf (Chapter 5, Section 5.5.1 

‘Cultivar effects’), the date that endodormancy was complete gives an indication of the 

minimum chill hour requirements for a wide range of hazelnut cultivars.  In 2002, 

endodormancy had terminated by 30 August in Orange.  As the variation between years 

was found to be small (Chapter 5, Section 5.5.2 ‘Years and sites’) it is considered likely 

that the endodormancy of vegetative buds for the latest-leafing cultivars (e.g. ‘Hall’s 

Giant’) was complete at all sites by 30 August.  However, based on that assumption, the 

chill hours to that date vary considerably between sites, with the lowest at Kettering, 1088 

hours, as shown in Table 6.6. 
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Table 6.6 Mean dates of bud break at the study sites along with the mean accumulated chill 

hours over the months of April – August, inclusive. 

 
 Orange Moss Vale Myrtleford Kettering 

Mean date of bud break  

19 Sept 

 

11 Sept 

 

6 Sept 

 

4 Sept  

Accumulated chill hours 

April - August 

 

1606 

 

1085 

 

1370 

 

1088 

Source: Table 5.6  

 

Orange had lower mean winter temperatures than Kettering, Figure 6.5.  The accumulation 

of chill hours (0-7°C) was higher at Orange, based on its cooler temperatures; hence 

Orange has a higher level of accumulated chill hours by the end of August.  However, as 

mean temperatures in August and September were higher at Kettering, it seems likely that 

thermal sums post-dormancy would be higher at Kettering and might account for the 

earlier bud break at that site. 
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Figure 6.5 Mean monthly temperatures (°C) and accumulated chill hours (0-7°C) recorded 

at the Orange and Kettering sites during the months of April – August. 

 

The determination of accumulated chill units (CU) using a modified Utah chill model, as 

suggested by Tiyaynon (2008), may be a better technique for assessing the degree of 

chilling in hazelnuts over the range of temperatures experienced at the sites.  However, 

more information is also required on base temperatures for post-chill heat units and dates 

when endodormancy is complete.  The issues relating to the prediction of bud break across 

sites and seasons are very similar to those for floral phenology. 
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Conclusion 

Despite the limitations of the data obtained on bud break, it is concluded that the minimum 

amount of chill required to ensure bud break of the highest-chill cultivars is in the range 

1100 – 1600 accumulated chill hours, over the months of April – August.  This figure is a 

useful guide to include in climatic parameters when selecting suitable sites for hazelnut 

production, as discussed in Chapter 2.  The range of 1100-1600 chill hours is similar to 

that suggested by Mehlenbacher (1991a) of 1500 hours, as presented in Table 2.1. 

 

 

6.5 Overall Conclusions 
 

Flowering 

The chilling requirements of cultivars for flowering varied considerably (Table 6.3).  

These requirements appeared to be the main factor influencing the timing of pollen shed 

and female anthesis and the sequence in which cultivars commenced flowering, as 

reported in the previous chapter, Chapter 5, ‘Cultivar Floral Phenology’, Figures 5.1, 5.2 

and 5.4.  Similar findings were reported for hazelnut cultivars by Mehlenbacher (1991a) 

and for almond cultivars by Egea, et al. (2003). 

 

It was concluded that the heat units (post-chill) for female flowers were considerably less 

than those required for catkins, which is in agreement with the published findings of 

Barbeau (1976), Kavardzhikov (1980), Mehlenbacher (1991) and Turcu et al (2001).  Both 

catkins and female flowers require warmth to stimulate their development, once dormancy 

is terminated.  However, it is postulated that the effects of accumulated chilling on the 

decline in chemicals that maintain endodormancy and the effects of warmth that stimulates 

the levels of chemicals that stimulate flowering may overlap in a parallel model for the 

development of flowering.  There is a need for further studies to test this hypothesis and 

develop a more sophisticated model for predicting flowering in hazelnut.  Such work 

should include studies of floral phenology coupled with biochemical monitoring of the 

chemicals that control dormancy and stimulate floral development, in conjunction with 

monitoring climatic conditions. 
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Bud break 

The variation in dates of bud break between cultivars was considered to be strongly 

influenced by their chill requirements.  Differences between sites in accumulated chill 

hours to bud break ranged from 1100 to 1600 chill hours for the latest-leafing cultivar, 

‘Hall’s Giant’, in 2002.  Although only limited data was obtained on chill requirements of 

hazelnut in this research, it is considered that the climatic parameter of 1500 accumulated 

chill hours in April–August, as suggested in Chapter 2, Table 2.1, is a valid but probably 

very conservative figure when evaluating sites for their suitability to grow hazelnuts.  It 

could be as low as 1000 chill hours, based on estimates from Moss Vale, however, until 

further data is obtained, a range of 1200-1500 chill hours is the recommended amoun 
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CHAPTER 7 – NUT YIELDS, YIELD DEVELOPMENT AND YIELD 

EFFICIENCY 
 

 

7.1 Introduction 
 

Nut yields are a key measure of the productivity of hazelnuts, particularly when assessing 

cultivars for the in-shell market.  However, as the kernel of the hazelnut is the edible and 

marketable part of the plant, growers seek high yields of good quality kernels per hectare, 

of a type that meets market requirements, in order to maximise their financial returns.  Nut 

and kernel yields per tree are influenced by the number of female inflorescences produced, 

the proportion that become pollinated and subsequently fertilised to produce nuts, and the 

proportion of these that produce good quality kernels.  The factors influencing the number 

of female inflorescences produced, pollination, fertilisation and kernel development were 

discussed in the literature review, Section 2.2.4 ‘Reproduction in Hazelnuts’, Figure 2.1.  

The pathway from flowering to nut and kernel development is presented again in Figure 

7.1. 

 

 

Figure 7.1 Pathway of kernel development from flowering to final kernel fill 

 

Generally, nut yields are assessed by collecting and weighing the mature nuts that fall 

from the trees in late summer.  The harvested nuts are cleaned and dried to approximately 

8% moisture content (McCluskey et al., 2005) before weighing.  The data obtained from 

the annual harvest of nuts is used to assess the development of yield, over time, as trees 

grow and develop.  In addition, cumulative yield assessments can be made after a certain 

number of years.  In Oregon, this was commonly assessed over a total of 3 to 5 years of 

production (McCluskey et al. 2005).  However, in Portugal, (Santos and Silva 2001) nut 

yield was measured annually for 14 years from the first year of nut production in order to 

obtain cumulative yields. 
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Another important measure used to evaluate the performance of cultivars is the yield 

efficiency of the cultivars.  This measurement can be carried out annually, but a common 

method is to divide the cumulative yield of a tree by its trunk cross-sectional area (cm
2
) in 

the last year of harvest (Westwood, 1993) to obtain the cumulative yield efficiency (∑YE).  

Yield efficiency provides an estimate of the efficiency of the bearing surface of a tree or 

cultivar: 

∑YE = cumulative yield per tree (kg)/TCSA (cm
2
) in the last year of harvest 

 

Although high yields of good quality kernels are a key objective for most commercial 

producers, particularly those wishing to supply product into the kernel market, the starting 

point in assessing cultivars or crosses from breeding programs is nut yields and the 

development of nut yield as trees grow and mature.  Cracking nuts and assessing kernel 

percentage and quality is time-consuming.  In the early years of tree growth there may be 

relatively few nuts to crack.  Also, differences in nut yields between cultivars at the same 

stage of growth and development may be so great that even if low-yielding cultivars have 

high quality kernels, they may be discarded due to their low yields. 

 

Following the chapters on tree growth and floral phenology, this chapter investigates the 

effects of cultivars, sites and seasons on nut yields; the next chapter evaluates the time of 

nut fall, nut weights, kernel yields and kernel quality. 

 

 

7.2 Methods  
 

The annual nut yields of the cultivars at all sites were measured, as described in Chapter 3, 

‘Methods’, Section 3.6.4 ‘Nut yields and yield efficiency’.  The data was used to assess 

differences between cultivars in their annual nut yields and the interaction effects between 

cultivars and sites, as well as cumulative yields and yield efficiency.  Analyses of variance 

were carried out using the statistical package, Genstat. 

 

Nuts were collected by hand from the orchard floor from individual treatment trees at all 

sites in the early years of production.  The exception was at Myrtleford, from 2004, where 

nuts were harvested with a Tonutti suction harvester.  After sucking up the nuts from an 

individual tree, the machine was emptied before moving on to the next tree.  The machine 

had the capacity to suck up the crop from the orchard floor and separate the nuts from 
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leaves, husks and soil.  Nuts were harvested at Kettering in a similar manner, using a 

FACMA suction harvester, in 2006 and 2007. 

 

 

 

Plate 7.1 Tonutti vacuum harvester used for collecting nuts at Myrtleford in March 2005; All 

trees were harvested separately to obtain nut yields. 

 

Sulphur-crested cockatoos (Cacatua galerita) caused problems at several sites, as the birds 

developed a liking for hazelnuts.  At Myrtleford, some yield losses to these birds occurred 

in 2006 and 2007, despite the use of gas guns to deter them.  Yield losses due to cockatoos 

were substantial at Toolangi in 2003 and high at Orange in 2002.  From 2003 to 2006, 

immature nuts were hand-picked at Orange, to minimise loss from birds.   

 

The nut yields were estimated from the numbers of green nuts which were picked in 

January, multiplied by average nut weights from mature nuts collected later in that season, 

from trees that had been protected with bird netting.  One of the problems with this 

technique was that it was assumed that green nuts would develop into mature nuts, which 

is not necessarily the case.  It is therefore possible that there was a slight over-estimation 

of yield using this technique, particularly with the cultivar ‘Ennis’, as that cultivar had 

many clusters of two nuts, in which one nut was large and the other was smaller; there was 

some doubt as to whether the smaller nuts would develop to maturity.  However, any 
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small nuts that appeared yellow or slightly shrivelled were excluded from the nut count 

and estimated nut yield. 

 

 

7.3 Results and Discussion 
 

7.3.1 Comparisons between cultivars and sites 

 

Although, initially, there had been a core of 12 cultivars planted at all 5 sites, a full set of 

yield data was obtained for only 8 of these cultivars over 7 years from planting.  This was 

because, at some sites, trees failed to grow, such as ‘Wanliss Pride’ at Orange; there were 

also some errors with tree planting and at most sites sulphur-crested cockatoos caused a 

loss of nuts in later years.  

 

An analysis of variance was conducted on the cumulative nut yields, 7 years after planting, 

and on the yield efficiency of 8 cultivars that were common to all 5 study sites.  There 

were significant interactions in the mean cumulative yields and the yield efficiency 

between cultivars and sites (P<0.001) (Table 7.1). 

 

Table 7.1 Levels of probability (F-values) from an analysis of variance of the effects 

of 2 factors, cultivars (8) and study sites (5) on cumulative nut yields and the yield 

efficiency of trees 7 years from planting. 
 

Source of variation Cumulative yield Yield efficiency 

Cultivars <0.001 <0.001 

Sites <0.001 <0.001 

Sites x cultivars <0.001 <0.001 

 

The significant differences in cumulative nut yields between the 8 cultivars and the 

interactions between cultivars and sites are illustrated in Figure 7.2.  No single cultivar 

produced the highest cumulative yield or the greatest yield efficiency at all sites.  

‘Barcelona’ was one of the highest yielding cultivars at Orange, Moss Vale, Myrtleford 

and Toolangi but not at Kettering.  ‘TBC’ produced the highest yield at Moss Vale and 

was one of the highest yielding cultivars at all other sites, except Myrtleford.  ‘Hall’s 

Giant’ produced low yields at all sites. 
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 'TBC' 4.36 8.63 10.81 8.00 4.82

 "Sicilian type" 2.94 5.43 16.81 3.30 2.24

 'Tonda di Giffoni' 2.60 7.21 12.98 3.63 2.29

 'Segorbe' 2.23 3.37 12.25 5.45 1.49

 'Victoria' 1.61 3.99 7.52 4.30 6.57

 'Ennis' 4.35 3.96 11.05 2.38 1.43

 'Hall's Giant' 0.38 0.22 1.59 0.21 0.18

Orange Moss Vale Myrtleford Toolangi Kettering

 

Figure 7.2 Cumulative nut yields (kg/tree) 7 years from planting for 8 cultivars at 

the 5 study sites. 

 

On average, the 7-year cumulative nut yields for the 8 cultivars were highest at 

Myrtleford, Figures 7.2 and 7.3.  The second highest cumulative nut yields were obtained 

at both the Moss Vale and Toolangi sites.  There were no significant differences in the 

mean yields between these two sites (P=0.05), Figure 7.3.  The lowest cumulative yields 

were obtained from both Orange and Kettering, with no significant difference (P=0.05) 

between these sites.  This was similar to the growth pattern of the cultivars at these sites, 

with the highest growth rates being achieved at Myrtleford and the lowest at Orange and 

Kettering, as discussed in Chapter 4, ‘Tree Growth’, Section 4.3.3 ‘Site effects on growth’.  

The relationship between nut yields and tree growth are discussed later in this chapter. 

 

LSD = 1.8 kg/tree  
(P=0.05) 
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Figure 7.3 Mean cumulative nut yields, 7 years from planting, for 8 cultivars grown 

at each of the 5 study sites. 

 

The production at each site is discussed in the order of north to south locations, as are all 

site comparisons throughout this thesis.  Separate analyses of variance on annual and 

cumulative nut yields and yield efficiency were conducted for each site, where there were 

additional cultivars to the 8 cultivars common to all sites.  These analyses provided 

additional data on cultivar performance. 

 

 

7.3.2 Orange 

 

Although nut yields to the eighth year from planting were used to compare cumulative 

yields across sites and to determine yield efficiencies, a further 3 years of data for nut 

production was obtained at Orange for 13 cultivars from which cumulative nut yields and 

yield efficiency data was obtained (Table 7.2).  This included the 8 cultivars that were 

included in the analysis for all sites, plus ‘Atlas’, ‘Butler’, ‘Casina’, ‘Eclipse’ and ‘Square 

Shield’. 

 

LSD = 0.91 

kg/tree (P=0.05) 
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The trees at Orange grew relatively slowly, as discussed in Chapter 4 (Section 4.3.2 ‘Site 

effects on growth’) and had relatively low cumulative nut yields 10 years from planting.  

‘Barcelona’, and ‘Ennis’ produced higher cumulative yields than any other cultivar except 

‘TBC’ (P=0.05), Table 7.2.  The lowest-yielding cultivars included ‘Casina’, ‘Hall’s 

Giant’, ‘Eclipse’ and ‘Square Shield’.  There was a high degree of variation within 

cultivars in growth and nut yield, resulting in relatively high values for least significant 

differences between cultivars for yield, tree growth (TSCA) and yield efficiency (Table 

7.2), making it difficult to assess small differences between cultivars. 

 

Table 7.2 Estimates of annual and cumulative nut yields (kg/tree) recorded at 

Orange (2000–2006) along with trunk cross-sectional area (TCSA) (cm
2
) at the end 

of the growing season in 2006 and yield efficiency (YE) kg/cm
2 

Growing 

seasons 

Years 

Cum 

yield 

kg/tree 

TCSA 

cm² 

YE 

kg/c

m² 

99/00 00-01 01-02 02-03 03-04 04-05 05-06 

Years from 

planting 4 5 6 7 8 9 10 

‘Ennis’ 0.17 0.58 1.36 2.24 2.29 7.98 3.57 18.2 107.6 0.17 

‘Barcelona’ 0.62 0.64 1.25 2.93 1.21 7.73 3.73 18.1 147.7 0.12 

‘TBC’ 0.57 1.23 0.48 2.08 1.93 6.47 3.47 16.2 136.5 0.12 

“Sicilian type” 0.37 0.62 0.32 1.62 1.12 6.31 1.87 12.2 74.8 0.16 

‘Atlas’ 0.18 0.40 0.54 1.87 1.01 5.21 2.20 11.4 162.2 0.07 

‘Segorbe’ 0.17 0.30 0.57 1.20 1.63 4.13 2.21 10.2 64.7 0.16 

‘Tonda di 

Giffoni’ 0.61 0.71 0.64 0.64 1.07 4.94 0.93 9.5 92.0 0.10 

‘Victoria’ 0.12 0.29 0.42 0.90 1.18 6.11 0.30 9.3 87.7 0.11 

‘Butler’ 0.02 0.06 0.28 0.49 1.65 2.81 2.72 8.0 93.1 0.09 

‘Casina’ 0.07 0.03 0.09 0.27 0.93 3.15 1.21 5.8 73.4 0.08 

‘Hall's Giant’ 0.01 0.04 0.23 0.13 0.33 4.04 0.51 5.3 100.9 0.05 

‘Eclipse’ 0.16 0.18 0.46 0.37 1.79 1.24 1.00 5.2 47.3 0.11 

‘Square Shield’ 0.00 0.02 0.07 0.11 0.21 1.76 0.66 2.8 62.9 0.05 

LSD P =0.05 0.21 0.32 0.40 0.80 0.81 2.3 0.81 4.8 37.5 0.037 

 

‘Ennis’ and the “Sicilian type” produced the highest yield efficiency at 0.17 and 0.16 

kg/cm² respectively (Table 7.2).  The yield efficiency of ‘Barcelona’ was 0.12 kg/cm²; a 

similar yield assessment experiment in Oregon with ‘Barcelona’ produced 4-year 

cumulative nut yields of 9.8 kg/tree and a yield efficiency of 0.13 kg/cm
2
 (McCluskey et 

al., 1997).  This is indicative of the relatively poor growth of the ‘Barcelona’ trees at 

Orange compared with Oregon. 

 

The development of nut yield up to the tenth year from planting, the 2006 harvest, is 

presented in Figure 7.4 for 5 of the highest-yielding cultivars at that site and the mean 

yield of the 13 cultivars. 
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Figure 7.4 Development of nut yield (kg/tree) for the 5 highest yielding cultivars and 

the mean of the 13 cultivars. 

 

Up to the seventh year from planting, nut yields increased annually.  In the seventh year 

from planting, the 2002-03 season, nut yields either declined or were similar to the 

previous season.  There were 2 possible reasons for this, either frost damage in the spring 

of that season or low rainfall in the previous spring, Figure 7.5. 

 

There was a frost, in October 2003, which affected many cultivars at Orange, particularly 

those that were earlier into leaf, such as ‘Barcelona’, as discussed in Chapter 4, Section 

4.3.3, ‘Climate effects on tree growth’.  The leaf and shoot damage caused by frost in 

October is likely to have caused a loss of some developing fruits.  The decline in nut 

yields from the 2002-03 season appeared to be greater for the earlier-leafing cultivars, 

such as ‘Barcelona’ and the “Sicilian type”, which were more affected by frost than the 

later-leafing cultivar, ‘Ennis’, Table 7.2 and Figure 7.5.  A regression analysis of the 

difference or decline in nut yields from the 2002-03 season to the 2003- 04 season 

Frost damage 
in October 2003 

Low winter and spring 
rainfall in 2002 
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compared with the scores for frost damage showed that the greater the frost damage, the 

greater the yield decline, Figure 7.5.  This accounted for 75% of variation in nut yield. 
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Figure 7.5 Relationship between decrease in nut yield in the 2003-04 season 

compared with 2002-03 and the score for severity of frost damage in October 2003 

for 13 cultivars at Orange.  

 

The very low rainfall in winter and spring of 2002 was associated with very little new 

shoot growth, which was considered to be another factor that might have caused low nut 

yields the following season, 2003-04 (Figure 7.4).  The months of October and November 

are a critical period of the growing season when hazelnut trees are producing new shoot 

growth and initiating female inflorescences for the following year’s crop.  A stress at this 

stage of growth can adversely affect nut yields the following season Bergoughoux et al. 

(1978), Mingeau et al. (1994) and Bignami and Natali (1997). 

 

The strong relationship between frost damage and the decline in yield was considered to 

be the main factor contributing to the decline in nut yields in the 2003-04 season. 

 

The frost did not appear to have had any effect on nut yields in the following year, 2004-

05, when nut yields increased markedly, Figure 7.4.  Nut production in the subsequent 

year, 2005-06, was considerably lower than in 2004-05, Figure 7.4.  This was despite 357 

mm of rainfall in the months of August to November 2004, plus supplementary irrigation.  

It is postulated that this decrease in yield could have been due to intra-plant competition 

for assimilates, between shoot growth and developing nuts, during the spring of 2004, with 

the trees utilising most of the assimilates from photosynthesis for nut production.  The 
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phenomenon of partitioning limited assimilates to either shoot growth or fruit production 

often marks the beginning of biennial-bearing (Westwood, 1993).  The nut yields at 

Orange seemed to follow a biennial-bearing pattern from the eighth year from planting.  

Biennial-bearing is common in hazelnuts, particularly with the cultivar ‘Barcelona’ in 

Oregon (Olsen and Goodwin, 2005). 

 

The trees lacked vigour at Orange (Plate 7.2) and nut yields were poor until the ninth year 

from planting. 

 

 

 

 

Plate 7.2 Growth of trees at Orange in March 2005, 9 years from planting, the trees generally 

lacked vigour and at this stage were just meeting within the rows. 

 

 

7.3.3 Moss Vale 

 

At Moss Vale, annual nut yields were obtained from 10 cultivars for 7 years from 

planting; these included the 8 cultivars that were common to the 5 study site plus ‘Atlas’ 

and ‘Wanliss Pride’. 
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‘TBC’ produced the highest cumulative yield (P=0.05) over the 7 years.  ‘Tonda di 

Giffoni’ produced the next highest yield (P=0.05) followed by ‘Barcelona’ and the 

“Sicilian-type”, which were not significantly different from one another, Table 7.3.  The 

lowest-yielding cultivars were ‘Hall’s Giant’ ‘Atlas’ and ‘Wanliss Pride’.  The highest 

yield efficiency was from the “Sicilian-type” at 0.11 kg/cm
2
, which was higher than that 

achieved at the Orange site. 

 

Table 7.3 Annual and cumulative nut yields (kg/tree) recorded at Moss Vale (2001–

2004) along with TCSA (cm
2
) in 2004 and yield efficiency (YE) kg/cm

2
. 

 
 Year of leaf and harvest 

Cum 

Yield 

(kg) 

TCSA 

(cm
2
) 

YE 

kg/cm
2
 

Years from 

planting  4 5 6 7 

Growing seasons 2000-01 2001-02 2002-03 2003-04 

‘TBC’ 1.64 2.92 2.19 1.88 8.63 123.8 0.07 

‘Tonda di Giffoni’ 1.66 2.12 1.28 2.15 7.21 118.9 0.06 

‘Barcelona’ 0.79 2.15 1.03 1.70 5.66 106.4 0.06 

“Sicilian-type” 0.34 1.74 0.96 2.39 5.43 50.8 0.11 

‘Victoria’ 0.90 1.53 1.30 0.25 3.99 93.6 0.04 

‘Ennis’ 0.49 1.83 1.47 0.17 3.96 86.1 0.05 

‘Segorbe’ 0.47 2.08 0.64 0.18 3.37 76 0.04 

‘Wanliss Pride’ 0.37 0.47 0.27 1.13 1.79 21.7 0.08 

‘Atlas’ 0.29 0.48 0.15 0.17 1.09 86.5 0.01 

‘Hall's Giant’ 0.03 0.10 0.06 0.03 0.22 72.9 0.00 

LSD (P=0.05) 0.43 0.57 0.37 0.55 1.36 22.4 0.02 

 

Due to limited funding, yield data was obtained for only 5 of the cultivars in 2004-05, the 

eighth year from planting, when the trees had finally recovered from the drought of 2002-

03.  By the end of that season, their canopies were meeting down the tree rows, Plate 7.3.  

Some very valuable yield data was obtained from these 5 cultivars, with a noticeable 

increase in nut yields that year.  Yields of more than 4 kg/tree were obtained from both 

‘TBC’ and ‘Tonda di Giffoni’, which were significantly higher (P=0.05) than from 

‘Barcelona’ (3.36 kg/tree), Figure 7.6.  These 3 cultivars produced significantly more than 

‘Ennis’ (2.78 kg/tree). 

 

The general decline in nut yield in the seventh year from planting, the 2002-03 growing 

season, was almost certainly due to the extremely low rainfall in that season.  There was a 

total of only 69 mm of rain in the period August to November 2002 (Figure 7.6), with the 

dry conditions continuing into the next 2 months.  There was a shortage of water for 

irrigation in that growing season, as the winter rainfall had also been low and the spring 

that fed the irrigation dam did not flow.  However, it was possible to apply a total of 2120 

L/tree during that growing season (Table 3.9 in Chapter 3, ‘Methods’).  Despite this 
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supplementary irrigation, the trees appeared moisture-stressed in late spring and 

throughout summer, with shoot growth, nut yields (Figure 7.6) and kernel quality seeming 

to be adversely affected by the moisture stress. 
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Figure 7.6 Development of nut yield for 5 key cultivars at Moss Vale 

 

The dry conditions during the spring and early summer in the 2002-03 season occurred 

during a period of growth that was identified by Bergoughoux et al. (1978) and Mingeau 

et al. (1994) as being particularly sensitive to moisture stress.  The dry conditions limited 

shoot growth and consequently the initiation of female inflorescences for the next season’s 

crop, as well as adversely affecting the current season’s crop.  The trees at Moss Vale 

appeared to be under greater moisture stress than those at Orange, due to the lower rainfall 

and limited supplies of irrigation water.  An estimate of the monthly soil moisture store 

was given in Chapter 4, ‘Tree Growth’, Table 4.7.  It was estimated that by the end of 

October, when trees would normally be making active growth, the available soil moisture 

store was only about 20 mm, with 50 mm of irrigation being applied in November to 

maintain some available soil moisture. 

Very low rainfall in 
winter – spring 2002 
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Although nut yields were relatively low in the following season (2003-04), moderately 

high rainfall in the period August to November of that spring produced good new shoot 

growth which resulted in the highest yields for the site of 3-4 kg/tree in the following 

season (2004-05), the ninth year from planting (Figure 7.6).  It is unclear why the yield of 

‘Ennis’ was so poor in 2003-04, compared with ‘Barcelona’, ‘TBC’ and ‘Tonda di 

Giffoni’ (Figure 7.6). 

 

 

 
 

Plate 7.3 The Moss Vale site, where most cultivars were meeting in the rows by the final 

harvest in 2005, their ninth season of growth.  Karilyn Gilchrist, Technical Assistant (left) 

and Jim Gleeson (right) at the final visit to the site in April 2005. 

 

 

7.3.4 Myrtleford 

 

The largest number of cultivars were evaluated at Myrtleford, where growth rates were the 

highest, trees came into production earliest and, in general, produced the highest 

cumulative yields 7 years after planting, across all sites, Figure 7.3.   

 

There was a further year of growth and nut production, providing data for 8 years from 

planting.  The 3 cultivars, ‘Barcelona’, ‘Butler’, and the “Sicilian-type” produced higher 

cumulative yields (P=0.05) than any other cultivars, Table 7.4.  ‘Tonollo’ and ‘Segorbe’ 
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produced the next highest cumulative yields (P=0.05).  Of these 5 higher-yielding 

cultivars, the smaller, more compact-growing “Sicilian-type” had the highest yield 

efficiency at 0.19 kg/cm² (P=0.05). 

 

Table 7.4 Annual and cumulative nut yields to the eighth year from planting 

(kg/tree) recorded at Myrtleford along with trunk cross-sectional area (TCSA) 

(cm
2
) at the end of the eighth growing season and yield efficiency (YE) kg/cm

2
. 

 
Growing 

season 

1999-

00 

2000-

01 

2001-

02 

2002-

03 

2003-

04 

2004-

05 
2005 

Cum. 

yield 

(kg) 

Mean  

TCSA 

(cm
2
)  

2005 

 

 

YE 
(kg/cm2) 

Yrs from 

planting 3 4 5 6 7 8 

‘Barcelona’ 0.57 1.35 6.12 5.14 5.13 6.12 24.43 198 0.12 

‘Butler’ 0.42 1.11 5.59 5.46 5.72 5.59 23.89 197 0.12 

“Sicilian type” 0.43 2.15 5.31 4.1 4.82 5.31 22.12 117 0.19 

‘Tonollo’ 0.19 0.92 4.87 4.68 4.15 4.87 19.68 178 0.11 

‘Segorbe’ 0.41 1.02 4.67 3.73 2.43 4.67 16.93 156 0.11 

‘Tonda di 

Giffoni’ 0.59 2.25 2.92 4.86 2.37 2.92 15.91 165 0.10 

‘Ennis’ 0.24 0.89 3.54 3.66 2.73 3.54 14.60 134 0.11 

‘TBC’ 0.66 1.8 3.01 3.54 1.8 3.01 13.82 177 0.08 

‘Atlas’ 0.51 1.53 2.36 4.29 2.02 2.36 13.07 158 0.08 

‘Hammond#17’ 0.1 0.22 2.18 3.05 3.8 2.18 11.53 158 0.07 

‘Eclipse’ 0.2 0.41 2.5 2.31 2.78 2.50 10.70 94 0.11 

‘Negret’ 0.19 0.48 2.33 2.01 3.11 2.33 10.45 93 0.11 

‘Victoria’ 0.06 0.89 2.59 2.77 1.21 2.59 10.11 176 0.06 

‘Casina’ 0.18 0.37 2.37 2.39 1.42 2.37 9.10 110 0.08 

‘Royal’ 0.29 0.62 1.9 2.38 1.64 1.90 8.73 134 0.06 

‘T.G.D.L.’ 0.13 0.57 1.6 2.28 1.67 1.60 7.85 106 0.07 

‘Square Shield’ 0.09 0.14 1.1 1.86 1.11 1.10 5.40 118 0.05 

‘Daviana’ 0.08 0.18 0.74 0.79 0.87 0.74 3.40 152 0.02 

‘Merveille de 

Bollwiller’ 0.03 0.07 0.66 0.44 0.4 0.66 2.26 140 0.02 

‘Hall's Giant’ 0.01 0.03 0.36 0.39 0.26 0.36 1.41 166 0.01 
LSD (P=0.05) 0.18 0.39 0.84 0.74 0.8 0.84 3.28 23 0.03 

 

The plants of ‘Hall’s Giant’ and ‘Merveille de Bollwiller’, which are considered to be the 

same cultivar, gave the lowest cumulative yields.  The plants from these 2 sources of 

planting material appeared to be the same.  Other low-yielding cultivars were ‘Daviana’ 

and the Australian selection, ‘Square Shield’. 

 

The trees at Myrtleford made very good early growth and were producing nuts by their 

third year from planting.  ‘Barcelona’, ‘Butler’ and the “Sicilian type” produced more than 

5 kg of nuts per tree by the fifth year from planting, Table 7.4.  The mean nut yields for 

the cultivars reached a peak 7 years from planting, Figure 7.6. 

 

By the end of the seventh year from planting, when the ‘Barcelona’ trees had reached peak 

yields, they had an average TCSA of 161 cm
2
/tree which, at the density of the planting 
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(667 trees/ha), is equivalent to a total TCSA of 106 000 cm
2
/ha.  This is close to the total 

of 91 800 cm
2
/ha that Lagerstedt (as reported in Westwood, 1993) estimated to be the 

maximum bearing surface for an orchard.  Although not stated, this was probably for 

‘Barcelona’.  The “Sicilian type” achieved peak yields at a lower TCSA (99 cm²/tree or 65 

000 cm²/ha).  
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Figure 7.7 Development of nut yield (kg/tree) at Myrtleford, observed and fitted 

data 

 

Rainfall in the period August to November, 2002, the sixth year from planting, was low, 

198 mm.  However, it was higher than Moss Vale, which had only 69 mm for the same 

period.  At Myrtleford, there was good access to irrigation water and the trees were well-

watered to minimise any soil moisture stress.  A total of 2160 L/tree of irrigation water 

were applied through the growing season.  As a result, tree growth and crop yields were 

relatively unaffected by the below average rainfall and the trees did not seem to go into a 

biennial-bearing pattern. 

 

Pruning had been carried out annually to remove some limbs in order to maintain vigour 

and maximise an open tree structure (Plate 7.4).  The trees had been planted at a high 

density of 3 m within the rows and 5 m between rows (667 trees/ha), as they had been at 

all sites. 
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Plate 7.4 Pruning to remove low branches and crossing limbs, to aid access, harvesting and 

light penetration at Myrtleford in August 2005 

 

At Myrtleford, the trees had developed a full canopy by the seventh year from planting 

and probably should have been thinned, a common practice with high-density plantings of 

‘Barcelona’ in Oregon.  Pruning had not been done to shorten branches or to reduce the 

height of the trees.  It was realised that there was probably a need for severe pruning to 

reduce the competition for light, either by cutting back the limbs of the trees or removing 

alternate trees in the row.  It was considered that such treatments would be very time-

consuming, relatively expensive and would probably cause a short-term reduction in yield, 

as reported by Me et al. (1994) and Roversi and Mozzone (2005).  As there was little to 

gain from a research point of view, with the experiment nearing completion, such actions 

were not undertaken.  Despite the very vigorous tree growth and high density planting, 

some light was still reaching the orchard floor at the end of the eighth growing season and 

the final year of the research, Plate 7.5.  It appeared that peak nut yields were starting to 

decline in the final year of growth, but there was more loss of nuts from cockatoos that 

season, which may have accounted for the yield decline.  
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Plate 7.5 The Myrtleford site in March 2005, the ninth year from planting; although there 

was a full canopy, some light was still reaching the floor of the orchard.  Yields had reached 

a plateau at this stage of tree growth. 

 

The cultivars ‘Casina’ and ‘Montebello’ were not planted at Myrtleford until 1998; 2 years 

after the initial cultivars were planted.  Half of the ‘Willamette’ trees were planted in 1998 

with the remainder being planted in 1999.  ‘Lewis’ trees were not available for planting 

until 2001, 5 years after the initial planting.  These later-planted cultivars initially 

appeared to benefit from the wind shelter created by the earlier-planted trees, but, in time, 

competition for light seemed to limit the growth of these trees, particularly those of 

‘Lewis’.  It was, therefore, not possible to make a fair assessment of their yield. 

 

 

7.3.5 Toolangi 

 

At Toolangi, ‘Barcelona’ and ‘TBC’ had the highest cumulative yields over the first 8 

years from planting.  However, in the sixth year from planting, ‘TBC’ yielded more than 

‘Barcelona’ (Table 7.5).  ‘Segorbe’ and ‘Victoria’ had the next highest cumulative yield 

(P=0.05); the cumulative yields of ‘Tonda di Giffoni’, the “Sicilian-type” and ‘Ennis’ 

were not significantly different from one another.  ‘Hall’s Giant’ had the lowest 

cumulative yield of all the cultivars.  Although ‘Wanliss Pride’ did not grow strongly, as 

reflected by its low TCSA, it had the highest yield efficiency. 
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Table 7.5 Annual and cumulative nut yields 7 years from planting (kg/tree) 

recorded at Toolangi along with TCSA (cm
2
) at the end of the growing season in 

2003 and yield efficiency (YE) kg/cm
2
. 

 

Cultivars 

Growing seasons and years from planting Cum. 

Yield 

(kg) 

TCSA 

(cm
2
) 

YE 

kg/cm
2
 

1999-00 2000-01 2001-02 2002-03 

4 5 6 7 

‘Barcelona’ 0.76 1.62 3.11 2.61 8.10 127.2 0.06 

‘TBC’ 0.89 2.51 2.59 2.02 8.00 95.6 0.08 

‘Segorbe’ 0.34 1.22 2.06 1.83 5.45 97.5 0.06 

‘Victoria’ 0.33 1.15 1.52 1.30 4.30 127.6 0.03 

‘Tonda di Giffoni’ 0.29 1.22 0.91 1.21 3.63 65.5 0.06 

“Sicilian-type” 0.10 0.53 1.28 1.40 3.30 36.4 0.10 

‘Ennis’ 0.09 0.54 0.82 0.94 2.38 49.1 0.05 

‘Wanliss Pride’ 0.25 0.65 1.02 0.38 2.27 16.9 0.17 

‘Hall's Giant’ 0.02 0.04 0.05 0.10 0.21 69.7 <0.01 

LSD (P=0.5) 0.20 0.61 0.69 0.61 1.50 14.34 0.06 

 

At Toolangi, there was an increase in nut yield to the sixth year from planting for all the 

cultivars, Figure 7.8.  In the seventh year from planting, the tree canopies were just 

meeting within the rows and had achieved a mean TCSA of 70 cm
2
.  It appeared that peak 

yields had been achieved by this stage (Figure 7.8), when the mean TCSA of Barcelona 

was 150 cm², which was similar to the Myrtleford site. 
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Figure 7.8 Development of nut yield (kg/tree) at Toolangi, observed and fitted data 

 



 222 

Although rainfall in 2002 was below the 8-year average in the months of August to 

November, the amount of rain recorded was greater than at the other mainland sites and 

did not seem to be detrimental to growth and production, although yields in that year were 

slightly lower for ‘Barcelona’ and ‘TBC’.  No irrigation was applied in that year (Chapter 

3, ‘Methods’, Table 3.9), as the limited water supplies were allocated to higher priority 

projects at the Research Station.  The apparent decline in nut yields in the seventh year 

from planting was attributed mainly to damage from sulphur crested cockatoos that caused 

losses in nut production that year. 

 

 

7.3.6 Kettering 

 

At Kettering, the cultivar ‘Victoria’ produced the highest cumulative nut yield 8 years 

from planting (P=0.05), Table 7.6.  ‘TBC’ and ‘Hammond#17’ produced the next highest 

cumulative nut yield (P=0.05).  ‘Ennis’, ‘Whiteheart’, ‘TGDL’ and ‘Hall’s Giant’ had the 

lowest cumulative yields. 

 

Table 7.6 Annual and cumulative nut yields at the eighth year of leaf (kg/tree) 

recorded at Kettering (2003–2007) along with trunk cross-sectional area (TCSA) 

(cm
2
) at the end of the growing season in 2007 and yield efficiency (YE) kg/cm

2
. 

 

 

 

Cultivars 

Growing seasons and years from planting  

Cum. 

yield 

(kg) 

 

 

TCSA 

(cm2) 

 

 

YE 

(kg/cm2) 

2002-

03 

2003-

04 

2004-

05 

2005-

06 

2006-

07 

2007-

08 

3 4 5 6 7 8 

‘Victoria’ 0.14 0.53 0.72 1.21 3.00 1.81 7.41 95.9 0.08 

‘TBC’ 0 0.01 0.75 1.51 1.75 2.38 6.39 73.4 0.09 

‘Hammond#17’ 0 0.02 0.46 0.75 2.03 2.83 6.08 103.8 0.06 

‘Butler’ 0.01 0.06 0.58 0.79 1.16 1.90 4.50 65.7 0.07 

‘Tonda di 

Giffoni’ 0.08 0.73 0.39 0.32 0.91 1.91 4.33 114.4 0.04 

‘Barcelona’ 0.09 0.34 0.29 0.38 1.34 1.79 4.22 103.6 0.04 

‘Wanliss Pride’ 0.13 1.51 0.33 0.47 0.78 0.93 4.15 80.6 0.05 

“Sicilian type” 0.00 0.10 0.37 0.22 1.17 2.03 3.89 51.3 0.08 

‘Eclipse’ 0.00 0.00 0.42 0.47 0.99 1.74 3.62 61.4 0.06 

‘Square Shield’ 0.03 0.46 0.24 0.35 0.95 1.57 3.60 63.6 0.06 

‘Royal’ 0.03 0.23 0.59 0.58 1.01 1.01 3.45 99.7 0.03 

‘Montebello’ 0.00 0.04 0.32 0.13 0.86 2.07 3.42 94.6 0.04 

‘Segorbe’ 0.01 0.13 0.24 0.42 0.74 1.76 3.30 59 0.06 

‘Willamette’ 0.01 0.42 0.25 0.11 0.63 1.84 3.26 29.1 0.11 

‘Lewis’ 0.02 0.04 0.09 0.19 1.76 0.91 3.01 58 0.05 

‘Ennis’ 0.00 0.16 0.06 0.10 1.25 0.91 2.47 56.9 0.04 

‘Whiteheart’ 0.03 0.24 0.03 0.04 0.83 0.58 1.74 57.7 0.03 

‘T.G.D.L’ 0.01 0.26 0.00 0.08 0.08 0.27 0.70 23 0.03 

‘Hall’s Giant’ 0.00 0.00 0.05 0.07 0.02 0.22 0.36 79.2 >0.01 

LSD P= 0.05 0.08 0.31 0.21 0.25 0.57 0.81 1.7 29.1 0.02 
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The growth of the trees and the development of nut yield over time were very slow at 

Kettering (Figure 7.9 and Plate 7.6), with the highest-yielding cultivars, ‘Victoria’ and 

‘TBC’ producing cumulative nut yields of 7.41 and 6.39 kg/tree respectively at the end of 

the eighth year from planting, in contrast to their production at Myrtleford, where these 

cultivars produced cumulative yields of 10.1 and 13.8 kg/tree respectively over the same 

period of time.  At the end of the eighth year from planting, the trees of the fastest growing 

cultivars were just meeting down the rows; none of the cultivars appeared to have 

achieved peak yields (Figure 7.8).  ‘Willamette’ had the highest yield efficiency (P=0.05) 

at an average of 0.11 kg/cm
2
.  The yield efficiency of ‘TBC’ was 0.09 kg/cm

2
, which 

compared favourably with its yield efficiency at Myrtleford of 0.08 kg/cm
2
. 
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Figure 7.9 Development of nut yields (kg/tree) at Kettering, observed and fitted data 

 

At Kettering, the cultivars ‘Barcelona’ and ‘Tonda di Giffoni’ produced relatively low nut 

yields compared with their performance on the mainland sites.  Although ‘Barcelona’ 

produced good shoot growth, it appeared to have relatively fewer female flowers than 

‘TBC’.  To try and ascertain whether the Barcelona trees had less flowers and a poorer nut 

set than TBC, some flower counts were undertaken on tagged branches; a branch of a 

single tree of the cultivars ‘Barcelona’, ‘Lewis’ and ‘TBC’ was selected at random in each 
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of the 3 replicates for this study.  On 20 July, 2006, the numbers of female flowers on each 

branch were counted.  These branches, which were about 500 mm in length, were tagged 

and the number of nut clusters subsequently produced were counted in the following 

January, Table 7.7. 

 

Table 7.7 Average number of female flowers on branches of 3 cultivars at Kettering 

in July 2006, and the number and proportion of fruitful flowers 

 
Cultivars Female flowers Nut clusters Fruitful flowers 

‘Barcelona’ 4.7 3.7 79% 

‘Lewis’ 11.7 11.3 97% 

‘TBC’ 8.7 5.3 62% 

 

The number of flowers on the cultivar ‘Barcelona’ was low compared with ‘TBC’ and 

‘Lewis’.  However, pollination did not seem to be an issue, with a high percentage of 

flowers on the tagged branches producing nut clusters, particularly with the cultivar 

‘Lewis’.  There was a wide range of compatible polliniser cultivars at this site, as there 

was at all sites, so pollination was unlikely to be an issue for most cultivars, except for 

those that were very late into female flowering, such as ‘Hall’s Giant’.  This cultivar was 

one of the latest at all sites to come into female anthesis and gave low yields at all sites.  

‘Whiteheart’ and ‘Ennis’ were also cultivars that were very late commencing female 

anthesis, which might account for their low yields, although ‘Whiteheart’ was also of low 

vigour. 

 

 
 

Plate 7.6 The Kettering site in April, 2008; John Zito used a FACMA suction machine for 

harvesting.  Although healthy, the trees grew relatively slowly, just meeting within the rows 8 

years from planting. 
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The mean monthly temperatures in the period November to March were lower at Kettering 

than at the mainland sites.  This may possibly have affected the development of floral 

buds.  It is possible that ‘Barcelona’ requires more warmth in this period than ‘TBC’ for 

floral bud initiation or for fertilisation to occur.  

 

 

7.4 The productivity of cultivars  
 

In the initial analysis of variance, which examined the variable factors of cultivars and 

sites, (Table 7.1) a significant interaction (P<0.001) between cultivars and sites was found 

for the cumulative yields of cultivars and their yield efficiency.  In the context of this 

interaction, the yields of the cultivars and their yield efficiencies are discussed. 

 

The cultivars ‘Barcelona’ and ‘TBC’ were commonly the cultivars with the highest 

cumulative 7-year nut yields; however, there were exceptions.  ‘Barcelona’ had the highest 

cumulative yield at Myrtleford, along with ‘Butler’ (Table 7.4), whilst ‘Barcelona’ and 

‘TBC’ had the highest cumulative yields at Orange and Toolangi (Figure 7.9).  At Moss 

Vale, ‘Barcelona’ was the third highest-yielding cultivar along with the “Sicilian type”.  

The results for ‘Barcelona’ are in general agreement with those reported for this cultivar, 

that being a cultivar of high vigour over a wide range of conditions with generally high nut 

yields, as reported by Baratta et al. (1994), Miljković and Prgomet (1994), McCluskey et 

al. (1997), Santos and Silva (2001) and Grau and Bastias (2005). 

 

The Australian cultivar ‘TBC’ also had a high growth rate and was a high-yielding 

cultivar, with the highest cumulative yields at Moss Vale (Figure 7.9), equal highest to 

‘Barcelona’ at Orange and Toolangi and the second highest-yielding at Kettering (Figure 

7.9), where ‘Victoria’ was the highest-yielding cultivar. 

 

The “Sicilian-type” demonstrated a high yield potential (Figure 7.9).  It produced nut 

yields that were not significantly different (P=0.05) from the highest-yielding cultivar, 

‘Barcelona’ at Myrtleford.  At Moss Vale, the “Sicilian-type” also had a similar yield to 

‘Barcelona’, whilst at Orange its yields were not significantly different from ‘TBC’ and 

‘Ennis’.  At Toolangi and Kettering, yields of the “Sicilian-type” were similar to ‘Tonda di 

Giffoni’.  The “Sicilian-type” grew as a relatively small, bushy tree with the highest yield-

efficiency of all cultivars at Myrtleford, Orange and Moss Vale. 
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‘Tonda di Giffoni’ yielded well at Myrtleford and Moss Vale, where the nut yield was not 

significantly different from ‘TBC’ (P=0.05).  However, ‘Tonda di Giffoni’ was not as 

productive at Orange, Toolangi or Kettering.  It is possible that this cultivar, that has low 

chill requirements for catkins, female flowers and vegetative buds, is better adapted to 

warmer climates. 

 

‘Ennis’ produced the highest cumulative yield at Orange, along with ‘Barcelona’ and 

‘TBC’ (Table 7.2).  ‘Ennis’ produced yields equivalent to ‘TBC’ at Myrtleford; however, 

it did not yield well at Toolangi and Kettering.  As Kettering and Toolangi were sites with 

cooler summer temperatures, these results suggest that possibly ‘Ennis’ prefers a warmer 

summer climate.  McCluskey et al (1997) reported high yields and a high yield-efficiency 

in Oregon for ‘Ennis’.  In northern Portugal, Santos and Silva (2001) found ‘Ennis’ to be 

high-yielding and precocious. 

 

‘Segorbe’ grew well at all sites, but only produced mediocre cumulative yields at Orange, 

Moss Vale and Kettering.  However, at Myrtleford and Toolangi, it produced well with 

cumulative nut yields that were not significantly different from those of ‘TBC’.  This 

cultivar is grown in France, principally as a polliniser, but also for its relatively small, 

round kernels which have a smooth pellicle (Germain and Sarraquigne, 2004). 

 

The Australian selection ‘Victoria’ was the highest-yielding cultivar at Kettering.  Yields 

of ‘Victoria’ were mediocre at Orange, Myrtleford and Toolangi (Figure 7.9). 

 

‘Hall’s Giant’ (‘Merveille de Bollwiller’ syn.) grew well at all sites but produced very low 

nut yields.  In the Oltenia region of Romania, where the winters are very cold, ‘Merveille 

de Bollwiller’ showed good adaptability and yield (Parnia and Botu 1994). 

 

Overall Cultivar rankings 

In order to obtain an overall assessment of the yield potential of the 8 cultivars, a scoring 

system was used with a ranking score for each site.  This was obtained by dividing the 

cumulative yield of each cultivar by the cumulative yield of the highest yielding cultivar at 

that site.  The highest yielding cultivar gained a score of 1 with the others being a fraction.  

These site scores were used to obtain a mean score for each cultivar across the 5 sites.  

Based on this scoring system, the cultivars ‘Barcelona’ and ‘TBC’ were ranked as the 
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highest scoring cultivars across all sites for nut yields (Table 7.8), indicating wide 

adaptation with high yield potential across all sites.  They were followed by the “Sicilian 

type” and ‘Tonda di Giffoni’, with ‘Hall’s Giant’ being ranked the least productive. 

 

Table 7.8 Relative nut yield scores and total cumulative yields 7 years from planting 

for 8 cultivars across the 5 sites. 

 

Cultivars 

Relative yield score 

(Max. score = 1.0) 

Cumulative nut yield 

(kg/tree) 

‘TBC’ 0.82 7.32 

‘Barcelona’ 0.81 7.99 

“Sicilian type” 0.57 6.15 

‘Tonda di Giffoni’ 0.56 5.74 

‘Victoria’ 0.54 4.80 

‘Segorbe’ 0.47 4.96 

‘Ennis’ 0.47 4.63 

‘Hall's Giant’ 0.05 0.52 

 

There was a highly significant (P<0.01) correlation between the relative mean scores and 

the mean cumulative nut yields across the 5 sites (Figure 7.10), accounting for 97% of the 

variation between the scores and the cumulative yields. 
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Figure 7.10 Relationship between mean scores for relative yields at each site and 

total cumulative nut yield, 7 years from planting at the 5 sites for 8 cultivars. 
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Other cultivars 

‘Butler’ and ‘Tonollo’ yielded very well at Myrtleford (Table 7.4) but ‘Tonollo’ was not 

included for yield comparisons at the other sites.  ‘Tonollo’ was reported as the highest-

yielding cultivar in the field evaluation of hazelnut genotypes at Glen Innes in 1937 

(Trimmer, 1965).  Snare (1982) also reported good yields for ‘Tonollo’ in the cultivar 

collection at Orange.  The origin of ‘Tonollo’ is unknown, but it seems likely that it is 

related to ‘Barcelona’, as it has many similar characteristics to that cultivar. 

 

‘Atlas’ only produced mediocre yields and did not yield as well as had been reported in 

previous studies.  High yields had been recorded for this cultivar at Orange (Department of 

Agriculture NSW, 1982) and were later recorded at Myrtleford by Sample (1993). 

 

‘Negret’ was only planted at Myrtleford and Orange.  At Myrtleford, it grew as a small 

tree with relatively low nut yields, whilst at Orange, growth and production were very 

poor.  In Oregon, ‘Negret’ trees were of low vigour and produced relatively low nut 

yields, McCluskey et al. (1997).  However, ‘Negret’ was reported to grow well and 

produce high yields in Chile (Grau et al., 2001).  It is the main cultivar grown in Spain 

(Tous, 2005). 

‘Lewis’ and ‘Willamette’ were planted at Kettering at the same time as the other cultivars, 

whereas these 2 cultivars were planted later than the other cultivars at all the other sites.  

At Kettering, yields of ‘Lewis’ and ‘Willamette’ were not significantly different from 

‘Barcelona’, but were significantly lower (P=0.05) than the highest-yielding cultivars, 

‘Victoria’ and ‘TBC’.  In Oregon, both ‘Lewis’ and ‘Willamette’ produced higher yields 

than ‘Barcelona’ (McCluskey et al, 2001). 

 

‘TGDL’ was planted at Orange, Myrtleford and Kettering.  It struggled to grow at Orange 

and grew relatively slowly at the other 2 sites, producing low yields.  In Oregon, 

McCluskey et al (1997) also reported ‘TGDL’ to be of low vigour with low nut yields.  In 

Chile, however, growth and yield of ‘TGDL’ varied considerably with sites, (Grau and 

Bastias, 2005).  Parnia and Botu (1994) obtained good yields from ‘TGDL’ in Romania. 

 

‘Wanliss Pride’ yielded best at Kettering, with yields not significantly different from 

‘Barcelona’, although significantly lower than the highest-yielding cultivars, ‘Victoria’ 

and ‘TBC’.  At Toolangi, the cumulative yield of ‘Wanliss Pride’ was not significantly 

different from ‘Ennis’, ‘Tonda di Giffoni ‘or the “Sicilian type”.  Production at the other 3 
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sites was poor in comparison with other cultivars, especially at Orange, where ‘Wanliss 

Pride’ made very poor growth.  This cultivar had been the most widely-grown cultivar in 

Australia until the early 1990s.  At that time, ‘Wanliss Pride’ was viewed as the industry 

standard or benchmark cultivar in Australia.  Very variable results have been observed in 

the performance of this cultivar in growers’ orchards.  An example of good growth and nut 

yields was reported at Kallista, in the Dandenong area of Victoria, where ‘Wanliss Pride’ 

trees that were at least 40 years old and were at a spacing of 8 m x 6 m, were reported to 

have given yields of 20 kg/tree, equivalent to 4 tonnes/ha.  (Merry, Anthony, HGA field 

visit, 19 October, 2008).  The Kallista site had a krasnozem soil, which appeared similar to 

the Toolangi site and had high annual rainfall of about 1000 mm per annum.  ‘Wanliss 

Pride’ seems to perform better in more maritime climates, such as Kettering and in the 

hills east of Melbourne.   

 

‘Wanliss Pride’ has a spreading habit of growth and may grow better as a multi-stemmed 

tree.  In Portugal, Santos and Silva (2001), found that multi-stemmed trees produced 

higher cumulative yields than single trunk trees in their early years of production.  It is 

possible that, had ‘Wanliss Pride’ been grown with 4-5 stems, it might have given higher 

nut yields. 

 

 

7.5 Some factors influencing nut yields  
 

In general, nut yields appear to have been strongly influenced by tree growth.  A 

significant relationship (P=0.01) was found between the vigour of growth of 8 cultivars 

and their cumulative nut yields 7 years from planting (Figure 7.11) across the 5 study 

sites.  However, this only accounts for 50% of the variation in nut yields.   
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Relationship between nut yields and TCSA
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Figure 7.11 Relationship between cumulative nut yield (kg/tree) and TCSA, 7 years 

from planting for 8 cultivars common to the 5 sites.   

 

This relationship suggests that, in order to obtain good early production under Australian 

conditions that might not be ideal for hazelnut production due to unfavourable soil type, an 

important cultivar characteristic is high vigour of growth.  Some weaker-growing 

cultivars, such as ‘Whiteheart’ and ‘Wanliss Pride’, might perform well over a very much 

longer time-frame, possibly as long as 20 years.  Planting these less vigorous cultivars at a 

relatively high density might help achieve higher early production per hectare.  However, 

with the relatively high cost of orchard establishment and income foregone from low 

yields in the early years of establishment, the economics of such slow-growing cultivars 

are questionable. 

 

Some vigorous cultivars such as ‘Hall’s Giant’ and ‘Segorbe’ were low-yielding.  Another 

factor influencing the productivity of cultivars could be related to the availability of pollen 

at the time of female anthesis, as discussed in Chapter 5, Section 5.3.2 ‘Floral phenology 

at the Orange site’. 

 

Cultivars that were late into female anthesis included ‘Eclipse’, ‘Casina’, ‘Square Shield’ 

and ‘Hall’s Giant’.  These cultivars generally had low yields and, on average, their stigmas 

were not exerted before the beginning of August, when many cultivars had completed 

pollen shed and therefore there were limited supplies of pollen for pollination.  However, 

‘Ennis’ and ‘Butler’ were cultivars that were late into female anthesis, yet produced good 
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yields at some sites, for example ‘Ennis’ at Orange and ‘Butler’ at Myrtleford.  There was 

a significant relationship between the cumulative nut yields of the 8 cultivars that were 

grown across the 5 sites and their mean dates for the commencement of female anthesis.  

However, this accounted for only 19% of the variation in yield (Figure 7.12).  The data 

shows that, after DOY 213, nut yields were low.  Before DOY 213 there was a large 

spread in the data points for nut yields indicating that before that date the DOY that female 

anthesis commenced was not a major factor influencing nut yields. 
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Figure 7.12 Relationship between cumulative nut yield (kg/tree) and the mean day 

of the year to the start of female anthesis for 8 cultivars common to the 5 sites.   
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7.6 Conclusions 
 

Tree growth and nut yields were found to vary between sites.  There were significant 

differences in nut yields between cultivars, with a significant interaction with site, 

depending on the environments in which they were grown.  There was no single cultivar 

that yielded best at all sites.  In general, ‘Barcelona’ and ‘TBC’ produced the highest nut 

yields across all sites.  Nut yields from many cultivars were highly variable across sites, 

for example the cultivars ‘Ennis’, ‘Tonda di Giffoni’ and ‘Victoria’ performed well at 

some sites but less well at others. 

 

There was a positive correlation between vigour of growth and nut yields.  However, time 

of female flowering appeared to be another factor affecting the nut yields.  Several 

cultivars, that did not commence female bloom until early August, were low-yielding.  At 

that time, most of the cultivars evaluated in these studies had completed pollen shed.  As a 

result, a cultivar such as ‘Hall’s Giant’ and to a lesser extent ‘Segorbe’, both of which 

grew well but were late in female bloom, produced low nut yields. 

 

The pathway of nut production, Figure 7.1, identified that the number of female flowers 

produced by a cultivar was a factor influencing nut yields.  Apart from the very limited 

observations of a few trees at Kettering in 2006, no data was collected on this yield 

component.  The data from Kettering indicated that there could have been large 

differences between cultivars in the number of female inflorescences produced as well as 

the proportion of flowers producing nut clusters, with a variation between sites and 

seasonal conditions. 

 

Although some factors influencing nut yields were identified, as discussed above, there is 

a need for further studies to ascertain how the production of female inflorescences and the 

development of the flowers from pollination to nut production, varies between seasons. 

 

Overall, it was concluded that, of the cultivars studied, 2 attributes that were associated 

with relatively high nut yields were relatively vigorous growth coupled with early to mid-

season stigma exertion.   
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The next chapter examines kernel yields and the characteristics of kernels, with the final 

chapter integrating the characteristics of floral phenology, pollination requirements, nut 

yields, kernel attributes and market requirements in the final assessment of the cultivars. 
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CHAPTER 8 - NUT FALL AND THE CHARACTERISTICS OF NUTS 

AND KERNELS  
 

 

8.1 Introduction 
 

The bulk of hazelnuts are grown for their kernels.  The value of a cultivar therefore 

depends on its nut yield, kernel percentage and the market acceptance of its kernels. 

Kernel size, flavour and chemical composition are also considerations. 

 

In Australia, hazelnuts generally commence nut fall in late February or early March, the 

main period being throughout March.  For most cultivars, nut fall has been observed to 

take place over a period of 3 to 5 weeks.  It is advantageous to have hazelnut cultivars that 

mature quickly, with nuts falling over a short period of time, so that the crop is at least risk 

to pests and wet weather and can be harvested efficiently in 1 operation. Studies were 

undertaken at the Orange and Myrtleford sites to ascertain whether there were differences 

between cultivars in the period of peak nut fall and how this varied between seasons. 

 

This chapter examines: 

 The pattern of nut fall and how this varies with cultivars and environmental 

conditions; 

 The characteristics of the nuts and kernels of the key cultivars evaluated;  

 The effects of environmental conditions on nuts and kernels; and 

 The chemical composition of kernels. 

 

 

8.2 The pattern of nut fall 
 

8.2.1 Introduction  
 

In Australia, hazelnuts start to fall to the ground in late February, depending on the season, 

and continue throughout March.  As Australian labour costs are high, there is a need to 

harvest the crop mechanically after the nuts have fallen.  As temperatures and evaporation 

rates decline in March and April, and nuts are best harvested when it is warm and dry, it is 

advantageous to have cultivars that shed nuts early and over a short period of time, to 
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facilitate efficient mechanical harvesting and minimise drying costs.  This section 

examines the period of nut fall and how this varied with cultivars and seasonal conditions. 

 

 

8.2.2 Methods 
 

In the early stages of growth and production, when the trees were relatively small, fallen 

nuts were collected from the ground at weekly intervals at the Orange site in 2000, 2001 

and 2002, and at the Myrtleford site in 2001 and 2002.  The collected nuts from each tree 

were kept in net bags that were suspended from the tree from which they had been 

collected, (Plate 8.1).  There were a total of 8 trees for each cultivar, comprising 2 trees 

per replicate with 4 replicates at each of the 2 sites.  A tie was placed around the bag after 

each week of collection, with the collection from the following week being placed in the 

same bag and also being tied off.  By the end of harvest, each bag had 8 or more segments, 

each segment representing a harvest date, as in Plate 8.1. 

 

 

Plate 8.1 Nuts from weekly collections were placed in net bags with a string tied to separate 

each week of collection.  The bags were suspended from the harvested tree until the final 

harvest.  The bag on the left was from the first 6 weeks, with those in the lowest segment 

being from the first collection; those at the top in the right bag were from the last week of 

collection. 

In some situations more than 1 bag was required for the whole harvest.  At the completion 

of harvest, the bags of nuts were dried at 35°C for 3 days.  The dry nuts from each tree, for 
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each date of collection, were counted and weighed.  In 2001, the nuts from the Myrtleford 

site were cracked for each date of harvest for 6 of the higher yielding cultivars, Table 8.1.  

The number of blank nuts and the number of well-filled kernels were recorded for each 

week.  The period over which the blank nuts fell is shown in Figure 8.3. 

 

 

8.2.3 Results and discussion 
 

Dates of peak nut fall 

The dates of peak nut fall, that being the week when the greatest number of nuts fell to the 

ground, were determined for 6 of the highest yielding cultivars at Orange and Myrtleford, 

Table 8.1.  The date of peak nut fall varied little between cultivars, although ‘Tonda di 

Giffoni’ and the “Sicilian type” were generally the earliest, whilst ‘Ennis’ and ‘Segorbe’ 

were the latest, (Table 8.1).  However, there appeared to be a greater difference between 

sites and seasons.  At Myrtleford, the period of peak nut fall occurred nearly 2 weeks 

earlier in 2001 compared with 2002, for nearly all cultivars, Table 8.1.  Nut maturity is 

reported to be a genetically inherited trait (Mehlenbacher, 1991).  ‘Tonda Gentile delle 

Langhe’ was rated as an early-maturing, free-husking cultivar, ‘Barcelona’ and ‘Tonda di 

Giffoni’ were rated as being a little later maturing with ‘Ennis’ being later still (ibid, 

1981).  The work reported here (Table 8.1) is in agreement with the relative dates of 

maturity recorded for these cultivars. 

 

Table 8.1 Dates when the highest number of nuts had fallen, peak nut fall, for 6 

cultivars harvested at the Orange and Myrtleford sites. 

 
 

 

Cultivars 

Sites and years  

Cultivar 

means 
Orange Myrtleford 

2000 2001 2002 2001 2002 

‘Barcelona’ 21 Mar 5 Mar 17 Mar 5 Mar 19 Mar 14 Mar 

‘Ennis’ 31 Mar 19 Mar 17 Mar 26 Feb 12 Mar 22 Mar 

‘Segorbe’ 31 Mar 19 Mar 17 Mar 5 Mar 19 Mar 22 Mar 

“Sicilian type” 21 Mar 5 Mar 17 Mar 26 Feb 12 Mar 14 Mar 

‘TBC’ 21 Mar 12 Mar 17 Mar 26 Feb 5Mar 17 Mar 

‘Tonda di Giffoni’ 21 Mar 5 Mar 17 Mar 26 Feb 5Mar 14 Mar 

Mean dates 24-Mar 11-Mar 17-Mar 28-Feb 12-Mar  

 

There was a relatively distinct peak of nut fall for most cultivars in most seasons, with 

about 80% of nuts of most cultivars falling in a 3 to 4 week period, (Figure 8.1).  ‘Tonda 

di Giffoni’ appeared to have a more distinct period of nut fall than ‘Barcelona’ and ‘TBC’. 
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Figure 8.1 Mean number of nuts falling per week at Myrtleford in the seasons 2001 

and 2002 for 5 cultivars. 

 

The effect of temperature on the date to peak nut fall 

The mean daily temperature recorded at each site was used to estimate the daily heat units 

as the number of Growing Degree Days (GDD).  The daily GDD were calculated for base 

temperatures of 5°C, 7°C and 10°C, over the period from 1 September, when most 

cultivars were at bud break, until the mean day of peak nut fall for the cultivars 

‘Barcelona’, ‘Ennis’, ‘Segorbe’, the “Sicilian type”, ‘TBC’ and ‘Tonda di Giffoni’.  

Accumulated GDD were determined for the periods from 1 September, 1 October, 1 

November, 1 December and 1 January to the dates of nut fall for the 6 cultivars at Orange 

in 2000, 2001 and 2002 and at Myrtleford for 2001 and 2002.  Correlation analyses were 

undertaken to identify relationships between the accumulated GDD for the above periods 

of time that extended from leafing out through nut and kernel development to peak nut fall 

(Table 8.2). 

 

Correlation analyses were conducted on the number of days to peak nut fall and the 

accumulated GDD above base temperatures of 5°C, 7°C and 10°C.   These relationships 

were significant (P= 0.05) for all periods of time.   The correlation coefficients for the 

period from 1 November to peak nut fall had the highest levels of significance (P=0.01) 

for the base temperature calculations of 10°C.   It was, therefore, considered that the 

accumulation of GDD above a base temperature of 10°C over this period is the best 

predictor for the day of peak nut fall.   
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Figure 8.2 Relationship between the number of accumulated Growing Degree Days 

(GDD>10°C) from 1 November and the number of days to peak nut fall.  (Fitted vs. 

observed data, based on 5 years of observations from Orange and Myrtleford) 

 

The linear relationship for the total number of GDD from 1 November to the day of peak 

nut fall at a base temperature of 10°C was calculated to be:  

y = -0.04x + 176 

where y is the days from 1 November to peak nut fall and x is GDD in this period. 

 

This linear regression accounted for 94% of the variance (Figure 8.2).  The equation 

showed that, on average, for the 6 cultivars used in the analysis, the more heat units (GDD 

above a base of 10°C) that occurred after 1 November, the earlier the nuts matured and fell 

from the trees.  That is, for every increase of 159 GDD in the range 700-1300 GDD, from 

1 November, peak nut fall occurs 7 days earlier. 

 

As automatic weather stations and on-line temperature data are becoming increasingly 

available, it is possible for growers to monitor GDD and gain better insights into the 

timing of nut fall.  This may be of assistance in planning the logistics of harvesting 

operations. 

 

Biologically, the period from 1 November to nut fall extends from fertilisation and the 

start of fruit development through nut growth and kernel fill to maturity, for most 

cultivars.  In areas that have higher summer temperatures than Orange and Myrtleford, this 

1 March 
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data indicates nut fall would be earlier.  There might be implications for kernel fill or 

kernel quality if the period of kernel filling is hastened by higher temperatures.  

Conversely, locations with cooler summer temperatures are likely to have delayed nut fall 

and may not have sufficient heat units for kernel fill, if summer temperatures are too low.  

Hazelnut trees in the cooler mountainous areas of Spain were reported by Tous et al 

(2001) to ripen later than those on the plain areas, supporting these results on the effects of 

GDD on nut maturity. 

 

In these studies, the number of GDD from 1 November to peak nut fall ranged from about 

800–1350.  An extrapolation of the graph to 150 days from 1 November, that is to the end 

of March, indicates that minimum heat unit requirements for commercial hazelnut 

production from fertilisation to nut maturity may be about 600 GDD >10°C.  This could 

be included as a climate parameter for hazelnut production.  However, more data is 

required to test this hypothesis over a wider range of temperature and environmental 

conditions.  A total value of 1250 GDD >10°C was considered by MacDaniels (1977) to 

be desirable for nut trees in the Northeast of the USA.  

 

Blank nuts 

Data on blank or seedless nuts was obtained.  Samples from the weekly collections of 6 

higher-yielding cultivars were cracked out to determine the proportion of blank nuts at 

Myrtleford in 2001, Figure 8.3. 
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Figure 8.3 Pattern of nut fall, shown as nut numbers collected weekly per tree and 

the proportion of blank nuts, for the cultivars ‘Barcelona’ and ‘TBC’ at Myrtleford 

in 2001. 

 

Most blank nuts fell in the 3-4 weeks leading up to the peak period of nut fall, although 

some blank nuts fell through the whole period of nut fall. 

 

As cracking nuts on a weekly basis to determine the proportion of blanks is very time 

consuming, this process was only carried out on the weekly collections at Myrtleford in 

2001. 

 

Conclusions 

The main period of nut fall for most cultivars was over a period of about 5 weeks, with 

most blank nuts falling at the beginning of this period.  The peak date of nut fall varied 

slightly between cultivars and seasons.  It was influenced by the accumulated GDD above 

a base temperature of 10°C from 1 November.  It was considered that 600 GDD in the 

period 1 November to 31 March could be the minimum for commercial hazelnut 

production. 

 

 

8.3 Nut and kernel characteristics 
 

The size and weight of nuts, shell thickness and percentage kernel are considered to be 

highly heritable traits (Thompson et al. 1978 and Mehlenbacher 1991b), although nut and 

kernel weights are also influenced by environmental conditions (Mehlenbacher, 1991b), 
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particularly moisture stress during nut and kernel fill development (Mingeau et al., 1994 

and Bignami and Natali, 1997).  Kernel percentage is an important factor influencing 

kernel yields per hectare and an important consideration when processing nuts for the 

kernel market.  Cultivars with thick shells and a low kernel percentage produce a lower 

proportion of kernels per unit of processed nuts.  Thick, heavy shells can be more difficult 

to separate from kernels when using air separation. 

 

The ease of pellicle removal after roasting, known as blanching, is moderately heritable, as 

reported by Thompson et al. (1978) and Mehlenbacher (1991b).  The flavour of kernels is 

principally a cultivar characteristic, as is nut shape.  Some cultivars, such as ‘TGDL’, are 

favoured by the confectionery industry for their kernels, which are relatively small and 

round, blanch well and have a good “nutty” flavour (Mehlenbacher, 1991b and Tombesi 

and Limongelli, 2002).  ‘TGDL,’ ‘Tombul’ and ‘Negret’ are considered to be reference 

cultivars for kernel quality (Mehlenbacher, 1991b).  Some cultivars, such as ‘Ennis’, 

produce large nuts with attractive shells, which are highly suited to the in-shell market 

(Mehlenbacher and Olsen, 1997).  Some cultivars, such as ‘Wanliss Pride’, have potential 

for more than 1 market sector.  ‘Wanliss Pride’ has relatively large, shiny, attractive nuts, 

making it a suitable cultivar for the in-shell market, (Lagerstedt, 1988), but as the kernel 

has little fibre and blanches well, it is also suitable for some uses in the kernel market 

 

 

8.3.1 Methods 
 

Composite, random samples of 150–200 nuts from all the replicates were retained from all 

cultivars after harvest.  A sub-sample of 100 nuts was weighed to obtain a mean nut 

weight.  The nuts were cracked using the template boards and small hammer, as described 

in Chapter 3, ‘Methods’, Section 3.5.6, ‘Kernel assessments’.  The number of good 

kernels was counted and weighed to obtain the mean kernel weight.  The kernel 

percentage was derived from the weight of well-filled kernels divided by the weight of 

100 nuts.  Kernels that were shrivelled, not well-filled or which had some defects were 

counted but not included in the final kernel count and weight.  This technique was similar 

to that used in Oregon for cultivar evaluation (McCluskey et al., 1997).  Kernel yields per 

hectare are the product of nut yields per tree, kernel percentage and the number of trees 

per hectare. 

In the early years of production, these assessments were only done on the higher-yielding 

cultivars, as there were insufficient nuts of the lower-yielding cultivars. 
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Kernels were assessed for their blanching characteristics by heating them in an oven at 

130-150°C for 15 minutes, followed by rubbing them in a cloth to remove any loose skins.  

The blanched kernels were scored for their degree of blanching on a 1 - 7 scale, as 

recommended by Thompson et al. (1978).  A score of 1 equated to all skin being removed, 

with a score of 7 for all skin being retained. 

 

The size of good kernels for 13 cultivars, harvested from the Myrtleford crop in 2002, was 

measured.  Samples of 50 nuts from each cultivar were cracked to obtain the kernels.  The 

diameter of the individual kernels was measured by passing them through a plastic gauge 

that had a range of hole sizes, to see which was the closest fit.  The mean size was 

determined, as was the degree of variation between the sizes of the kernels. 

 

Uniformity of nut size was assessed on the nuts from the 2008 harvest at Kettering that 

were from cultivars with large nuts, with potential for the in-shell market.  The nuts were 

passed through a rotating drum, size grader with hole sizes varying by 1 mm from 16-21 

mm, to assess size grades.  As several cultivars had nuts that were more than  

21 mm in diameter (Table 8.4), it was not possible to obtain the proportion of nuts in each 

1 mm size grade above 21 mm.  For example, more than 90% of the nuts of the cultivars 

‘Ennis’ and ‘Royal’ were over 21 mm in diameter.   

 

The length and width of 10 nuts from each cultivar collected at Orange in 2006 were 

measured to determine the shape of the nuts to assess their relative roundness and as an aid 

to identification, Table 8.3 and Appendix A ‘Cultivar characteristics and identification’. 

 

 

8.3.2 Results and discussion 
 

Cultivar and site effects on nuts and kernels 

An analysis of variance was conducted on the mean nut and kernel weights of 13 cultivars 

that were common to 3 sites, Orange, Myrtleford and Kettering, and for which there was 6 

years of data at each site, Table 8.3.   

The variables were: 

 Cultivars (13) 

 Sites (3) 

 Years (Seasonal conditions 6) 
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Table 8.2 Effects of cultivars, sites and years on the mean nut and kernel weights 

and mean kernel/nut ratios for 13 cultivars grown at 3 sites, Orange, Myrtleford 

and Kettering, over 6 years. 

 
Source of variation Mean nut weight Mean kernel 

weight 

Mean kernel/nut 

ratio 

Cultivar <.001 <.001 <.001 

Site 0.14 (NS) <.001 <.005 

Year <.001 0.004 0.2 (N.S.) 

Cultivar x site <.001 0.002 0.02 

Cultivar x year 0.3 (N.S.) 0.6 (NS) 0.8 (NS) 

 

The mean nut and kernel weights varied between cultivars and were influenced by the 

conditions under which the nuts were grown, with a significant interaction between the 

cultivars and sites, Table 8.2.  It is considered that site effects were likely to be a 

combination of differences in climate and soil conditions.  Interactions between cultivars 

and sites occurred for tree growth and nut yields, as discussed in previous chapters.  

Although there were significant interactions between environmental conditions and nut 

and kernel weights, biologically these effects were small.  However, as seasonal 

conditions had an effect on nut and kernel weights, the specific effects of temperature and 

rainfall during nut and kernel development at the 3 sites were examined, as discussed in 

Section, 8.3. 

 

There were significant differences between cultivars in nut and kernel weights and the 

kernel to nut ratio (percentage kernel).  The mean nut weights for the 13 cultivars ranged 

from ‘Segorbe’ at 2.4 g/nut through to ‘Ennis’ at 4 g/nut, Figure 8.4.  The other cultivars 

lay more or less on a continuum of weights between these, with ‘Tonda di Giffoni’ (2.7 g) 

being at the lower end of those cultivars with a medium weight and ‘Barcelona’ (3.2 g) at 

the heavier end. 
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Figure 8.4 Mean nut weights for 13 cultivars grown at Orange, Myrtleford and 

Kettering, 6 years of data 

 

Similar nut weights have been reported in the literature, ‘Segorbe’ at 2.6-3.1 g (Germain 

and Sarraquigne, 2004) ‘Tonda di Giffoni’ at 2.7-3.2 g, ‘Barcelona’ at 3.2-3.8 g 

(Mehlenbacher and Miller, 1989) and ‘Ennis’ at 3.1-4.6 g (Lagerstedt, 1980) and 

(McCluskey et al, 2001).  The nut weights of cultivars are commonly expressed as a range 

of weights, reflecting the conditions under which they were grown.   

 

The mean kernel weights and the percentage kernel for the 13 cultivars are given in Figure 

8.5.  In a similar manner to nut weights, kernel weights lay on a continuum from the 

smallest kernels of ‘Segorbe’ to the heaviest and largest of ‘Ennis’.  ‘Tonda di Giffoni’ 

and ‘Barcelona’ were intermediate.  Similar kernel weights and kernel percentages were 

reported by McCluskey (2001).  There was no correlation between kernel weight and 

kernel percentage for the 13 cultivars.  Thompson (1977) reported kernel percentage was 

associated with shell thickness and was a highly heritable characteristic.  The highest 

percentage kernel or crack-out was for the cultivars ‘Lewis’ and ‘Eclipse, which were 

noted to have thin shells; whereas ‘Hall’s Giant’, the cultivar with the lowest kernel 

percentage, appeared to have thicker shells.  It was noted that where sulphur crested 

cockatoos invaded sites with mature nuts, the birds seemed to have a preference for 

cultivars with small nuts and thin shells, such as ‘Lewis’ and ‘Casina’. 

 

LSD = 0.18 g (P=0.05) 
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Mean kernel weights and kernel %
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Figure 8.5 Mean kernel weights (g), kernel percentage and kernel size (mm) for 13 

cultivars grown at Orange, Myrtleford and Kettering, 6 years of data 

 

Assessments of other cultivars 

Mean nut and kernel weights, nut shape, kernel fibre and relative blanching assessments 

were obtained for a total of 24 cultivars from Orange, Moss Vale, Myrtleford and 

Kettering, Table 8.3.  The number of years of data used to obtain these means varied 

between cultivars and years, depending on the amount of material available for 

assessment.  Due to the variation in sample size, the means were not statistically analysed.  

The cultivars have been assigned to 4 main groups, according to the principal market 

sectors to which they are best suited, Table 8.4. 

Kernel weights LSD = 0.12 (P=0.05) 
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Table 8.3 Mean nut and kernel weights with nut shape and kernel characteristics 

allotted to main market sectors. 
 

 

Cultivar 

Nut 

wt (g) 

Nut shape 

(length/width) 

Kernel 

wt (g) 

Kernel/nut 

wt (%) 

Kernel 

fibre 

Relative 

blanching 

Cultivars with large nuts mainly for the in-shell trade 

‘Royal’ 4.1 1.2 1.6 40% 1.7 4.8 

‘Ennis’ 3.9 1.12 1.6 41% 1.5 6.6 

‘Hall’s Giant’ 
(1)

 3.4 1.1 1.4 41% 1.3 3.4 

‘Butler’ 
(1)

 3.4 1.1 1.4 42% 2 6.3 

‘Hammond#17’ 3.3 1.1 1.4 41% 2 5.7 

‘Daviana’ 
(1)

 2.8 1.25 1.4 51% 2 5.4 

Cultivars with kernels 15-17 mm size grade  

‘Barcelona’ 3.3 0.97 1.3 40% 3 3.3 

‘Tonollo’ 3.3 0.98 1.4 43% 3 3.8 

‘Wanliss Pride’ 3.2 0.85 1.5 45% 2 2.4 

‘Atlas’ 3.1 0.92 1.3 41% 2.5 4.1 

‘TBC’ 3.0 1.01 1.3 43% 2.5 2.6 

‘Square Shield’ 3.0 0.96 1.2 40% 2 5.1 

‘Victoria’ 2.9 1.05 1.2 40% 1.3 5.5 

       

Cultivars with round kernels 13-15 mm size grade that blanch 

“Sicilian type” 3.2 0.96 1.1 35% 2 3.1 

‘Montebello’ 3.0 0.92 1.1 36% 2.5 2.7 

‘Eclipse’ 2.7 0.92 1.3 46% 3.3 3.1 

‘T. di Giffoni’ 2.6 0.94 1.11 43% 2 3.1 

‘Whiteheart’ 2.5 1.00 1.3 47% 1 1.0 

‘TGDL’ 2.5 0.97 1.11 45% 2 2.8 

‘Lewis’ 2.4 0.97 1.2 48% 1.8 2.6 

‘Willamette’ 2.1 0.96 1.0 45% 2.5 2.8 

‘Negret’ 1.9 1.15 0.8 49% 2 1.7 

Cultivars with round kernels 13-15 mm size grade that do not blanch 

‘Segorbe’ 2.4 1.04 1.0 40% 1.7 4.1 

‘Casina’ 1.9 1.08 1.0 51% 1.5 5.7 

Notes: Kernel fibre was rated on a 1(low) - 5 (high) scale.  Relative blanching was rated on a 1(little pellicle 

remaining or excellent blanching) to 7 (most pellicle remaining, kernels did not blanch). 

 

Cultivars for the in-shell market 

The most important characteristics of cultivars for the in-shell market are size, preferably 

>21 mm, and appearance.  ‘Royal’ and ‘Ennis’ both have large nuts with an attractive light 

brown colour (Table 8.5).  More than 90% of nuts graded over 21 mm, placing them in the 

Australian “Very Large” category (Wilkinson, 1999).  The kernels of both cultivars have 

relatively little fibre (Table 8.4), which also makes them attractive once cracked.  

Although ‘Ennis’ does not blanch, this is not of great significance if used as a table nut 

and consumed for the fresh market. 

 

‘Wanliss Pride’ also had a large proportion of nuts that graded larger than 21 mm (Table 

8.4).  ‘Hall’s Giant’ is used mainly as a polliniser for ‘Ennis’, as is ‘Butler’, but these 

cultivars have bright shiny nuts suitable for the in-shell market.  The cultivars ‘Barcelona’, 
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‘Victoria’ and ‘TBC’ have smaller nuts than ‘Ennis’ and ‘Royal’ and are less-suited to the 

in-shell market. 

 

Table 8.4. Proportion of nuts in each size grade from 16mm to above 21mm for 

cultivars with potential for the in-shell market 

 

Cultivar 

Size grade (mm) 

16 17 18 19 20 21 21+ 

‘Royal’     1% 3% 97% 

‘Ennis’      6% 93% 

‘Wanliss Pride’    2% 4% 11% 83% 

‘Hall’s Giant’    1% 5% 18% 75% 

‘Barcelona’    2% 7% 27% 64% 

‘Victoria’   1% 3% 11% 29% 56% 

‘Butler’   2% 7% 18% 27% 45% 

‘TBC’    2% 14% 39% 44% 

 

Cultivars for the kernel market 

Assessments of kernel size for cultivars that had potential for the kernel market were 

undertaken in 2002.  The mean size ranged from 13.4 mm for ‘Negret’ to 17.0 mm for 

‘Wanliss Pride’, Table 8.5.  The cultivars with the most even size, lowest coefficient of 

variation, were ‘Tonda di Giffoni’ and ‘Willamette’.  The most variable in size were 

‘TGDL’ and ‘Wanliss Pride’. 

 

Cultivars with kernels in the 15-17 mm range are generally considered to be too large for 

the confectionery trade.  If consumed raw, such as in snack foods, the kernels need to be 

attractive with relatively smooth, thin skins, such as ‘Wanliss Pride’, whereas kernels of 

‘Barcelona’ and ‘Tonollo’ appear rough and fibrous.  Blanching ability is considered to be 

important if kernels are to be roasted and used in bakery products or sold in snack foods.  

The low score for relative blanching (Table 8.3) indicates that the pellicle of ‘Wanliss 

Pride’ is readily removed after roasting, making it suitable for this market.  ‘Barcelona’ 

and ‘TBC’ are also suitable, as can be seen in Plate 8.2.  Flavour is also a consideration for 

this market, but was not assessed in these studies. 
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Table 8.5 Mean size of kernels from the Myrtleford site in 2002 

Cultivar Mean kernel size (mm) Co-efficient of variation % 

 Kernels 13-15mm  

‘Negret’ 13.4 5.78 

‘Casina’ 13.5 5.70 

‘Segorbe’ 13.7 5.47 

‘Montebello’ 14.2 4.99 

“Sicilian type” 14.4 5.75 

‘TGDL’ 14.4 6.79 

‘Tonda di Giffoni’ 14.6 4.34 

 Kernels 15-17 mm  

‘Willamette’ 15.1 4.37 

‘Atlas’ 15.3 5.58 

‘TBC’ 15.8 5.31 

‘Barcelona’ 15.7 5.96 

‘Tonollo’ 16.3 5.20 

‘Wanliss Pride’ 17.0 6.99 

 

Kernels in the 13-15 mm size range, that are round and blanch well, are highly sought 

after in the confectionery market.  Traditional cultivars sought after in this market are 

‘TGDL’ and ‘Tonda di Giffoni’ in Italy (Tombesi, 2005) and ‘Negret’ in Spain  

(Tous, 2005).   Apart from the “Sicilian type” and ‘Montebello’, which had low kernel/ 

nut weights, all the cultivars in this category (Table 8.5), appeared to be suitable for the 

confectionery market.  The good blanching characteristics of ‘Lewis’ are evident in Plate 

8.2, compared with virtually no blanching of the ‘Ennis’ kernels.  The cultivar 

‘Whiteheart’ appears to be almost perfect for this market category with its round shape, 

high crack-out, low kernel fibre and a blanching score of 1.0 (Table 8.3).  The small 

kernels of the cultivars ‘Segorbe’ and ‘Casina’ did not blanch, limiting their use in the 

confectionery trade.  ‘Segorbe’ has a low crack-out which is a further disadvantage. 

 

Some cultivars, such as ‘Butler’ and ‘Daviana’, are grown principally as pollinisers.  It is 

advantageous to have polliniser cultivars that have nut and kernel characteristics that suit 

the market sectors of the cultivars which they are pollinating as, when mechanically 

harvested, the nuts of the polliniser and main crop cultivars are mixed. 
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Plate 8.2 Nuts and kernels, unblanched and blanched, of the cultivars ‘Barcelona’, ‘TBC’, ‘Ennis’ 

and ‘Lewis’.  ‘Ennis’ nuts were the largest and ‘Lewis’ the smallest.  ‘Ennis’ kernels did not blanch 

whereas ‘Lewis’ kernels blanched well. 

 

The length and width of nuts from a range of cultivars grown at Orange were measured to 

obtain an assessment of nut shape.  A high index for length/width indicates the nuts are 

long, such as ‘Daviana’ (Table 8.3); a value less than 1.0 indicates they are rather squat, 

such as ‘Wanliss Pride’, whereas a value of 1.0 indicates they are round.  Further details 

on nut and kernel characteristics can be found in Appendix A. 

 

 

8.4 Environmental factors influencing kernel quality 
 

8.4.1 Kernel defects 
 

Data obtained from cracking 100 nut samples showed that the main defects were poorly-

filled or shrivelled kernels, as illustrated in Plate 8.3.  Generally, relatively few kernels 

showed defects from mould or black tips.  Twin kernels are not a serious defect, although 

they look less attractive than full kernels.  If well-filled, their taste is no different to full 

kernels.  ‘Barcelona’ was found to have the highest proportion of twin kernels, which was 

also reported by Mehlenbacher (1991) for this cultivar.  Kernels with black tips had an 
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unpleasant flavour as did the poorly-filled kernels.  The latter often had a slightly sweet 

taste; presumably the process of filling was incomplete with only sugars being formed in 

the kernel as a precursor to the synthesis of the oil content.  Mouldy kernels were highly 

undesirable, but were at a very low level. 

 

 

 

Plate 8.3 There were four main types of kernel defects; these included twin kernels, poorly-

filled, black tips and mould. 

 

 

8.4.2 Kernel weight and poor-fill 
 

A regression analysis was conducted on the relationship between mean nut and mean 

kernel weights and the proportion of poorly-filled kernels for 13 cultivars across 3 sites, 

Orange, Myrtleford and Kettering, over 6 seasons.  There was a significant correlation 

(P=0.01) between both nut weight and kernel weight and poor-fill.  The linear relationship 

between nut weight and the proportion of poorly-filled kernels accounted for only 43% of 

the variation, whereas mean kernel weight accounted for 51% of the variation in poor-fill, 

Figure 8.6. 

 

 

Black tips 

Twin kernels Poorly-filled and shrivelled 

kernels 

Mouldy kernels 
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Figure 8.6 Relationship between mean nut weight and mean kernel weight and the 

proportion of poorly-filled kernels of 13 cultivars grown at 3 sites, Orange, 

Myrtleford and Kettering over 6 years. 

 

It is hypothesised that small kernels fill more readily and hence are less subject to 

incomplete fill.  However, it would be expected that total crop load on a tree would also be 

a factor in kernel fill; with cultivars that have a large number of nuts requiring more 

assimilates to fill their kernels.  It is interesting to note that ‘Eclipse’ was a low-yielding 

cultivar, yet on average 15% of the kernels were poorly-filled, Figure 8.6.  Mehlenbacher 

(1991) noted that cultivars that produced large nuts tended to have poor quality kernels, 

but poor fill was also associated with stress, caused by drought and high crop loads on 

trees (ibid, 1991, Mingeau et al., 1994 and Bignami and Natali, 1997). 

 

 

8.4.3 Temperature and rainfall effects on kernel fill 
 

Data on poorly-filled kernels for 13 cultivars across 3 sites over 6 years showed there was 

a significant correlation (P=0.001) between the mean maximum temperature in January, 

when kernels were developing, and the proportion of poorly-filled kernels.  There was an 

increase of 0.08 (8%) in poor-fill for each 10°C rise in the mean maximum temperature, 

Figure 8.7.  However, the regression only accounted for 15% of the variation. 

 

Eclipse Eclipse 
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Figure 8.7 Relationship between mean temperature in January and the proportion of 

poorly-filled kernels of 13 cultivars grown at 3 sites, Orange, Myrtleford and 

Kettering, over 6 years. 

 

There was no significant relationship between January rainfall and the proportion of 

poorly-filled kernels.  As all sites received irrigation in January to minimise moisture 

stress, it appears that generally the trees were not under severe moisture stress during 

kernel fill in the years of this analysis. 

 

However, a reduction in nut and kernel size can arise when trees are stressed during nut 

and kernel growth (Mingeau et al. 1994, Bignami and Natali 1997, Tombesi and Rosati 

1997 and Lagerstedt 1988). 

 

Hazelnuts appear to be sensitive to high temperatures and moisture stress during kernel 

fill.  It is hypothesised that the rate of kernel development and the days to maturity are 

hastened by increasing temperatures, as was indicated by the data on the period to nut fall.  

If the weather is hot, it seems likely that the process of kernel fill may become too short 

for the kernels to adequately fill and hence they are shrivelled, with this being aggravated 

further, if coupled with moisture stress.  This problem appears to be greater with cultivars 

that have large kernels, such as ‘Royal’ and ‘Ennis’, with small kernels being more 

readily-filled during this critical phase.  The phenomena of poorly-filled nuts and seeds 

and lower oil contents, due to moisture stress and high temperatures, have been reported 
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by several authors, such as Mingeau, (1994) and Bignami and Natali, (1997) for hazelnuts, 

Sistrunk et al. (1996) and Byford (2006) for pecans, Ramos et al. (1978) for walnuts and 

Pritchard et al. (1999) for canola. 

 

 

8.5 Chemical composition of kernels 
. 

8.5.1 Introduction 
 

Hazelnut kernels have a relatively high lipid content, mainly comprising triglycerides.  

The lipid content varies from 50-70% for cultivars and is dependent on the environmental 

conditions under which they are grown (Mehlenbacher, 1991).  Hazelnut kernels are also 

rich in protein (10-20%) and are an excellent source of Vitamin E  

(α-tocopherol).  Although no detailed studies were undertaken on the fatty acid, protein, α-

tocopherol, sugar or mineral composition of the cultivars in this study or the effects of 

environmental conditions on these, some data was obtained from samples in order to 

compare these with published levels overseas. 

 

 

8.5.2 Methods  
 

Samples of kernels (approximately 100g each) from the 2002, 2005, 2006, and 2008 

harvests were sent to NSW DPI laboratories in Wagga Wagga for an analysis of their oil 

content, their fatty acid composition and α-tocopherol content.  The methods used are 

shown in Table 8.6.  There was no replication of these measurements, meaning that they 

could not be analysed statistically.   

 

Table 8.6 Chemical extraction methods used by the NSW DPI laboratories. 

 
Substances analysed Method 

Oil by solvent extraction WWAI 2-1607 

α-tocopherol AOCS Ce 8-89 

Water-soluble carbohydrate AFIA Method 1.1 

Nitrogen in meal LECO AFIA Method 5R 
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8.5.3 Results and discussion 
 

Although the data could not be statistically analysed, there appeared to be some 

differences between cultivars in their oil content (Tables 8.7 and 8.8).  ‘Ennis’ appeared to 

have a lower oil content (52.6-59.4%) than most of the other cultivars, which averaged 

around 62%, Table 8.7. 

 

Table 8.7 Oil content (%) of hazelnut cultivars from the study sites compared with 

Oregon (Ebrahem et al, 1994b, Richardson, 1997). 

 
 

Locations 

 

Kettering 

Moss 

Vale 

 

Myrtleford 

 

Oregon 

Cultivars 2006 2008 2005 2002 2005 2006 (1) (2) 

‘Barcelona’ 64.2 62.7 57.4 62.0 59.1 63.5 62.8 61.8 

‘Butler’     56.3    

‘Ennis’  58.7 52.6  54.2 59.4   

‘Lewis’ 62.4 64.8   61.0 64.7   

‘Segorbe’     56.6    

“Sicilian”   58.2 61.1 59.3    

‘TBC’ 64.0 64 56.4 60.1 60.2 64.4   

‘Tonda di 

Giffoni’ 61.9 64.9 57.3 63.6 63.0 62.5 

 

62.9 

 

63.1 

‘Tonollo’    60.2 56.1    

‘Wanliss 

Pride’  62.2  57.5 55.5  

  

‘Whiteheart’  64.2       

Source of Oregon data: (1) Ebrahem et al, (1994b), (2) Richardson (1997). 

 

There also appeared to be differences between seasons and sites.  The oil content of the 

kernels from Moss Vale in 2005 was generally lower than those for the other sites and 

seasons (Table 8.7).  It is presumed that oil content is related to the conditions during the 

period of kernel fill.  Ebrahem et al. (1994a) showed that oil content steadily rose to a peak 

towards the end of kernel development.  The oil content obtained under Australian 

conditions, for the cultivars ‘Barcelona’ and ‘Tonda di Giffoni’, do not seem to vary 

markedly from those obtained by Ebrahem et al. (1994b) and Richardson (1997) for these 

2 cultivars.   

 

The fatty acid profile and α-tocopherol (vitamin E) content of 5 cultivars was assessed.  

The proportion of mono-unsaturated fatty acids appeared to vary little between cultivars 

and situations; it was generally about 80% (Table 8.8).  The main fatty acid was oleic acid 

with a proportion of about 85% of the mono-unsaturated fatty acids.  The relative levels of 

poly-unsaturated fatty acids to mono-unsaturated fatty acids did not seem to vary between 

cultivars, but it did seem to vary between sites and years.  Variation between situations 

was reported by Piskornik (1994), who found that the lower temperatures in Poland during 
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kernel fill resulted in a slightly higher content of the longer-chained unsaturated fatty acid, 

linoleic acid (C18:2).  The mean maximum temperatures at Myrtleford in January for both 

years of data at that site averaged 31.5°C, compared with those for Kettering which 

averaged 23.2°C.  Mean minimums at the 2 sites for January were 13.9°C and 10.8°C 

respectively.  Thus, the lower temperatures at Kettering might account for the higher mean 

values for polyunsaturated fatty acids at that site, Table 8.8.   

 

Table 8.8 Oil content (%), α-tocopherol (µg/g) and the proportion of mono-

unsaturated fatty acids for 5 hazelnut cultivars in 2 seasons and at 2 sites 

 

Sites and 

seasons 

Kernel 

component 

Cultivars 

Means ‘Barcelona’ ‘Ennis’ ‘Lewis’ ‘TBC’ 

‘Tonda 

di 

Giffoni’ 

Myrtleford  Total oil % 59.1 54.2 61 60.2 59.3 58.8 

2005 Mono-unsat 80 80 81 81 82 80.8 

 Poly-unsat 13 12 11 11 11 11.6 

 α-tocopherol 388 293 387 419 396 377 

Myrtleford  Total oil % 63.5 59.4 64.7 64.4 62.5 62.9 

2006 Mono-unsat 83 82 84 83 82 82.8 

 Poly-unsat 9 8 7 8 9 8.2 

 α-tocopherol 295 224 262 274 351 281 

Kettering Total oil % 64.2 59.1 62.4 64 61.9 62.3 

2006 Mono-unsat 76 76 79 79 80 78.0 

 Poly-unsat 17 16 14 15 13 15.0 

 α-tocopherol 400 364 378 475 383 400 

Kettering  Total oil % 62.7 58.7 64.8 64 64.9 63.0 

2008 Mono-unsat 77 74 79 79 80 77.8 

 Poly-unsat 16 17 14 14 13 14.8 

 α-tocopherol 526 428 430 525 474 477 

Means Total oil % 62.4 57.9 63.2 63.2 62.2  

 Mono-unsat 79.0 78.0 80.8 80.5 81.0  

 Poly-unsat 13.8 13.3 11.5 12.0 11.5  

 α-tocopherol 402 327 364 423 401  

 

The α-tocopherol content (vitamin E) seemed to vary between situations and cultivars.  

The mean levels for the cultivars tested were in the range 327-423 µg/g.  Ebrahem et al.  

(1994) recorded a range of levels of α-tocopherol from 302-434 µg/g for 17 cultivars in 

Oregon.  The levels of α-tocopherol appeared to be lower for ‘Ennis’, as was the oil 

content.  There appeared to be some site differences, with higher α-tocopherol levels being 

recorded at Kettering, compared with Myrtleford.  Although Savage et al.  (1997) recorded 

very high levels of α-tocopherol in ‘Whiteheart’, the levels recorded at Kettering did not 

appear to be higher than for other cultivars (Table 8.9).  There was no significant 

correlation between the oil content and α-tocopherol levels of the cultivars over the range 

of seasons and sites. 
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Other constituents 

Kernels from 7 cultivars harvested at Kettering in 2008 were sent to NSW DPI for an 

analysis of their water-soluble carbohydrate (sugar) and nitrogen content (Table 8.9).  

‘Wanliss Pride’ was found to have a high level of water-soluble carbohydrates which is 

consistent with previous analyses on sugar content, (Dawson and Halleday, 1993) and 

(Baldwin and Simpson, 2003).  It appears that ‘Ennis’ also has a high level of water-

soluble carbohydrates (sugars), which aligns with the sweet taste commonly associated 

with its kernels. 

 

Table 8.9 Oil content (%), α-tocopherol (µg/g), water-soluble carbohydrates and 

nitrogen contents of kernels from 7 hazelnut cultivars from Kettering, 2008 

 

Cultivars 

 

 

Oil (%) 

 

α-tocopherol 

(µg/g) 

Water soluble 

carbohydrates 

(% meal) 

Nitrogen  

(% meal) 

 ‘Barcelona’ 62.7 526 15.9 6.38 

‘Ennis’ 58.7 428 21.4 5.9 

‘Lewis’ 64.8 430 14.2 7.47 

‘TBC’ 64 525 15.7 5.87 

‘Tonda di Giffoni’ 64.9 474 17 6.11 

‘Wanliss Pride’ 62.2 599 19.5 5.82 

‘Whiteheart’ 64.2 544 16 6.81 

 

Kernels from the same 7 cultivars harvested at Kettering in 2008 were analysed by NSW 

DPI for 3 key elements:- potassium, phosphorus and calcium.  The analyses showed very 

high levels of potassium (average 8110 mg/kg), this was about twice the concentration of 

phosphorus (average 4069 mg/kg) and nearly 8 times the average levels of calcium 

(average 1231 mg/kg), Figure 8.8. 

 

There appeared to be little difference between the cultivars in the concentration of the 

individual elements, except for potassium, where ‘Wanliss Pride’ appeared to have a 

higher concentration than any other cultivar. 
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Figure 8.8 Concentration levels of some key elements in hazelnut kernels from 7 

cultivars harvested at Kettering in 2008. 

 

Due to a lack of replication, the data obtained on the lipid, α- tocopherol, nitrogen, sugar 

levels and mineral content must be considered to be only indicative and the conclusions 

drawn in the discussion only tentative.  However, the results were generally consistent 

with those reported in the literature. 

 

 

8.6 Overall conclusions 
 

The date of peak nut fall varied between seasons.  It was found to be related to thermal 

units, growing degree days from 1 November.  It varied between cultivars; both 

‘Barcelona’ and ‘Tonda di Giffoni’ were early into nut fall, on average 2 weeks before 

‘Ennis’ and ‘Segorbe’.  The majority of blank, seedless nuts fell before peak nut fall. 

 

The size and weight of nuts and kernels and the kernel/nut ratio varied between cultivars 

and were mainly inherited characteristics.  There were small differences between seasons.  

The characteristics of cultivars were evaluated on a market sector basis.  The large, 

attractive nuts of ‘Ennis’ and ‘Royal’ made them suitable for the in-shell market.  The 

kernels of ‘Barcelona’, ‘TBC’ and ‘Wanliss Pride’ were placed in the 15-17 mm category, 

kernels mainly for snack foods and general purposes, such as catering.  These 3 cultivars 

had acceptable attributes of kernel/ nut ratio, skin thickness and blanching for this market. 
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In the small kernel size, 13-15mm, several cultivars had appropriate attributes of 

roundness, crack-out and blanching.  These kernel attributes are considered in the next and 

final chapter, along with attributes of growth and nut yields, to develop cultivar 

recommendations. 

 

The main kernel defects were related to incomplete nut fill and shrivel.  There was a 

significant correlation between kernel size and nut fill.  In general, cultivars with large 

kernels had a higher proportion of poorly-filled kernels. 

 

High temperatures and moisture stress during kernel development appeared to have an 

adverse effect on kernel quality, producing a higher proportion of poorly-filled kernels.  It 

was hypothesised that higher temperatures during kernel development hastened the 

process of maturity.  If photosynthesis in this period was impaired by moisture stress, the 

likely outcome was poor kernel fill.  The synthesis of the longer chain poly-unsaturated 

fatty acids, such as linoleic acid, may possibly also be impaired by the higher temperatures 

and moisture stress.  Further research on the effects of environmental conditions on the 

process of kernel development and quality are considered desirable to assess the potential 

of regions in Australia for hazelnut production. 

 

Although there was limited data on the chemical constituents of kernels, it appeared there 

were cultivar differences in oil content, α-tocopherol, water-soluble carbohydrates, 

nitrogen content in meal and levels of potassium. 
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CHAPTER 9 - CONCLUSIONS 
 

 

9.1 Introduction 
 

Although hazelnuts (Corylus avellana L.) were introduced into Australia in the Nineteenth 

Century by European settlers there has been minimal industry development compared with 

many other deciduous nut and tree crops.  Some small orchards were established in the 

Ovens Valley of north-east of Victoria in the 1930s.  There was a renewed interest in the 

crop in the 1980s, with many cultivars being introduced from overseas.  However, there 

had been no systematic evaluation of this imported material or comparisons made with 

local selections.  Why have hazelnuts remained a minor crop when Australia imports over 

2000 tonnes of kernels annually with a value of at least A$20 million?  Is this due to a lack 

of knowledge on the most appropriate cultivars to grow and the appropriate pollinisers for 

them or is it that hazelnuts are not well-adapted to the soils and climate of the temperate 

areas of south-eastern Australia and do not produce commercially viable yields?  This 

thesis was designed to address these issues. 

 

The general aims of the research were to answer the questions: 

 What are the relative merits of the main hazelnut cultivars available for 

commercial production in Australia? 

 How do environmental conditions affect the growth, phenology and productivity of 

hazelnut cultivars? 

 What is the productive potential of hazelnuts (Corylus avellana L.) in Australia? 

 

This final chapter summarises the research data presented in the previous chapters and 

how it relates to these questions. 
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9.2 Cultivar evaluation for commercial production 
 

The first research question was: 

 What are the relative merits of the main hazelnut cultivars available for 

commercial production in Australia? 

 

In Australia there is the potential to grow hazelnuts for a range of markets; however, there 

are 3 main market sectors, each with its own specifications.  The criteria used to evaluate 

the commercial potential of the cultivars in this study are based on those used by 

Mehlenbacher (1994) for the hazelnut breeding program at the Oregon State University 

(OSU), as discussed in Section 2.3.3 ‘Breeding Programs’.  The key criteria used herein 

for cultivar evaluation are: 

 High nut or kernel yield; 

 High kernel percentage for the kernel market; 

 Appropriate size, shape and appearance of nuts or kernels; 

 Resistance to major pests and diseases. 

 

9.2.1 Cultivars for the in-shell market 
 

This market sector is relatively small compared to the kernel market (Chapter 1, Figure 

1.1).  The in-shell market seeks large nuts (>21 mm) that are attractive in appearance.  The 

cultivar ‘Ennis’, with its large shiny, light brown nuts (Lagerstedt, 1980), sets the quality 

standard for this market.  When assessments were made of nut sizes, in Chapter 8, it was 

found that there were only 4 cultivars that had 75% or more of nuts that were of the large 

size grade >21 mm (Table 8.4).  These were ‘Ennis’, ‘Royal’, ‘Wanliss Pride’ and ‘Hall’s 

Giant’, their cumulative nut yields are shown in Table 9.1. 

 

Table 9.1 Cumulative nut yields 8 years from planting for potential cultivars for the 

in-shell market 

 
Cultivars Orange Moss Vale Myrtleford Toolangi Kettering 

‘Ennis’ 4.35a 3.96a 11.05a 2.38a 1.43a 

‘Hall’s Giant’ 0.38b 0.22c 1.04c 0.2b 0.2c 

‘Royal’ N.D. N.D. 6.84b N.D. 2.33a 

‘Wanliss Pride’  Failed  1.79b 6.28b 2.27a 1.9a 

LSD (P=0.05) 1.52 1.36 2.74 1.5 1.08 

Source - Cumulative nut yields from Tables 7.3-7.7 in Chapter 7.   

Note N.D. No data, not grown.  Cultivars with the same letter are not significantly different (P = 0.05). 
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Of these 4 cultivars, the cumulative nut yields of ‘Ennis’, 8 years after planting, were 

either the highest or equal highest.  At Orange, ‘Ennis’ was one of the highest yielding 

cultivars (Table 9.1).  At Moss Vale and Myrtleford, ‘Ennis’ produced about 50% of the 

yield of the highest-yielding cultivar, whereas at Toolangi and Kettering its nut yields 

were low compared with the highest-yielding cultivar.  Unfortunately, the cultivar ‘Royal’ 

was only grown at 2 sites.  At Myrtleford, ‘Royal’ yielded significantly less than ‘Ennis’, 

whilst at Kettering there was no significant difference.  ‘Royal’ is rated as being sensitive 

to big bud mite (USDA, 2007), which may be a potential disadvantage in Tasmania where 

big bud mite was found to occur. 

 

The performance of ‘Wanliss Pride’ was highly variable.  At Orange, the cultivar failed to 

grow.  At Moss Vale and Myrtleford, nut yields of ‘Wanliss Pride’ were low compared 

with the highest-yielding cultivar and significantly less than ‘Ennis’ (P=0.05).  However, 

at Toolangi and Kettering nut yields of ‘Wanliss Pride’ were not significantly different 

from ‘Ennis’.  It seems possible that ‘Wanliss Pride’ grows and yields better in a more 

maritime environment.  The cultivar has a weak, straggly, growth habit and may perform 

better as a multi-stemmed tree. 

 

The yields of ‘Hall’s Giant’ were low at all 5 sites.  Its main role is probably as a 

polliniser, as discussed later. 

 

Although, on average, ‘Ennis’ produced the highest yields of these 4 cultivars, it did not 

produce consistently high yields across all 5 sites.  This is in contrast with high yields 

recorded for ‘Ennis’ by Thompson (1981) and McCluskey et al. (1997) in Oregon, and 

Santos and Silva (2001) in Portugal.  Lagerstedt (1980) reported ‘Ennis’ to be moderately 

tolerant of big bud mite and moderately resistant to bacterial blight (Xanthomonas 

arboricola pv. corylina).  However, its relatively low yields at all sites, other than Orange, 

suggest there is a need for caution before extensive plantings of this cultivar are made. 

 

It is concluded that although ‘Ennis’, ‘Royal’ and ‘Wanliss Pride’ produce nuts that have 

high market appeal for the in-shell market, there is a need for more research on these 

cultivars to further assess factors influencing their productivity and yield potential in 

Australia. 
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9.2.2 Cultivars for the confectionery market, small kernels (13-15 mm) 
 

This is a large international market, particularly in Europe.  Multi-national companies, 

such as Cadbury Schweppes, import all of their kernels, mainly from Turkey.  Of the 

cultivars with kernels in this size range that blanch, only ‘Tonda di Giffoni’ and the 

“Sicilian type” were grown at all sites.  ‘Tonda di Giffoni’ grew well at all sites; it was one 

of the highest-yielding cultivars at Moss Vale but did not yield well at the other sites 

(Table 9.2), although at Orange it was the highest-yielding cultivar in the small kernel 

category.  The kernels were generally well-filled and blanched well with a kernel/nut ratio 

of 43%.  It is reported to have intermediate tolerance to big bud mite (Solar and Stampar, 

1997). 

 

The “Sicilian type” produced nut yields similar to ‘Tonda di Giffoni’, although higher at 

Myrtleford.  As a compact tree, it had the highest yield efficiency at many sites and 

produced kernels that blanched.  The main limitations of the “Sicilian type” are its thick 

shells and consequent low kernel/nut ratio, 35%.  Although not considered very suitable as 

a commercial cultivar, it could be very useful in a breeding program. 

 

‘Lewis’, ‘Willamette’ and ‘Montebello’ were only grown at Kettering, where they 

produced nut yields equivalent to ‘Tonda di Giffoni’.  ‘Montebello’, had the limitation of a 

low kernel percentage (Table 8.3). 

 

Table 9.2 Cumulative nut yields 8 years from planting for potential cultivars for the 

confectionery market (kernel size 13-15 mm) 

 
Cultivar Orange Moss Vale Myrtleford Toolangi Kettering 

Cultivars with kernels that blanch 

‘Eclipse’ 1.17b  8.21c  2.04a 

‘Lewis’     1.70a 

‘Montebello’     1.57a 

‘Negret’   8.13c   

“Sicilian type” 2.94a 5.43b 16.81a 3.30b 2.24a 

‘Tonda di Giffoni’ 2.60a 7.21a 12.98b 3.63b 2.29a 

‘TGDL’   6.33c  0.16b 

‘Whiteheart’     0.89b 

‘Willamette’     1.40a 

Cultivars with kernels that do not blanch but have a thin pellicle 

‘Casina’ 0.45b  6.73c   

‘Segorbe’ 2.23a 3.37c 12.25b 5.45a 1.49a 

LSD (P=0.05) 1.52 1.36 2.74 1.5 1.08 

Source - Cumulative nut yields from Tables 7.3-7.7 in Chapter 7. 

Note N.D. No data, not grown.  Cultivars with the same letter are not significantly different (P = 0.05). 

It is concluded that, of the cultivars studied, ‘Tonda di Giffoni’ was the best cultivar for 

the confectionery market sector, which requires small kernels that blanch.  However, the 
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overall relatively low productivity of ‘Tonda di Giffoni’ (relative yield 0.56, Table 7.8) is 

viewed as a concern for extensive commercial plantings.  Despite this, it was early into 

leaf, indicating relatively low chill requirements for vegetative buds, and may be well-

suited to areas with warm summers, mild winters and lower chilling hours. 

 

Of the cultivars that do not blanch, ‘Segorbe’ grew vigorously and yielded moderately 

well at Myrtleford and Toolangi.  It was more productive than ‘Casina’ at the 2 sites where 

both cultivars were grown.  As ‘Tonda di Giffoni’ has a thin smooth pellicle, it could be 

planted for both the blanched and unblanched market sectors. 

 

 

9.2.3 Cultivars for the larger kernel market (15-17 mm) 
 

In these studies, there were 7 cultivars (Table 9.3) that were considered suitable for the 15-

17 mm kernel market.  Kernels of this size are often used for snack and health foods, 

general catering and baking.  Desirable kernel attributes are thin, smooth skins with 

generally good blanching characteristics. 

 

Both ‘Barcelona’ and ‘TBC’ were generally the most productive cultivars in this group.  

The trees were vigorous and early into production.  The cultivars were ranked equal for 

scores of relative nut yields across the 5 sites (Chapter 7, Table 7.8). 

 

Table 9.3 Cumulative nut yields 8 years from planting for potential cultivars for the 

general kernel market  

 
Cultivar Orange Moss Vale Myrtleford Toolangi Kettering 

‘Atlas’ 2.99bc 1.09d 10.71c N.D. N.D. 

‘Barcelona’ 5.44a 5.66b 18.3a 8.1a 2.43c 

‘Square Shield’ 0.21d  3.46e  1.81c 

‘TBC’ 4.36ab 8.63a 10.81c 8.0a 4.82b 

‘Tonollo’   14.81b   

‘Victoria’ 1.61cd 3.99c 7.52d 4.30b 6.57a 

‘Wanliss Pride’ Failed 1.79d 6.18d 2.27c 1.85c 

LSD (P=0.05) 1.52 1.36 2.74 1.5 1.08 

Source - Cumulative nut yields from Tables 7.3-7.7 in Chapter 7. 

Note N.D. No data, not grown 

‘Victoria’ produced the highest nut yields at Kettering but performed less well at all the 

other sites.  However, as this cultivar has a low kernel percentage and does not blanch 

well, it is not considered to be a cultivar with good potential for this market.  ‘Atlas’ 

produced nut yields that were not significantly different from ‘TBC’ at Orange and 

Myrtleford, but were much lower at Moss Vale.  ‘Atlas’ is a very early cultivar into 
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anthesis and bud break, it has a lower kernel percentage than ‘TBC’ and does not blanch 

as well.  It may be suited to locations with low chill hours and warm summers. 

 

Comparing the characteristics of ‘TBC’ with those of ‘Barcelona’, ‘TBC’ kernels have 

slightly less fibre and blanch a little better (Table 9.4), although they are more prone to 

black tips.  ‘TBC’ has a higher mean kernel percentage (kernel/ nut ratio). 

 

Table 9.4 Kernel and other key characteristics of ‘Barcelona’ and ‘TBC’ 

 
Characteristics ‘Barcelona’ ‘TBC’ 

Average kernel size 14-16 mm 14-16 mm 

Kernel/nut ratio (Average all sites ) 0.42 0.45 

Kernel fibre 1 (low) – 5 (high) 3 2.5 

Kernel blanching (1 excellent – 7 none) 3.6 3.3 

Kernel defects Some twins Black tips 

Poor fill % 9.3 8.1 

Nuts free-falling Good Some stick in husks 

Tolerance to big bud mite High 
(1)

 Moderate 
(2)

 

Source - Kernel characteristics Table 8.6, Chapter 8.  
(1)

 (Lagerstedt, 1981), 
(2) 

Shawn Mehlenbacher (Pers. Comm. Oct 2006)  

 

‘TBC’ appeared to be slightly less susceptible to bacterial blight (Xanthomonas arboricola 

pv. corylina) than ‘Barcelona’ but ‘TBC’ nuts did not fall as freely from the clusters.  

‘Barcelona’ has a higher tolerance to big bud mites than ‘TBC’.  ‘Barcelona’ kernels were 

considered to have a slightly stronger nutty flavour.  It was concluded that both 

‘Barcelona’ and ‘TBC’ could be recommended for planting to produce kernels for the 

general, larger kernel market sector. 

 

 

9.2.4 Polliniser cultivars  
 

The cultivars recommended in the previous section would need to be inter-planted with 

other cultivars for pollination.  The polliniser cultivars must be genetically compatible 

with the main crop cultivar that is to be pollinated.  They must shed pollen when the 

female flowers of the main cultivars are receptive, in order to maximise the opportunities 

for pollination and subsequent crop yields.  The polliniser cultivars should produce large 

quantities of viable pollen.  Although no data was collected on pollen viability, relative 

catkin numbers were recorded (Section 5.2.1 ‘Catkin abundance’.)  Ideally, pollinisers 

should have nuts or kernels that can be used in a mixture with the main crop cultivars or 

can be separated from them by size-grading.  The pollinisers proposed for the most 
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promising cultivars, in the 3 market sectors discussed above, are shown in Table 9.5 and 

Figure 9.1.  They generally meet the above criteria. 

 

Table 9.5 Potential pollinisers for the most promising cultivars in the 3 main market 

sectors 
  Period of pollen shed relative to the main crop cultivar 

Cultivars and 

market sectors 

S - 

alleles 

 

Early 

 

Mid-season 

 

Late 

In-shell      

‘Ennis’ 1 11 ‘Hall’s Giant’ 5 15  

‘Royal’  1 3 ‘Casina’ 10 21 
(1)

 ‘Hall’s Giant’ 5 15 

‘Wanliss Pride’ 2 10 ‘Lewis’ 3 8 
(1)

  ‘Hall’s Giant’ 5 15 

Larger kernel sector     

‘Barcelona’ 1 2 ‘Lewis’ 3 8 ‘TBC’ 5 23 ‘Hall’s Giant’ 5 15 

‘TBC’ 5 23  ‘Lewis’ 3 8 ‘Casina’ 10 21 
(2)

 ‘Jemtegaard #5’ 2 3 

Confectionery sector     

‘Tonda di Giffoni’ 2 23 ‘Lewis’ 3 8, ‘Casina’ 10 21 
(3)

 
(1) 

Small nuts requiring size separation 
(2) 

Small nuts that do not blanch requiring size separation 
(3) 

Similar size but do not blanch 

 

Pollinisers for' Ennis' and 'Royal'

180 190 200 210 220 230 240 250

'Hall's Giant'

'Casina'

'Ennis'

'Royal'

Day of the year
 

Pollinisers for 'Wanliss Pride'

180 190 200 210 220 230 240 250

'Hall's Giant'

'TBC'

'Lewis'

Wanliss Pride'

Day of the year

 

 

Figure 9.1 Mean periods of female anthesis for potential cultivars for the in-shell 

market and their suggested polliniser cultivars.  Female anthesis      pollen shed 

 

‘Ennis’ is very late into female anthesis, as shown in Figure 9.1.  ‘Hall’s Giant’ was one 

of the latest cultivars to shed pollen yet its main period of pollen shed coincided with the 

period when the earlier female flowers of ‘Ennis’ had exerted stigmas.  It is possible 

there may be some yield loss with ‘Ennis’ due to the lack of a very late polliniser.  

Suitable pollinisers are available for the other potential main crop cultivars (Figure 9.1). 

In Oregon, the cultivar ‘Butler’ is used as a polliniser for ‘Ennis’ (Lagerstedt, 1980), in 

these studies, on average, ‘Butler’ shed pollen before the stigmas of ‘Ennis’ were exerted. 
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Although ‘Casina’ and ‘Lewis’ are suggested as pollinisers for ‘Royal’ and ‘Wanliss 

Pride’, respectively, they produce much small nuts that would be easy to remove by size-

grading.  The pollinisers suggested for the kernel market cultivars provide a good spread 

of pollen over their periods of female anthesis (Figure 9.2). 

 

Pollinisers for 'Barcelona'

180 190 200 210 220 230 240

'Hall's Giant'

'TBC'

 'Barcelona'

Day of the year
 

Pollinisers for 'TBC'

180 190 200 210 220 230 240 250

'Jemtegaard#5'

'Casina'

'Lewis'

'TBC'

Day of the year

 

Pollinisers for 'Tonda di Giffoni'

180 190 200 210 220 230 240 250

'Casina'

'Lewis'

'Tonda di Giffoni'

Day of the year
 

 

Figure 9.2 Average periods of female anthesis              for the cultivars ‘Barcelona’, 

‘TBC’ and ‘Tonda di Giffoni’ and the average period of pollen shed  

for the suggested polliniser cultivars. 

 

The cultivar ‘Casina’ is suggested as a polliniser for both ‘TBC’ and ‘Tonda di Giffoni’.  

As it does not blanch and is not easily separated from the main crop cultivar, this may 

cause some concern for some kernel buyers in these market segments.  However, as it is 

recommended that a main crop cultivar should not be further than 15 m from a polliniser 

(Azarenko et al., 1999), the density of pollinisers is about 12% of trees in an orchard, 

planted at a spacing of 6m between rows and 5 m down the row (333 trees/ha).  If only 

50% of these polliniser trees were ‘Casina’, the density would be about 6%.  As the nut 

yield of ‘Casina’ was generally low (Table 9.2), the proportion of nuts or kernels from 

this cultivar may be as low as 3%. 
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9.3 The effects of climate and soils on hazelnut production  
 

The second key research question was: 

 How do environmental conditions affect the growth, phenology and productivity of 

hazelnut cultivars? 

 

9.3.1 Soils 
 

There were very large differences in tree growth between the sites.  High rates of tree 

growth had a positive influence on nut yields.  The differences in growth between sites 

were considered to be related principally to differences in the texture, depth, structure, 

aeration and drainage of the soils at the sites (Chapter 4, Section 4.3.5 “Soil effects”).  The 

pH and levels of available nutrients were considered to be at acceptable levels and not 

limiting factors.  The results obtained on the effects of soil type on the growth of hazelnut 

trees and nut yields were in general agreement with the views of Woodroof (1967), 

Thompson (1981), Mehlenbacher (1994) and Germain and Sarraquigne (2004), who 

considered that soils for commercial hazelnut production should be fertile loams that are 

well-drained, at least 1.5 m deep, with a high water-holding capacity and a pH of 6-7.   

 

Australian soils commonly have duplex profiles, with relatively shallow topsoils (A-

horizons); the views expressed in the literature that the soils should be at least 1.5 m deep 

needs to be evaluated in the Australian context.  As the selection of suitable soils for 

hazelnut orchards is considered to be very important, an attempt was made to define key 

soil attributes that could be used in Australia for site selection, Chapter 4 Table 4.3.  These 

are re-stated below as Table 9.6. 

 

Table 9.6 Key parameters to assess the suitability of soils for hazelnut production. 

 
Soil properties Comments Max points 

Texture  Loam, range sandy – clay loams 4 

Deep>1.0 m Majority of roots in top 0.6 m going down to at least 1.2 m .  

A duplex profile with a clay B horizon is probably a major 

limitation. 

 

4 

Good drainage 

and aeration 

Positive indicators are red colour (good aeration), no 

mottling, stable structured (little dispersion or slaking of soil 

crumbs) 

 

4 

Fertility  Desirable levels for hazelnuts see Table 4.5 (Olsen, 1995)  1 

 

pH 6.0-7.0 Slightly acid to neutral 1 
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Recommendation for further studies 

It is recognised that the use of the parameters in Table 9.6 to assess the suitability of soils 

for hazelnut production involves some subjectivity.  There is a need for scientific studies 

to ascertain the relationship between soil texture grades, structure, impedance to root 

growth, drainage and aeration on growth rates and productivity of hazelnuts, with 

particular reference to duplex soils. 

 

Recommendation for growers 

It is recommended that, prior to planting a hazelnut orchard, intending growers should 

make a thorough assessment of the soil profile with an emphasis on soil texture, soil 

structure and drainage, in at least the top 800 mm–1 m of soil, to ensure that it is a well-

drained, loam soil.  The pH should also be tested so that ground limestone can be applied 

before planting, in order to bring the top soil up to pH 6 as recommended in the literature. 
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9.3.2 Climate  
 

In Chapter 2, a series of climate parameters were developed from the literature on the 

effects of climate on the phenology, growth, and productivity of hazelnuts.  These were 

developed as an aid for site selection.  These parameters are now reviewed and modified 

or reinforced in the light of these studies.  They are presented in Table 9.7 and discussed in 

the section below. 

 

Table 9.7 Suggested key climate parameters for hazelnut production 

 
 

Phenological stage and effects 

Climate parameter and 

period in Australia 

 

Critical level 

Flowering, frost damage to catkins 

and female inflorescences 

Lowest air temperature in 

the coldest months  

-7°C 

(Bergoughoux et al., 1978) 

Bud break, chill to break dormancy, 

insufficient chill may result in poor 

leafing out 

Total chill hours (0-7°C) 

May–August (incl.), highest 

chill cultivars 

 

≥1500 chill hours 

(Mehlenbacher, 1991) 

Bud break and early leafing, frosts can 

damage emerging leaves 

October, lowest minimum 

air temperature  

-3°C 

(Bergoughoux et al., 1978) 

Fertilisation, minimum temperatures 

for fertilisation 

Mean maximum air 

temperature, December, 

≥21°C 

(Latorse, 1981) 

Nut and kernel development, sufficient 

warmth for production 

Minimum heat units  

1 November–30 April  

Total 800 GDD 

above a base of 10°C 

Nut and kernel development, heat 

stress may affect tree growth and 

kernel development 

January  Mean max. temp ≤30°C 

December–February, 

consecutive days > 35°C 

Max. 2 days >35°C 

(Thompson, 1981) 

Nut and kernel development, adverse 

effects of moisture stress  

 

December–February 

 

≥60% mean RH at 9 am  

Overall growth, production and future 

crop yields, adequate soil moisture 

required 

Minimum annual rainfall, 

with supplementary 

irrigation 

 

>800 mm 

(Tous et al., 1994) 

Tree growth, adversely affected by 

strong winds  

 

October-March 

Not persistent 

(Bergoughoux et al. 1978). 

Nut harvest, dry conditions required to 

facilitate harvest  

March mean monthly 

rainfall  

<50 mm 

(Tous et al., 1994) 

 

Dormant flowers and frost 

Air temperatures did not go below -7°C and frost damage to catkins and female flowers 

was not an issue at any of the sites.  However, it is suggested that the minimum of -7°C for 

the coldest winter months, as recommended by Bergoughoux et al (1978), be retained as 1 

of the criteria for site selection.  There may be localities, such as the Northern Tablelands 

of NSW or valleys adjacent to mountain ranges in parts of Tasmania and NSW, where this 

could be an issue. 
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Chill to break the dormancy of flowers and buds 

The chilling requirements of cultivars for flowering varied considerably (Table 6.3).  

These requirements appear to be the main factor influencing the timing of pollen shed and 

female anthesis and the sequence in which cultivars commenced flowering and bud break, 

as reported in Chapter 5, ‘Cultivar Floral Phenology’.  This was in general agreement with 

studies reported by Mehlenbacher (1991). 

 

It was not possible to develop a model that predicted the date of flowering from 

temperature data, due to the apparent complexities and interactions between chilling, to 

break dormancy, and warmth to stimulate development.  It appeared that there were 2 

concurrent processes involved in flowering:- the break-down of growth retardants by 

chilling and the development of growth stimulants with post-chill warmth (thermal time).  

The chilling requirements of catkins were found to be less than those of pistillate flowers 

but the post-chill heat requirements of the catkins were greater than the pistillate flowers, 

which is in agreement with the reports of Barbeau (1972), Kavardzhikov (1980), 

Mehlenbacher (1991) and Turcu et al. (2001).  Although there was limited data on the 

post-chill warmth requirements of catkins, it appeared that these were similar across 

cultivars, which is in agreement with the work of Tiyanon (2008). 

 

It was concluded that difficulties in developing an empirical model to estimate the chilling 

requirements of hazelnut flowers are related to: 

 the method of calculating chilling hours (e.g. chill hours vs. chill units); 

 the starting date for the calculation; 

 the date when endodormancy is complete; and 

 the lack of visual signs of change from endodormancy to ecodormancy. 

 

Similarly, difficulties in estimating the heat unit requirements of flowers are related to: 

 determining the base temperature for calculations; and 

 knowing when to commence the calculation of the thermal sums. 

 

It is considered that further studies using growth cabinets, in combination with field 

studies on floral phenology, would provide a better understanding of the effects of 

temperature on floral development in hazelnuts.  This should be complemented by studies 

on the levels of growth-retarding and stimulating substances through dormancy to 

flowering and bud break. 
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Bud break 

In a similar manner to flowering, the variation in dates of bud break between cultivars 

appeared to be associated with the chill requirements of cultivars to break dormancy and 

the post-chill warmth required to stimulate leaf development.  It is possible that daylength 

was an additional factor, as reported by Heide, 1993. 

 

The accumulated chill hours to bud break at Orange ranged from 1100 for ‘Tonda di 

Giffoni’ to 1600 chill hours for the latest-leafing cultivar ‘Hall’s Giant’ in 2002.  Although 

only limited data was obtained on chill requirements to overcome the dormancy of buds in 

this research, it is considered that the climate parameter of 1500 accumulated chill hours in 

April–August, as suggested by Mehlenbacher (1991), is a valid, but conservatively high, 

figure when evaluating sites for their suitability to grow hazelnuts.  The formula, 

developed by da Mota (1957) for the estimation of monthly chill hours (0-7°C) from mean 

monthly temperature data, was found to over-estimate chill requirements across the 5 sites, 

but was considered a useful tool when assessing the suitability of sites, if chill hour data is 

not available. 

 

Freezing temperatures at bud break and early leafing 

The data on the effects of freezing temperatures after bud break, at Orange and other sites, 

supports the view that a climate parameter of a minimum temperature of -3°C in October 

is an appropriate critical value for hazelnuts, as proposed by Bergoughoux et al. (1978). 

 

Fertilisation – mean maximum temperatures 

Latorse (1981) considered the mean maximum air temperature at the time of fertilisation, 

late May–early June in France, should be ≥ 21°C.  Rapid growth of the nut shell is 

considered to occur 10 days before fertilisation (Germain, 1994).  It is likely that, in these 

studies, fertilisation occurred in early–mid December, as nuts were first observed on trees 

early in that month.  Although no studies were undertaken on fertilisation, this did not 

appear to be a major problem, as nut development proceeded, with minimal loss, 

throughout December.  This was despite mean maximum temperatures at Toolangi and 

Kettering being only 20°C in December.  As no studies were undertaken on fertilisation, it 

is suggested that the figure of ≥ 21°C, as recommended by Latorse (1981), be applied for 

the month of December. 
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Nut and kernel development - GDD for production 

The main period of nut fall for most cultivars was over a period of about 5 weeks, with 

most blank nuts falling at the beginning of this period.  The peak date of nut fall varied 

slightly between cultivars and seasons.  Nut fall was influenced by the accumulated GDD 

above a base temperature of 10°C from 1 November.  It was considered that 800 GDD, in 

the period 1 November to 30 April, is the minimum for commercial hazelnut production.  

However, there is a need for further studies or analysis on this matter. 

 

Nut and kernel development, heat and moisture stress 

Thompson (1981) and Germain and Sarraquigne (1997) reported that, in Oregon and 

France respectively, hazelnuts can be adversely affected by extremes of heat and low 

humidity.  The highest maximum temperatures were recorded at the Myrtleford site, where 

mean maximum temperatures in January and February were just over 30°C, but there were 

several periods when maximum temperatures, in the range  

32°C–38°C, were recorded, in association with relative humidity below 20%.  The highest 

temperatures recorded during the period of study were at Myrtleford in January 2003, with 

maximum temperatures of 40°C for 2 days with northerly winds and minimum relative 

humidity down to 17%, Table 9.8. 

 

Table 9.8 Temperature and relative humidity extremes recorded at Myrtleford in 

January 2003. 

 
  

Temperature 

 
°
C 

 

Relative humidity 

% 

 

Evaporation 

(mm) 

Solar 

radiation 
(MJ/m

2
) 

 

Wind 

run (km) 

Date Max Min Max Min    

26/01/2003 40.6 18.7 85 20 5.4 21.6 89 

27/01/2003 39.7 19.3 79 17 6.2 18.5 117 

28/01/2003 33.7 17.8 97 18 5.3 21.5 93 

 

During this period of hot dry weather, the trees were in their sixth year from planting and 

were well-grown.  Trees were being irrigated weekly with micro-sprinklers to minimise 

moisture stress and restore soils to approximately field capacity.  There were signs of 

some moisture stress associated with these conditions of high temperature and low 

humidity with some wilting and scorching of leaf margins.  The suggestion of no more 

than 2 concurrent days with maximum temperatures above 35°C is a simplified index of 

when hazelnut plants may be stressed.  It needs to be coupled with an index for relative 

humidity. 
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It was concluded that hazelnut trees can tolerate temperatures up to 40°C, provided they 

have adequate soil moisture.  However, it is suggested, until further information is 

gathered on the effects of high temperatures on hazelnut production, that the mean 

maximum temperatures in the hottest months, January and February, should not be greater 

than 30°C and that irrigation should be available, to minimise moisture stress.  Higher 

temperatures are likely to be above the optimum for net photosynthesis, which, for apples 

and peaches, is in the range 28-30°C (Tromp et al., 2005b).  

 

Relative humidity 

Low levels of relative humidity are commonly associated with high levels of moisture loss 

through plant leaves.  Under conditions of very high water loss, leaves may lose their 

turgidity and become wilted, with closure of stomata to prevent water loss and 

dehydration.  This can led to desiccation under extreme conditions.  Grau and Sandoval 

(2009) considered that hazelnuts lack an adaptive mechanism to endure high water 

deficits.  Studies on pre-dawn xylemic water potential (Ψx) in Chile, by these researchers, 

showed an increase in Ψx values following a period when the relative humidity had fallen 

to 50%.  These levels were commonly reached in January at the Myrtleford site, where the 

minimum mean relative humidity in January was 34% over 9 years, which is similar to 

that recorded by the Australian Bureau of Meteorology of 32% 

(www.bom.gov.au/climate/averages).  

 

It is difficult to define a minimum relative humidity value for hazelnuts.  A long-term 

mean value of 56% at 9 a.m. was recorded for Myrtleford by the Australian Bureau of 

Meteorology (www.bom.gov.au/climate/averages ).  Data on relative humidity is 

commonly only available for 9 a.m. readings.  Therefore, a parameter value for 9 a.m. 

readings has been developed.  It is considered that a minimum relative humidity value of 

60% at 9 a.m. could be an appropriate index.  This is lower than the level of 70% 

recommended by Bergoughoux et al. (1978) and Grau and Sandoval (2009), as presented 

in Chapter 2, ‘Literature Review’, Table 2.1. 

 

Rainfall and soil moisture 

Rainfall and its influence on soil moisture availability was a key factor influencing tree 

growth, nut yields and kernel quality.  The dry conditions, in the spring of 2002 at Moss 

Vale, had an adverse effect on tree growth and production.  Tombesi (1994), Mingeau et 

al. (1994) and Bignami and Natali (1997) found that late spring was a time when water 

http://www.bom.gov.au/climate/averages
http://www.bom.gov.au/climate/averages
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stress reduced both trunk and shoot growth, and consequently yield potential for the 

following season.  Although the study sites were irrigated, moisture stress during kernel-

fill had an adverse effect on kernel quality.  Mingeau et al (1994) found that hazelnuts 

were very sensitive to moisture stress from fertilisation to kernel-fill, the most sensitive 

phase being fertilisation, which, in Australia, generally occurs in late November to mid-

December.  Moisture stress during nut development in December reduces both the number 

and size of the nuts (Mingeau et al. 1994).  In January, moisture stress can lead to poorly-

filled nuts with shrivelled kernels (ibid, 1994). 

 

The irrigation requirements of hazelnuts depends on annual rainfall, its distribution and 

evaporation rates.  Rainfall and evaporation data for Orange are used as an example to 

estimate the irrigation requirements of a mature orchard in a year of average rainfall, using 

crop coefficients developed by Mingeau and Rouseau (1994).  This estimate assumes a 

loam soil with a water-holding capacity of 180 mm per metre depth, with a rooting depth 

of 1 m for the trees. 

 

 

 

Figure 9.3 Estimated soil moisture store and irrigation requirements for a mature 

hazelnut orchard in the Orange district, mean annual rainfall 930mm 
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The theoretical calculations in Figure 9.3 indicate a total irrigation requirement of 

approximately 0.8 ML/ha, based on the average annual rainfall in the Orange district, 

which is about 900mm (www.bom.gov.au/climate/averages).  However, as rainfall is 

erratic, it would seem prudent to budget for around 2ML/ha for a drought year as, in such 

a year, more irrigation would be required in order to maintain good tree growth and high 

yields of good quality nuts.   

 

This data indicates that, for every reduction in rainfall of 100 mm below the 900 mm 

recorded at Orange, there is a need for an additional 1 ML/ha of irrigation.  However, if 

the decrease in rainfall is also associated with an increase in evaporation, the estimated 

irrigation requirements would be greater than this. 

 

Recommendation 

As this is only an estimate it would be very valuable to establish a research project in 

which there is monitoring of soil moisture and the application of irrigation to validate this 

model. 

 

Wind  

Strong winds were observed to adversely affect tree growth but were not considered to be 

a major factor influencing differences in tree growth between the sites; growers should 

avoid sites with persistent winds, as recommended by Bergoughoux et al (1978).  

However, wind speed influences evapotranspiration rates and moisture stress in plants, 

particularly when humidity is low. 

 

Hail 

Although there were no serious incidents of hail recorded at the research sites, 

observations on commercial crops show that hail can be damaging, depending on its 

severity and timing.  In the Orange district, hail was observed to damage the bark of young 

trees which subsequently became infected with bacterial blight.  The leaves of trees in full 

leaf in late spring have also been damaged by severe hail storms. 

 

 

http://www.bom.gov.au/climate/averages
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9.4 The productive potential of hazelnuts (Corylus avellana L.) in 

Australia 
 

 

The third key research question was: 

 

 What is the productive potential of hazelnuts (Corylus avellana L.) in Australia? 

 

9.4.1 Productive potential and opportunities 
 

The site at Myrtleford provided a good indication of the potential of hazelnuts as a crop.  

A comparison of nut yields from Myrtleford with those from experimental sites in 

Corvallis, Oregon was made for the cultivar ‘Barcelona’ (Figure 9.4), using data from 

cultivar evaluation experiments conducted by the Oregon State University research team 

(McCluskey et al., 2001 and 2005).  One year-old trees were planted at Corvallis, whereas 

rooted suckers (whips) were planted at Myrtleford. 

 

The trees at Corvallis were grown at a wider spacing (4.5 x 5.5 m) than those at 

Myrtleford (3 x 5 m).  However, it is considered that the difference in density would have 

had little effect on tree growth and yields before the sixth year from planting.  The yield 

from the ‘Barcelona’ trees grown at Myrtleford compared very favourably with those in 

Oregon, Figure 9.4.   
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Figure 9.4 Comparisons of the development in nut yield for the cultivar ‘Barcelona’ 

grown at Myrtleford, Australia and Oregon, USA. 

 

This data generally suggests great promise for hazelnuts grown in favourable situations in 

Australia, as the average yields of commercial hazelnut orchards in Oregon were 2.5 t/ha 

in the decade 1993-2002 (Mehlenbacher, 2005) and amongst the highest in the world 

(Tous et al., 1994). 

 

World production of hazelnuts is static or slightly declining, in the northern hemisphere, 

whereas world demand appears to be increasing (Fideghelli and De Salvador, 2009).  The 

dominant producing country is Turkey, where the orchards are very small and the crop is 

hand-picked.  The labour requirements per hectare for established orchards in Turkey are 

around 400-700 hours/year compared with  

35-40 hours/year for the large mechanised orchards in Oregon, USA (Tous et al., 1994).  

A potential shortage of hazelnuts has been recognised in Chile, where over 7400 hectares 

have been planted in recent years by the Ferrero Group (Simcoe, 2011). 

It is argued that there is scope for some import substitution in Australia, as well as 

developing new markets in this country, as hazelnuts have both nutritional and health 

benefits.  The high oleic acid content has been shown to increase the level of high density 

lipoprotein (HDL) in blood.  HDL, in turn, lowers blood cholesterol and thus protects 

against arteriosclerosis.  The risk of death from coronary heart disease is reduced by 50% 
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in people consuming hazelnuts at least once per day (Alphan E, et al. 1997).  The health 

benefits from including nuts in the diet have been strongly promoted to health 

professionals through the “Nuts for Life” program, www.nutsforlife.com.au and, in recent 

years, nut consumption in Australia has been increasing.  This program is based on a 

thorough research of the scientific literature. 

 

Australian production of hazelnuts in 2012 was estimated to be about 70 tonnes of nut in-

shell (Australian Nut Industry Council, www.nutindustry.org.au), equivalent to about 30 

tonnes of kernels or about 1% of our imports.  The experiments conducted in this study 

indicate that a yield of 4 kg/tree is achievable at a spacing of 3 x 5 m or about 650 trees/ha.  

This is equivalent to 2.5 tonnes/ha.  Such yields are comparable to those achieved with 

good management in Italy, Spain, Oregon and France (Tous et al. 1994), indicating that 

with well-selected sites and good orchard management, Australia has a good potential for 

hazelnut production.  Current imports of hazelnut kernels are approximately 2000 tonnes 

per annum; if the industry aimed to meet this demand it would need to plant approximately 

2500 ha of orchard, achieving average nut yields of 2 t/ha and a crack-out of 40%.  The 

orchard sites would need to be carefully selected, well-managed and mechanised to 

compete with cheap imports from countries such as Turkey, where labour costs are low. 

 

 

http://www.nutsforlife.com.au/
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9.4.2 Potential areas for production 
 

 

Potential areas for hazelnut production in South-eastern Australia are considered on the 

basis of the key climate parameters, from Table 9.7.  As hazelnuts are particularly 

sensitive to moisture stress in summer, 2 key parameters have been used to show potential 

locations for hazelnut production, based on a mean maximum temperature of ≤30°C in 

January and a mean relative humidity at 9 am in January ≥60%.  Images from the Bureau 

of Meteorology web site, www.bom.gov.au, showing zones with mild to warm summers 

(mean maximum January temperatures ≤30°C), with cold winters, and isohumes of mean 

relative humidity in Australia, were used to produce the maps in Figure 9.5. 

 

On the mainland of Australia, the zones where summers are mild to warm with cold 

winters are principally located at higher elevations on or near the Great Dividing Range, 

whereas the whole of Tasmania is in this climatic zone, Figure 9.5, Map A.  The zones 

where the mean 9 a.m. relative humidity is ≥60% occur on the eastern side of NSW and 

the southern part of Victoria as well as the whole of Tasmania, Figure 9.5, Map B.  

 

  

 

Figure 9.5 Climatic zones based on mean average daily maximum temperatures 

(°C) in January and thermal heat units in winter (Map A) and average relative 

humidity (%) at 9 a.m. in January (Map B), in South-eastern Australia, 30-year 

means. 
Source: Commonwealth of Australia, Bureau of Meteorology www.bom.gov.au  

 

 

RH % 

NSW 

Victoria 

Tasmania 
 Map A Map B 

http://www.bom.gov.au/
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Figure 9.6 Land use in South-eastern Australia  

Soil type is another factor influencing selection of potential areas.  The Land Use map,  

 
Land Use in South-
eastern Australia, with 
districts of interest for 
hazelnut production 
 
Source: Environmental 
Knowledge Systems 
(ALUM) 
www.adl.brs.gov.au  
 
Image based on 
Australian land use 
classification (ALUM), 
Department of Agriculture, 
Forestry and Fisheries, 
ABRES 
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http://www.adl.brs.gov.au/
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Figure 9.6, gives some indication of land suitability.  On the mainland of Australia, the 

land in the zone with a mild to warm summer lies at a relatively high altitude, just inland 

from the eastern seaboard, either abreast or close to the Great Dividing Range, Figure 9.6.  

The terrain in this zone varies from undulating to steep hills and rugged mountains.  Land 

use varies from livestock grazing, on the undulating hills, through to forestry and natural 

vegetation on the mountainous areas, with limited scope for cool climate intensive 

horticulture. 

 

Similarly, in Tasmania, the land use on the mountainous areas in the western part of the 

state is either conserved natural vegetation or forestry.  The Midlands are relatively dry 

and used principally for livestock grazing.  The areas used for intensive agriculture, 

dairying and horticulture are limited to the coastal areas in the north of the State and the 

river valleys in the south.  The integration of climate parameters with current land use 

forms the basis of the discussion of potential areas for hazelnut production. 

 

New South Wales 

Potential areas for hazelnut production in New South Wales are the high altitude areas of 

the Northern and Central Tablelands and the South-west Slopes.  These include Glen Innes 

on the Northern Tablelands, inland from Coffs Harbour, Orange on the Central 

Tablelands, inland from Sydney and Tumbarumba, south-west from Canberra.  All 3 areas 

are apple-growing districts and have appropriate climates and some areas of suitable soils.  

At Glen Innes, the main limitations are the area of appropriate land, the dominance of 

summer–autumn rainfall, which may hamper harvest operations, and the relatively low 

rainfall of winter–spring, which may limit plant growth in spring and subsequent 

production.  This district records minimum temperatures and late frosts that may damage 

catkins, female flowers and young leaves after bud break. 

 

The Orange district probably has the greatest potential with reasonably large areas of well-

drained, fertile basaltic loam soils as well as a suitable climate.  The area of suitable soils 

at Tumbarumba is probably limited.   

 

There is a relatively narrow coastal strip of land south of Sydney that is suitable for 

agricultural use, as well as the Southern Highlands between Sydney and Canberra in the 

Moss Vale area.  The climate in these areas would be very suitable for hazelnut production 

but care would be needed to select sites with appropriate soils. 
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Using the climate parameters in Table 9.7, the inland irrigation districts, such as Mildura 

and the Murrumbidgee Irrigation Area (MIA) to the east, at Griffith, are likely to be too 

arid for hazelnuts, unless special measures are taken, such as misting or overhead watering 

under extreme conditions of moisture loss.  The mean maximum temperatures in January 

can be greater than 32°C, with several days in the month above 35°C, and mean relative 

humidity at 9 a.m. of less than 60% (Maps A and B).  Crops grown under irrigation in 

these areas include citrus and almonds.  However, a citrus grower has planted ‘Ennis’ trees 

on a property near Narrandera on the Murrumbidgee, with reports of the ‘Ennis’ trees 

coming into production, 6 years after planting (Narrandera Argus, 14 July, 2013).  At the 

time of writing, a company, Agri Australis, was seeking approval to plant over 1 million 

trees in the Narrandera district (Narrandera Argus, 14 July, 2013). 

 

Victoria 

Areas of potential in Victoria include the Upper Ovens Valley, the hills to the east of 

Melbourne and the Ballarat area, to the west of Melbourne.  Coastal areas to both the east 

and west of Melbourne would also be suitable.  In all these locations, areas of suitable 

soils are limited and careful site selection would be essential.  There are irrigation areas in 

the Goulburn Valley in northern Victoria, where a range of horticultural crops have been 

grown.  Soil types are very variable, but detailed soil surveys have been conducted in the 

area (Cockroft, 1965).  Mean annual rainfall in this district is in the range 450-600 mm, 

which would necessitate the use of irrigation for hazelnut production.  However, 

maximum temperatures and relative humidity in January indicate the area could be too 

warm and arid.  Returns from hazelnuts would need to be comparable with those from 

existing land uses.  
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Tasmania  

This State is considered to have the greatest scope for growing hazelnuts, due to its cool 

climate (Figure 9.5, Map A) and areas of relatively high rainfall.  Potential areas in the 

north of the state include the Sheffield district, the Meander Valley, Hagley and Westbury 

areas, as highlighted by Baldwin (1999).  An irrigation pipeline provides water to the 

Hagley district from the Meander Dam www.tasmanianirrigation.com.au.   

 

There is also some potential in the old orcharding areas of the Tamar Valley, north of 

Launceston and to the south of Hobart in the Channel and Huon districts, although many 

soils in these areas are poorly-drained and similar to the soils of the Kettering site.  

Rainfall and soils vary quite markedly over relatively short distances, so sites would need 

to be carefully evaluated.  Big bud mites have been found in Tasmania, having been there 

probably for many years.  These can have a very damaging effect on susceptible cultivars; 

the best strategy for control being to plant resistant cultivars. 

 

South Australia 

The potential areas of production in this State are relatively small and limited to the higher 

rainfall areas of the Adelaide Hills, such as at Lenswood, and the Mount Gambier–Penola 

district in the South-east of the State.  Key limitations to production are limited areas of 

suitable soils, high land prices and limited water supplies for irrigation. 

 

Western Australia 

The higher rainfall districts in the south-west of the state, where apples are grown, such as 

at Manjimup, are suitable for hazelnut growing.  Rainfall has a very high winter incidence 

with very little summer rainfall, so irrigation would be essential.  A small hazelnut 

plantation did exist at the Manjimup Research Station, in the south-west of Western 

Australia.  Hazelnuts have been planted in this area by the Wine and Truffle Company for 

truffle production, http://wineandtruffle.com.au/ .  The orchards are well-irrigated 

throughout the summer.  Seedling trees were planted, which were inoculated with the 

black truffle fungus.  The author visited the orchard in January 2007 and inspected the 

trees, which had grown well.  Summer temperatures are high and the areas of appropriate 

soils are limited, as are water resources, so the area suitable for hazelnut production is 

probably limited. 

Climate change 

http://www.tasmanianirrigation.com.au/
http://wineandtruffle.com.au/
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It is predicted that, by 2030, mean temperatures will rise by 0.3-0.6°C, with a further rise 

of up to 2.5-3°C by 2070 (Stokes and Howden, 2008).  Maximum temperatures will rise 

faster than minimums; chilling hours will decrease, as will relative humidity, in southern 

Australia.  All these factors will impact on cool climate horticulture and the suitability of 

locations for hazelnut production.  Locations that are currently just sufficiently mild, 

might in the future be too warm and unsuitable for production. 

 

Climate change models predict the likelihood of less rainfall in southern Australia, 

particularly winter–spring rainfall, with decreased inflows into catchments and reductions 

in water availability for irrigation.  It is therefore suggested that those investing in hazelnut 

production should err on the conservative side when assessing potential locations for 

production, using the climate parameters in Table 9.7. 

 

 

9.5 Economics 
 

 

9.5.1 Potential profitability 
 

It is difficult to be precise about the profitability of hazelnut growing as this depends on 

the situation in which the crop is grown, the yields obtained, the market opportunities, and 

the growers’ management skills.  An estimate of the cost of establishing a hazelnut 

orchard (Table 9.9) was undertaken by the Tasmanian Department of Primary Industries, 

Parks, Water and the Environment.  The spreadsheet “Hazelnut Profitability and Gross 

Margin Analysis” is based on information provided by growers and is available at 

http://www.dpiw.tas.gov.au/inter/nsf/WebPages/LBUN-8M589T?open#GrossMarginAnalysisT 

 

The estimated establishment costs are $9000/ha, based on the need to apply ground 

limestone before planting to raise soil pH levels, the availability of contractors to prepare 

the land and to plant the trees.  It assumes whips or young trees will be purchased at a cost 

of $10 per tree and that the grower has a water supply and irrigation licence for the 

property.  Irrigation costs are for materials only in the orchard and assume the irrigation 

system will be installed by the grower.  It is based on a density of 330 trees/ha, rows 6 m 

apart with trees at a 5 m inter-row spacing.  The two major cost items are the purchase of 

the planting material and setting up the irrigation system (Table 9.9).  

 

http://www.dpiw.tas.gov.au/inter/nsf/WebPages/LBUN-8M589T?open#GrossMarginAnalysisT
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Table 9.9 Estimate of approximate material costs of establishment per hectare, 

excluding labour 

 

Item Approximate cost $/ha 
Interest foregone on land purchase 5% at $10,000/ha 500 

Lime 5t/ha @ $70/t, applied by contractor 350 

Land preparation, spraying, ripping, cultivation and levelling 350 

330 trees @ $10/tree (Spacing 6m x 5m) 3300 

Planting cost (labour) 500 

Irrigation system (Irrigation mains, sub-mains, drip lines and 

 4 emitters/tree).  Assumes water to site.  

 

4000 

 

Total materials costs 

 

$9000 

Source: Based on Hazelnut Profitability and Gross Margin Analysis 

http://www.dpiw.tas.gov.au/inter/nsf/WebPages/LBUN-8M589T?open#GrossMarginAnalysisT 

 

The estimated costs of orchard establishment in Australia are higher than those for 

Oregon, where establishment costs were estimated by Julian and Seavert (2009) to be the 

equivalent of A$3000/ha.  The main factors contributing to the lower costs in Oregon were 

trees at A$5 each compared with A$10 in Australia and no costs for irrigation in Oregon 

as the orchards are not irrigated. 

 

The data from the research sites indicates it could take from 8-15 years to achieve peak 

yields from an orchard.  This will depend on the quality of the planting material, the site 

and the growers’ management skills.   The gross margin for an orchard that is yielding 2 

t/ha was estimated using the Tasmanian Hazelnut Profitability and Gross Margin Analysis 

(Table 9.10).  Assumptions in this gross margin are that the grower will apply sprays for 

the control of hazelnut blight, suckers and weeds in the tree rows.  As it is difficult to 

control all the suckers by spraying, a cost item has been included for contractors to cut 

uncontrolled suckers and to do some pruning.  Although there is a cost for mowing by 

contractors, it is very likely the grower would do the mowing.  It is assumed that raking 

the nuts and harvesting would be done by a contractor with the grower carting the 

harvested crop and drying it. 

 

Based on these assumptions, the approximate direct expenses are estimated to be 

$2000/ha, with a gross margin of $5000, based on a nut yield of 2000 kg/ha and a selling 

price of $3.50/kg. 

 

 

 

http://www.dpiw.tas.gov.au/inter/nsf/WebPages/LBUN-8M589T?open#GrossMarginAnalysisT
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Table 9.10 Estimated gross margin ($/ha) for a well-managed orchard assuming 

harvesting by contractor with assistance from the grower 

 
   Expenses 

($/ha) 

Income 

($/ha) 

Income     

Hazelnuts in-shell, 2 tonnes/ha @ $3.50/kg    7000 

     

 

Expenses 

No. or 

amount 

Unit cost  

  

 

Lime (5t/ha every third year) 1.68 t $65/t 110  

Fertilisers (N.P.K mix) 250 kg $350/t 90  

Chemicals     

Bordeaux mix for bacterial blight control 3 $10 30  

Sucker spraying (e.g. Basta) 6 $10 60  

Weed control in the tree rows (eg Roundup)  4 $10 40  

Fuel and oil   100  

Irrigation (pumping costs 1 ML/ha)   300  

Contractors     

Mowing  8 $40 320  

Labour - pruning/sucker cutting 12 hrs. $25 300  

Mechanical raking nuts at harvest ($/hectare)   50  

Mechanical harvesting  2 t $100/t 200  

Drying 2 t 20c/kg 400  

Total direct costs   2000  

Gross margin ($ per hectare)    5000 

 

Peak nut yields of 2000 kg/ha or more were achieved by the highest yielding cultivars at 4 

of the sites, Table 9.11.  At Kettering, yields were still increasing 8 years from planting. 

 

Table 9.11 Estimates of nut yields per hectare for the higher yielding cultivars at the 

study sites 

 
 

Site 

 

Cultivars 

Years from 

planting 

Approx peak tree 

yield (kg/tree) 

Approx yield per 

hectare (kg/ha) 

Orange Barcelona 10 4 2600 

Moss Vale TBC 8 4 2600 

Myrtleford Barcelona 7 6.2 4030 

Toolangi Barcelona and TBC 6 3 2000 

Kettering TBC 8 2    1300
(1)

 

Notes: Yields per hectare based on peak nut yields per tree multiplied by trees per hectare at the spacing of 

3 m x 5 m, 650 trees per hectare. 
(1) 

The trees had not achieved peak yields. 

 

 

Two key factors influencing the profitability of hazelnut growing are the price received for 

the crop and the yield obtained.  At a price of $2/kg and a nut yield of  

1 t/ha, the crop returns equal the direct expenses of production.  If the price received is 

raised to $4/kg, the gross margin is $2000/ha.  Increasing the productivity to 3 t/ha 

improves the gross margin considerably, particularly if the grower receives $4/kg (Figure 

9.7). 
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Figure 9.7 Effect of changes in nut yields and the price received on estimated 

hazelnut gross margins 

 

The total direct costs in the estimated gross margin (Table 9.10) equate to about $1/kg of 

nuts in-shell.  In Oregon, growers’ returns are generally less than A$2/kg of nuts in-shell 

(Julian and Seavert, 2009).  For Australian growers to compete with overseas imports, it is 

likely they would be required to accept payments of no more than $2.50/kg for nuts in-

shell.  In order to be cost-competitive, orchards would need to be highly productive, 

requiring good site selection, productive cultivars and a high level of management. 

 

Hazelnut production compared with other land uses 

Alternative land uses to hazelnut production vary considerably between districts.  It is 

possible that the land use prior to planting a hazelnut crop would be a grazing enterprise, 

such as sheep for lamb production.  A potential gross margin for hazelnuts can be 

compared with a grazing enterprise to gain some idea of the alternative to the current land 

use (Table 9.12).  A further comparison might be with an alternative tree crop, such as 

cherries.  Even at the low figure of $2.50/kg for nuts, a hazelnut orchard, when in full 

production, would give a far higher gross margin than prime lamb production, although far 

less than a cherry orchard (Table 9.12). 
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Table 9.12 Gross margins for a grazing enterprise and a high-value horticultural 

crop compared with hazelnuts 

 
Land use Assumptions Gross margin  Comments 

First cross ewes 

for prime lambs 

 

3.7 ewes/ha 

 

$337/ha 

Low investment costs, lower direct 

inputs costs and less labour  

Cherries (640 

trees/ha) 

10 000 kg/ha @ 

$4.00/kg 

 

$9800/ha 

High investment costs, labour in 

pruning and harvesting, high risk 

Hazelnuts (330 

trees/ha) 

 

2000 kg @ $2.50/kg 

 

$3000/ha 

Relatively high investment costs, 

mechanised harvesting, low risk 

Source: NSW DII. www.dpi.nsw.gov/agriculture/farm-business/budgets 

 

Although gross margins provide an indication of the relative profitability of alternative 

land uses, there are many other factors to consider in these enterprise options, such as the 

investment and operating costs, the time or labour requirements, the risks associated with 

the weather and fluctuating market prices.  The keeping qualities of the product and issues 

associated with harvest and transport to the market need to be considered.  The skills and 

interest of the land owner are an important consideration.  Positive attributes of hazelnuts 

are that most operations can be mechanised, they require minimal pruning and keep well 

once dry, with market opportunities for the locally-grown product. 

 

 

9.5.2 Market potential 
 

As stated in Chapter 1, total world production of hazelnuts is increasing; production for 

the triennium 2005-2007 was 19% greater than the previous triennium (Fideghilli and De 

Salvador, 2009).  World production in 2007 was estimated to be 812 236 tonnes in-shell 

(FAOSTAT, 2010). 

 

Turkey is the leading hazelnut producer, with approximately 550 000 tonnes of nut in-

shell per annum, approximately two-thirds of world production.  The orchards in Turkey 

are very small and the crop is hand-picked (Bozolglu, 2005).  The labour requirements per 

hectare are around 400-700 hours/year compared with 35-40 hours/year for the large 

mechanised orchards in Oregon, USA (Tous, 2004).  It is argued that there is scope for 

import substitution in Australia, as well as developing new markets in this country, as 

hazelnuts have nutritional and health benefits. 

 

Australian production of hazelnuts is estimated to be about 60 tonnes of nut in-shell per 

annum (Hazelnut Growers of Australia www.hazelnuts/org/au).  This is equivalent to 

http://www.dpi/
http://www.hazelnuts/org/au
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about 25 tonnes of kernels, or about 1% of Australian imports.  This research indicates that 

yields of 2 t/ha are achievable (Table 9.11).  Such yields are comparable to those achieved 

with good management in Italy, Spain, Oregon and France (Tous 2004), indicating that 

with carefully-selected and well-managed orchards, Australia has a good potential for 

hazelnut production.  At a crack-out of 40% (kernel/nut weight), 2 t/ha equates to 0.8 t/ha 

of kernels.  As Australia imports approximately 2000 tonnes of kernels annually, a total 

production area of about 1500 ha could meet current market needs.  However, it would be 

essential that the cultivars planted were those sought by the key buyers, to ensure the nuts 

were suitable to their needs. 

 

An industry grower’s body exists, the Hazelnut Growers of Australia, which could liaise 

between prospective growers and hazelnut buyers to guide this process of development.  

As machinery for harvesting can be imported, it should be feasible to develop a highly-

mechanised industry to harvest and handle the crop mechanically, in order to achieve high 

levels of efficiency and productivity that would enable the industry to be economically 

competitive.  Facilities for hazelnut drying and processing exist on a small scale 

(www.hazelnuts/org/au), with sophisticated facilities for other major nut crops, such as 

almonds.  It would be relatively easy to develop large-scale facilities for cracking nuts and 

sorting kernels.  It would be desirable to establish some key centres of production, such as 

in northern Tasmania or the Central Tablelands of NSW, to enable an integrated industry 

with growers providing crop to centralised processing facilities.  This would be supported 

by advisors on technical, financial and marketing matters to produce product that can be 

produced at competitive prices and marketed in Australia and overseas.  It is likely that, in 

time, a breeding program could be established to produce higher-yielding cultivars, better 

suited to the Australian environment. 

 

 

9.6 Overall conclusion 
 

This study has shown that high yields of hazelnuts can be achieved in Australia, when 

appropriate cultivars are grown on suitable soils in a favourable climate.  The research 

provides details of cultivar performance along with nut and kernel characteristics that 

enable those planning future investments in hazelnut orchards to select suitable cultivars 

for production and to meet targeted market outlets.   

 

http://www.hazelnuts/org/au
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Data generated on floral phenology, coupled with published information on genetic 

incompatibility, enables suitable pollinisers to be selected for main crop cultivars.  

Decisions on appropriate sites for future plantings should be based on the desirable soil 

characteristics and climate parameters that have been identified for hazelnut production.  

The research demonstrated the need for supplementary irrigation to minimise any adverse 

effects of variable rainfall and to ensure adequate soil moisture from the time of 

fertilisation through to kernel fill.  The implementation of these decisions needs to be 

coupled with orchard management practices that facilitate healthy tree growth. 

 

The results of these studies indicate the potential to establish an industry that could be 

internationally competitive and provide high quality hazelnuts into world markets. 
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APPENDIX A - THE IDENTIFICATION OF HAZELNUT 

CULTIVARS 
 

Introduction 
 

When conducting research that involves the assessment of cultivar performance, it is 

essential to ensure that the cultivars being evaluated are true to name, otherwise any 

conclusions drawn from the research would be incorrect and misleading.  Most 

cultivars used in this study were vegetatively propagated from the suckers of mother 

trees in stool beds.  As propagating material was scarce for some cultivars, there was 

a need to propagate these by grafting the cultivar scion wood onto rootstocks of 

Corylus avellana L. cultivars.  This grafted material was planted with the graft below 

soil level and a metal tie above the graft so that, in time, the scion developed its own 

roots.  However, in a few cases the grafts failed, resulting in plants arising from the 

rootstock rather than the scion wood.  As it is easy for misidentification of genetic 

material to occur and for errors to arise in the propagation, handling and planting of 

trees, it was considered essential to identify all the plants at all sites.  When the field 

experiments were initiated, the author was unfamiliar with the morphological and 

phenological characteristics of the cultivars made available for the research.  It was, 

therefore, considered essential to develop a methodology to assess whether the 

cultivars were true to type as there was limited expertise in Australia on hazelnut 

identification. 

 

The issue of correct identification of hazelnut cultivars is of international importance. 

A system to describe hazelnut clonal material, based on a range of observable 

genetically-linked plant characteristics, was suggested by Thompson et al (1978).   

Subsequently, this was refined and expanded into “Descriptors for hazelnuts (Corylus 

avellana, L.)” (Bioversity, FAO and CIHEAM, 2008).  Some traits, such as nut yield, 

10-nut weight and percentage kernel can be objectively measured.  Many 

phenological events, such as calendar dates for staminate and pistillate anthesis, 

leafing out and nut fall are influenced by environmental factors as well as being 

genetic traits.  However, as there is commonly a sequential order for the relative 

timing of these events, sets of standard cultivars are used against which cultivars or 

selection lines can be compared (Thompson et al, 1978). 
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Over a period of several years, a collection of hazelnut cultivars has been established 

by the United States Department of Agriculture (USDA) at Corvallis in Oregon.  

There are 431 accessions of Corylus avellana L. in the collection, from 28 countries.  

The material has been obtained from authoritative sources in the countries where the 

cultivars or selections originated.  The main characteristics of a large number of these 

cultivars have been recorded using a descriptive system very similar to that suggested 

by Thompson et al (1978).  The Crop Descriptors for the assessed material is 

available on the internet and can be accessed through the USDA, Agricultural 

Research Service at www.ars.usda.gov/Main/docshtm?docid=11305 .  Descriptions of 

the individual cultivars can be accessed through the link, Hazelnut Cultivars and 

Selections. 

 

The database prepared from the USDA germplasm collection has been used in this 

study as a standard, in order to make comparisons with the cultivars planted in the 5 

field experiments described in this thesis, to ascertain if the cultivars evaluated were 

considered to be true to name.  However, some cultivar types were of Australian 

origin and needed to have descriptors developed for them. 

 

 

Background and key characteristics of the available cultivars 
 

A literature review was conducted to obtain information on the origin of all the 

cultivars included in this study along with their key traits. 

 

‘Atlas’  

‘Atlas’ was evaluated in a study commenced in 1937 by NSW Agriculture at Glen 

Innes (Trimmer, 1965), where it yielded well.  It was subsequently transferred to the 

NSW DPI collection at Orange in the 1970s, where it was reported as the highest-

yielding cultivar in that collection (Department of Agriculture, NSW, 1982).  Whilst 

the origin of the Australian ‘Atlas’ genotype is unclear, Bean and Kenez (1991) found 

that in 1887, Goeschke had considered ‘Atlas’ to be a synonym for the cultivar 

‘Englische Zellernuss’.  Allen (1986) recorded that ‘Atlas’ was also known as 

‘Downton’ or ‘Pearson's Prolific’, which is in the USDA germplasm collection as an 

English cultivar.  It is described as “vigorous, early, a fair cropper, nuts large and 

http://www.ars.usda.gov/Main/docshtm?docid=11305
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plump, downy with a thick shell having a kernel with good flavour”.  Allen (1986) 

considered that ‘Imperial de Trebizonde’ and ‘Hall’s Giant’ were pollinisers for Atlas.   

Observations made on the ‘Atlas’ genotypes in the Orange collection, by Baldwin and 

Baldwin (1991), appeared to match the general description of ‘Pearson’s Prolific’ 

given above by Allen (1986).  However, in 1981, Dr Maxine Thompson of Oregon 

State University (OSU) inspected the hazelnut collection at Orange.  She was of the 

opinion that all the genotypes were of seedling origin, as none had characteristics with 

which she was familiar; they all had relatively thick shells and many had names that 

were corruptions of European cultivar names (Bean and Kenez, 1991). 

 

‘Barcelona’ 

Synonyms: ‘Fertile de Coutard’, ‘Grosse Blanche d’Angleterre’, ‘Castanyera’.   

‘Barcelona’ is a versatile cultivar that appears to adapt to a wide range of conditions.  

It is an old cultivar which is widely distributed in Western Europe.  It was introduced 

into the US by Felix Gillet in the 1880s (USDA, 2007), as ‘Grosse Blanche 

d’Angleterre’.  It originated in Spain and is synonymous with ‘Fertile de Coutard’, 

which is grown in France.  ‘Barcelona’ was found in the early 1900s to be more 

productive than other cultivars of European origin and became the basis of the Oregon 

industry (Thompson, 1981). 

 

‘Barcelona’ is a vigorous-growing cultivar (McCluskey et al., 1997).  The nut is 

medium to large, nearly round with an average weight of 3.2-3.4 g/nut (Mehlenbacher 

and Miller, 1989).  Nuts are oval to triangular in cross-section outline, with a fairly 

flat base and are borne in clusters of 1 to 3.  The shell is of medium thickness and is 

described as having a rich brown colour with darker striping, lost in pubescence on 

the upper third of the shell.  The kernel is fibrous.  The husk, one-third longer than the 

nut, opens and sheds the nut freely (USDA, 2007).  ‘Barcelona’ kernels have a good 

nutty flavour and blanch quite well.  The cultivar often has shrivelled and poorly-

filled kernels (McCluskey et al., 1997), which generally have an off-flavour, do not 

blanch and need to be removed to produce a good quality product.  ‘Barcelona’ has a 

tendency to produce some twin kernels.  The crack-out or proportion of good kernels 

is relatively low at 40–42% (Thompson, 1981).  ‘Barcelona’ sheds its pollen early and 

female flowers are receptive early (Mehlenbacher and Miller, 1989). 
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‘Barcelona’ is susceptible to bacterial blight (Xanthomonas arboricola pv corylin) 

which is most severe in young trees.  ‘Barcelona’ is moderately resistant to the fungal 

disease, eastern filbert blight (Anisogramma anomala), but eventually succumbs to 

this disease.  ‘Barcelona’ is resistant to big bud mites (Phytoptus avellanae Nal.  and 

Cecidophyopsis vermiformi Nal.), (Mehlenbacher and Miller, 1989). 

 

‘Butler’ 

‘Butler’ was named after Joseph Butler who found it as a seedling in his orchard in 

the Pacific Northwest of the USA (Lagerstedt, 1980).  In 1957, ‘Butler’ was 

introduced into orchards in Oregon as a polliniser to replace’ Daviana’, due to its 

higher productivity.  In Oregon, ‘Butler’ sheds pollen over a similar period of time to 

‘Daviana’; it normally covers the latter half of ‘Barcelona’ bloom and the early part of 

‘Ennis’ bloom.  In Oregon, ‘Butler’ is very vigorous and highly productive 

(Lagerstedt, 1980).  Santos and Silva (2001) reported the cultivar to be high-yielding 

and precocious in Portugal.  ‘Butler’ nuts are generally borne in clusters of 2 or 3.  

The nuts have a ‘blocky’ or rectangular shape; they are slightly bigger than 

‘Barcelona’ but have a thinner shell with a much higher percentage kernel (45–47%).  

The nuts ripen approximately 1 week earlier than ‘Barcelona’ and drop freely from 

the husk (USDA, 2007).  The medium-sized nut is considered to be attractive but the 

kernels do not blanch and have quite a bland flavour.  ‘Butler’ is considered to be 

sensitive to bacterial blight and also to big bud mite (Lagerstedt, 1980). 

 

‘Casina’ 

This cultivar originated in the Asturias region of Spain, where it is a minor cultivar of 

no commercial importance.  It was introduced into the US by Q. Zielinski, in 

approximately 1960, and propagated by nurseries in the late 1980s (Thompson et al., 

1996).  ‘Casina’ was found to grow well in Oregon and produce high yields of nuts 

and kernels with good yield efficiency, (McCluskey et al., 1997).  Fruit clusters 

contain 3-5 nuts; the husks are 50% longer than the nuts.  Most husks have a slit on 

one side, allowing two thirds of the nuts to fall freely to the ground (Mehlenbacher, 

1993).  Nuts are small (1.8 g), round to oval in shape and dull brown in colour with a 

crack-out of 56% (Olsen, 1993).  Kernels do not blanch well but the flavour and 

texture are very good, making ‘Casina’ suitable for the unblanched kernel market. 
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‘Daviana’  

Synonyms: ‘Duchess of Edinburgh’, ‘Des Anglais’. 

This cultivar originated in England where it was raised by Richard Webb and was 

named as a compliment to the eminent scientist, Sir Humphrey Davy.  It has been 

used as a polliniser for ‘Barcelona’ in the Pacific Northwest, USA as has ‘Du Chilly’ 

(syn. ‘Kentish Cob’).  However, ‘Daviana’ was found by Schuster (1924) to be a 

better polliniser for ‘Barcelona’ than ‘Du Chilly’.  ‘Daviana’ and the late-flowering 

‘Hall’s Giant’ became the 2 principal pollinisers used in ‘Barcelona’ orchards 

(Mehlenbacher and Miller, 1989).  ‘Daviana’ is described as being a vigorous, upright 

tree, close-growing, but giving low yields and it is susceptible to big bud mite.  The 

nuts are medium to large (2.9 g), long, light brown in colour with stripes.  The shell is 

thin and the crack-out is 56% kernel by weight.  The pellicle is not removed by 

blanching.  Husks are longer than the nuts, which mainly fall free and mature 1 week 

earlier than ‘Barcelona’.  The kernel is loose, laterally dented or round, and is very 

white inside.  It has a fairly good flavour (USDA, 2007).  ‘Daviana’ is highly 

susceptible to big bud mite (Mehlenbacher and Miller, 1989). 

 

‘Eclipse’ 

‘Eclipse’ is an Australian seedling selection, collected by Milan Paskas of Nar Nar 

Goon in Victoria, who was a collector and propagator of hazelnut genotypes.  It was 

found in old plantings in the Upper Ovens Valley of Victoria.  The tree has a 

spreading growth habit and is of relatively low vigour.  The nut is relatively round and 

of medium size, similar in shape to ‘Wanliss Pride’.  It was considered to have some 

potential for the kernel market. 

 

‘Ennis’ 

‘Ennis’ is a US cultivar which was thought to have occurred as a seedling in 

Washington State.  It probably arose from a cross between ‘Barcelona’ and ‘Daviana’ 

and was selected primarily for its large nut size and high-yielding capacity 

(Lagerstedt, 1980).  It was described by Lagerstedt (1980) as a compact tree.  

McCluskey et al. (1997) reported high yields and a high yield efficiency.  In Northern 

Portugal, Santos and Silva (2001) found the cultivar to be high-yielding and 

precocious, coming into bearing early. 
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When size-graded, more than 50% of the nuts of ‘Ennis’ fall in the 2 largest grades, 

giant (>23.8 mm diameter) and jumbo (>22.2 mm in diameter).  Average nut weight 

is about 4.0 g.  Nuts are almost round, but have a distinct point.  The shell of the nut is 

medium to light brown with attractive stripes and a flat basal scar (Lagerstedt, 1980).  

The crack-out ranges from 45-49%.  In the Oregon environment, the kernels are 

generally plump and have a less wrinkled appearance than kernels of most other 

large-sized nuts.  They also have a cleaner, smoother appearance than those of 

‘Barcelona’ (USDA, 2007).  Most of the nuts develop from small flower clusters 

occurring on catkin peduncles.  They also develop from larger flower clusters, 

occurring on 1 year-old shoots.   

 

‘Ennis’ is not an effective polliniser as its catkins are small, open late and release a 

high proportion of non-viable pollen (Lagerstedt, 1980). 

 

‘Hall’s Giant’ 

Synonym: ‘Merveille de Bollwiller’, ‘Geante de Halle’, ‘Halle'sche Reisennuss’.   

‘Hall's Giant’ originated in 1788 as a seedling selection by C.G. Bultner at Halle, 

Germany.  It was subsequently introduced into France where it is known as ‘Merveille 

de Bollwiller’ and later introduced into the US by Felix Gillet about 1890.  The large 

nut is round with a conical top, brown in colour with a thick shell and a crack-out of 

about 40% (McCluskey et al., 1997).  The kernels have a thin pellicle and were 

reported to blanch well by Solar and Stampar (1997).  It matures after ‘Barcelona’.  

The tree is vigorous and erect but not productive in Oregon (McCluskey et al., 1997).  

However, good yields were reported in the Netherlands by Wertheim (1994) and in 

Croatia by Solar and Stamper (1997).  It is highly resistant to big bud mite (USDA, 

2007) and (Solar and Stamper, 1997) and it is tolerant of bacterial blight 

(Bergoughoux et al., 1978). 
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‘Hammond#17’  

This high-yielding genotype was found in a garden collection near Orange, NSW, 

where it had produced very high nut yields.  Its origin is unknown, but it may be 

related to ‘Butler’, as its nuts look similar. 

 

‘Kentish Cob’ 

Synonyms: ‘Du Chilly’ and ‘Longue d’Espagne’ 

This cultivar originated in Kent, England as a seedling selection.  In Kent, nuts are 

hand-harvested in their green husks for the fresh market.  The tree of ‘Kentish Cob’ is 

of relatively low vigour, semi-erect and moderately productive.  Pollen shed is late, 

making it a potential late polliniser.  However, it is noteworthy that in Oregon, 

Schuster (1924) considered ‘Daviana’ to be a better polliniser for ‘Barcelona’ than 

‘Kentish Cob’ (‘Du Chilly’).  The nuts of ‘Kentish Cob’ are large, long and flattened.  

The shell is of medium thickness and slightly rough.  The husk is about 50% longer 

than the nut.  The kernels do not blanch.  ‘Kentish Cob’ was introduced into the US in 

the 1870s; it is moderately resistant to big bud mite (USDA, 2007). 

 

‘Jemtegaard 5’ (‘J#5’) 

‘Jemtegaard 5’ is a US selection, by Olgar Jemtegaard at Boring in Oregon.  It is late 

in pollen shed and has occasionally been used as a polliniser for ‘Barcelona’.  In 

France, it is used as a polliniser for ‘Segorbe’, ‘Ennis’ and ‘Merveille de Bollwiller’ 

(Germain and Sarraquigne, 2004).  The tree is of medium to high vigour but is of low 

productivity (Lagerstedt, 1981).  It bears clusters of 2-3 nuts which are medium to 

large (19-21 mm), sub-spherical with a kernel yield of 47-51% (Germain and 

Sarraquigne, 2004). 

 

‘Lewis’ (‘OSU 243.002’) 

‘Lewis’ is a cultivar developed from a cross made by Dr Maxine Thompson, of OSU, 

in 1981, between OSU 17.028 (‘Barcelona’ x ‘Tombul Ghiaghli’) and ‘Willamette’.  

It was assessed as OSU 243.002 and released as ‘Lewis’ in 1997.   

 

‘Lewis’ is earlier into bearing than ‘Barcelona’ and is a smaller tree; nut-fall is earlier 

and it has fewer kernel defects.  Nut yields were 35% higher than those of ‘Barcelona’ 

in a trial planted in 1998 in Oregon (McCluskey et al. 2005).  Nut clusters contain 3-6 
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nuts which fall freely and are ready to harvest 5-7 days earlier than ‘Barcelona’ 

(McCluskey et al., 2001), although in a later trial, McCluskey et al. (2005) reported an 

extended period of nut fall for ‘Lewis’.  ‘Lewis’ nuts are small (2.6-2.9 g/nut) 

compared with ‘Barcelona’ (3.4-3.6 g/nut), and have a higher crack-out 44-47%.  

Kernels have very little fibre; they blanch slightly better than ‘Barcelona’ and have 

good flavour and texture.  ‘Lewis’ has moderate tolerance to big bud mites (USDA, 

2007). 

 

‘Montebello’ 

Synonym: ‘Siciliana’ 

A cultivar of Italian origin, ‘Montebello’ is early-flowering, moderately vigorous and 

productive.  It has medium-sized greyish-brown nuts with distinct stripes (USDA, 

2007).  It is partially self–incompatible, being able to bear some nuts without cross-

pollination, and is resistant to big bud mite (Mehlenbacher, 1994).  In Oregon, it is 

prone to extreme biennial-bearing (Azarenko et al., 2005). 

 

‘Negret’ 

Synonyms: ‘La Maso’, ‘Negreta’, ‘La Selva’, ‘Pobla de Mafume’ 

A cultivar of Spanish origin, ‘Negret’ has a small nut and kernel that blanches well.  

The tree is relatively small and compact.  It is the main cultivar grown in the 

Tarragona area of Spain, where it grows well and produces good nut yields.  The 

kernels are used in the confectionery trade.  A higher-yielding clone (‘IRTA-N-9’) 

has been selected that is free of apple mosaic virus (Tous, 2005).   

 

In Oregon, ‘Negret’ trees were of low vigour and produced nut yields lower than 

‘Willamette’, ‘Barcelona’ and ‘Casina’.  It produced a relatively high number of blank 

nuts, but gave a high crack-out of 55%.  The kernels blanched perfectly (McCluskey 

et al., 1997).  By contrast, in Croatia, ‘Negret’ was found to grow vigorously and was 

productive, giving nut yields similar to ‘Barcelona’ (Miljkovic and Prgomet, 1994).  It 

was also reported to grow well and produce high yields in Chile (Grau, 2001).  The 

number of blanks produced in Croatia was relatively high, similar to that reported in 

Oregon by McCluskey et al. (1997) but was lower in Chile (Grau, 2001). 

 



 

310 

 

‘Riccia di Talanico’ 

This cultivar was introduced into Australia in the 1990s by the Ferrero confectionery 

company.  It originates from Italy, where it is grown in the Campania region.  It has 

round, thin-shelled nuts with good sensory characteristics (Tombesi, 2005).  ‘Riccia di 

Talanico’ did not become available for evaluation until the latter part of the field 

studies. 

 

‘Royal’ 

Originating in Stayton, Oregon, E. Roy crossed ‘Barcelona’ and ‘Daviana’ to produce 

‘Royal’.  It was introduced into orchards in Oregon in 1934 by H.L. Pearcy of Salem.  

The nuts are large with thin shells and have colour and markings similar to ‘Daviana’.  

Nuts ripen about the same time as ‘Barcelona’.  The tree is early into production and 

sheds pollen early to mid in the season.  ‘Royal’ is susceptible to big bud mite 

(USDA, 2007). 

 

‘Square Shield’ 

This Australian seedling selection was collected by Milan Paskas from old plantings 

in the Upper Ovens Valley of Victoria.  ‘Square Shield’ is a small to medium-sized 

tree with a fairly erect growth habit and a medium-sized nut (Paskas, pers. comm.). 

 

‘Segorbe’ 

This cultivar is of French origin.  It is vigorous and hardy with a semi-erect growth 

habit.  It is early into bearing and productive (Bergoughoux et al., 1978).  Fruit 

clusters contain 3-4 nuts.  The husk is about 30% longer than the nut.  Nuts are sub-

spherical and medium in size (18-20mm); they are relatively thick-shelled, light 

brown in colour with some banding.  The kernel yield is 40-45%.  Kernels have a thin 

pellicle but do not blanch readily.  ‘Segorbe’ is grown in France as a polliniser for 

‘Fertile de Coutard’ and for its kernels (Germain and Sarraquigne, 2004).  It is 

relatively early into pollen shed and relatively late into female bloom.  It is 

moderately susceptible to big bud mite. 

 

‘TBC’ (‘Tokolyi Brownfield Cosford’) 

While the origin of this genotype is unclear, it is probably an Australian seedling 

which was initially selected by Imre Tokolyi in Victoria (Tokolyi, N.D.).  It was 
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planted extensively in the Brownfield orchard at Acheron, Victoria.  It is purported 

that subsequent selection was made in that orchard.  The nuts are light brown, 

globular, with a small point.  They have a corrugated shell and are slightly smaller 

than ‘Barcelona’.  The kernels blanch quite well. 

 

Scion wood from a ‘TBC’ tree at Orange was taken to Oregon by Professor Shawn 

Mehlenbacher, who subsequently determined its S-alleles.  Observations by growers 

and studies by Cox (2010) suggest that ‘TBC’ is pollinated by the Australian seedling 

selections known as ‘Turkish Cosford’ and ‘Woodnut’.  Professor Mehlenbacher 

(Pers. Comm., October 2006) reported that ‘TBC’ had moderate tolerance to big bud 

mite. 

 

Although the name ‘Cosford’ was used by Tokolyi to name ‘TBC’, it is very different 

from the old English cultivar of that name.  In the UK, ‘Cosford’ is also known as 

‘Coxford’ and ‘Miss Young’s’, which was probably named after the ‘hundred’ of 

Cosford in Suffolk.  True ‘Cosford’ nuts are elongated with a thin shell and are shed 

readily from the husks (USDA, 2007).  Why Imre Tokolyi used the word ‘Cosford’ to 

describe this selection is not known. 

 

‘Tonda di Giffoni’ 

This is an Italian cultivar that originated in the Campania region of Italy, north of 

Naples (Mehlenbacher, 1993).  In Campania, it is the main cultivar in new plantations 

and shows a good adaptation to flat lands as well as to moderately hilly sites.  Soils in 

this region were described by Tous et al. (1994) as being of volcanic origin, fertile 

and of neutral pH.  The valuable characteristics if its fruit assure ‘Tonda di Giffoni’ 

the first place among the cultivars of Campania for utilization by the confectionery 

industry.  The nuts are round and are described as being easy to shell.  The kernel is 

almost spherical, often showing a pronounced groove (Bergoughoux et al., 1978).  

The kernel yield is approximately 46-48% (USDA, 2007).  It was found to blanch 

well by Solar and Stampar (1997) and McCluskey et al. (1997). 

 

‘Tonda di Giffoni’ is a strong-growing tree, described in the Italian literature as being 

“rustic”.  It has relatively low chill requirements for catkins and vegetative buds and 

may be well-suited to areas with mild winters and lower chilling hours.  It has 



 

312 

 

moderately good tolerance to big bud mite (Solar and Stampar, 1997).  Very good nut 

yields were obtained from this cultivar in Croatia (Solar and Stampar, 1997) and in 

Oregon, where nut yields were comparable with ‘Barcelona’, but the yield efficiency 

of the ‘Tonda di Giffoni’ trees was much higher than ‘Barcelona’ (McCluskey et al., 

2001). 

 

‘Tonda Romana’ 

Synonyms: ‘Tonda Gentile Romana’, ‘Tonda Gentile di Viterbo’ 

This cultivar originates from the Latium region of Italy, where it represents 85% of 

production (Tombesi, 2005).  It is of weak-medium vigour, has an erect habit of 

growth and is of high productivity on the volcanic soils of the Monti Cimini area.  

The nuts are round with a thin shell and high crack-out, 44-48% (Bergoughoux et al., 

1978).  The kernels are small, roundish, do not readily blanch but are of excellent 

flavour (Tombesi, 2005). 

 

In Oregon, ‘Tonda Romana’ trees were of medium vigour with nut yields about 50% 

less than ‘Barcelona’ but kernel quality was good, although they did not blanch 

(McCluskey et al., 1997).  ‘Tonda Romana’ produced good yields in Chile with a high 

yield efficiency (Grau and Bastias, 2005).   

 

‘Tonda Gentile delle Langhe’ (‘TGDL)’ 

Synonyms: ‘Ronde du Piemont’, ‘Tonda Gentile del Piemonte’ 

This is the predominant cultivar grown in the Piedmont region of north-western Italy 

(Tombesi, 2005).  The term 'Tonda' means 'round', which is related to the shape of its 

small nut.  Nuts fall freely from the husks and crack-out is high (45-52%).  The 

kernels are relatively small and round; they blanch well and are highly prized in the 

European confectionery trade.  ‘TGDL’ is very early in pollen shed and leafing out 

(Bergoughhoux et al., 1978). 

 

Although this cultivar grew well in Chile in cultivar evaluation trials, its yield was 

very low (Grau and Bastias, 2005).  In Oregon, it lacked vigour and produced low nut 

yields (McCluskey et al., 1997). 
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‘Tonollo’ 

This was reported as the highest-yielding genotype in the field assessment conducted 

at Glen Innes in northern NSW (Trimmer, 1965).  Its origin is unknown but it is likely 

to be a seedling type and appears to be closely related to ‘Barcelona’.  When Dr 

Maxine Thompson of OSU inspected the collection at Orange in 1981, she was of the 

opinion that it was of seedling origin. 

 

There is an Italian variety known as ‘Tonnolella’ in the USDA germplasm collection 

but the limited data on that variety indicates that ‘Tonollo’ is very different and it is 

not simply a misspelling of ‘Tonnolella’.  Professor Shawn Mehlenbacher of OSU 

also took scion wood of ‘Tonollo’ back to Oregon from Australia and subsequently 

determined its S alleles, which are the same as those of ‘Barcelona’.   

 

‘Turkish Cosford’ 

As far as can be ascertained, this Australian seedling was selected by Imre Tokolyi as 

a polliniser for his ‘Tokolyi Cosford’ (Tokolyi, N.D.).  The nuts are small but do not 

resemble those of ‘Cosford’.  ‘Turkish Cosford’ produces numerous catkins and 

appears to be compatible with ‘TBC’ (Cox, 2010), although the S-alleles are 

unknown.   

 

‘Victoria’ 

‘Victoria’ is probably an Australian seedling selection.  It was found as a single tree at 

the Knoxfield Research Centre in Victoria and was named by officers of the 

Department of Agriculture (Bean and Kenez, 1991).  It is a vigorous genotype that 

produces medium to large nuts.  The kernels do not blanch. 

 

‘Wanliss Pride’ 

Synonyms: ‘Wandils Pride’, ‘Simpson’s Pride’, ‘White American’ 

Although the origin of ‘Wanliss Pride’ is unclear, it appears to be very similar to the 

Turkish cultivar, ‘Kargalak’, (syn. ‘Imperial de Trebizonde’).  Allen (1986) 

considered ‘Wanliss Pride’ to be a selection of ‘Imperial de Trebizonde’.  It appears 

that the name ‘Wanliss Pride’ arose from the trees grown on the property of the 

Wanliss family at Wandiligong in north-east Victoria (Bean and Kenez, 1991). 
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‘Wanliss Pride’ grows as a straggly tree that is difficult to train into a single trunk, 

open-vase shape.  It seems to grow better as a tree with 3 or 4 stems.  It was the main 

cultivar grown in the Ovens Valley in the 1920s (Paskas, 1988).  It produces an 

attractive large nut and a pleasant, sweet-flavoured kernel.  Allen (1986) recorded it 

as a high-yielding cultivar that is pollinated by ‘White Avelline’ and ‘Cosford’.  

‘Imperial de Trebizonde’, also has an irregular or straggly growth habit.  The nuts are 

large and oval at the base, tapering sharply to a point (USDA, 2007). 

 

Tokolyi (N.D.) had a selection that he named ‘White American’.  It was “early into 

leaf, with a light green husk and a pure white shell” (presumably this was the 

immature nut).  The nuts fell free from the husks.  No data was provided by Tokolyi 

of the nut size or shape.  However, Bean and Kenez (1991) described the nuts as 

being very similar to ‘Wanliss Pride’, and ‘Imperial de Trebizonde’. 

 

‘White Avelline’ 

Synonyms: ‘White Filbert’, ‘Weisse Lamberts Nuss’, ‘Avelline Blanche’ 

‘White Avelline’ is a very old hazelnut cultivar, having been grown in Europe since 

the 1600s.  It is an excellent polliniser and the catkins are abundant and hardy.  

Because the nuts are small and the tree is only moderately vigorous, the commercial 

value of the cultivar is doubtful.  However, the cultivar is good for home gardens, due 

to the thin shell and high quality of the nut.  The husk is pubescent and granular, twice 

as long as the nut and often split down 1 side.  The nuts are found in clusters of 1 to 7 

but more usually 3 to 4, are bluntly pointed, slightly grooved, dull brown, with an 

occasional faint stripe of darker brown.  The base of the nut is bluntly pointed to 

round.  The nuts are medium in size with a relatively thick shell.  The kernel is long 

and regular, with a curved suture running from the base to the apex.  ‘White Avelline’ 

is rated as having excellent flavour (USDA, 2007). 

 

There is also a red-leaved type, known as ‘Red Avelline’, which, other than its red 

tints, has very similar characteristics to ‘White Avelline’.  These cultivars are 

distinctly different from the old English cultivars of ‘Red Filbert’ (Syn. ‘Red 

Lambert’) and ‘Avelline d’Angleterre’. 
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‘Whiteheart’ 

‘Whiteheart’ is considered to have originated in New Zealand and to be related to the 

cultivar ‘Waterloo’, which was possibly introduced into that country from Europe.  

‘Waterloo’ has round, thin-shelled nuts, with a high percentage crack-out and kernels 

that blanch well (USDA, 2007).   

 

‘Whiteheart’ is widely planted in New Zealand for the production of high-quality 

kernels (McNeil, 1999).  The average nut weight is 2.5-2.6 g/nut, the kernel yield is 

47-48% and it blanches well.  It is a small compact tree with relatively high nut yield 

efficiency under New Zealand conditions.  It is very late in female bloom.  ‘Lansing’ 

and the New Zealand cultivar ‘Alexandra’ are the most suitable pollinisers in New 

Zealand (ibid).  ‘Whiteheart’ has round thin-shelled nuts and tends to bear its nut 

clusters on the ends of the branches.  It is very sensitive to big bud mite.  It was 

introduced into Australia from New Zealand in the late 1990s (McNeil, 1999).   

 

‘Willamette’ (‘OSU 43-58’) 

The cultivar was derived from a cross that was made in 1973, in the OSU breeding 

program, between ‘Montebello’ and ‘Compton’.  ‘Montebello’ is a cultivar from 

Sicily and ‘Compton’ was a selection of O.C. Compton in Oregon.  ‘Compton’ is 

considered to be a ‘Barcelona’ x ‘Daviana’ hybrid.  ‘Willamette’ was selected in 1979 

and tested as OSU 43-58.  It was released as a named cultivar in 1990 (Mehlenbacher 

et al., 1991).   

 

‘Willamette’ trees are vigorous, upright to spreading and similar in size and growth to 

‘Barcelona’.  Nut yields are slightly higher than ‘Barcelona’ (Mehlenbacher et al., 

1991).  The nuts of ‘Willamette’ are medium in size and dark brown, smaller than 

‘Barcelona’.  In cultivar trials, ‘Willamette’ has produced higher nut and kernel yields 

than ‘Barcelona’ (McCluskey et al., 1997).  The nuts are attractive but not acceptable 

for in-shell sales because the fibre on the pellicle imparts a bitter taste to the kernel.  

The nuts have thin shells with a crack-out of about 50%.  ‘Willamette’ matures 1 

week later than ‘Barcelona’.  The kernels of ‘Willamette’ blanch easily and are of 

excellent quality for use in pastries and confectionery.  The husk is 50% longer than 

the nut.  Nuts are not entirely free-falling.  The trees are vigorous, productive, but 
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have intermediate susceptible to big bud mite (USDA, 2007).  ‘Willamette’ was 

introduced into Australia in 1990. 

 

‘Willamette’ is now of lesser significance in Oregon since the release of ‘Lewis’ and 

‘Clark’ (Mehlenbacher, 2005) and cultivars such as ‘Santiam’ and ‘Yamhill’ that have 

complete resistance to eastern filbert blight (McCluskey et al., 2009). 

 

‘Woodnut’ 

It seems highly likely that this is an Australian seedling that originated in the 

Wandiligong area of Victoria (Bean and Kenez, 1991).  ‘Woodnut’ is a relatively 

small tree that produces many catkins which shed pollen late in the season.  It is 

considered to be a good polliniser for ‘TBC’, but its S-alleles are not known.  It 

produces medium to large nuts that are light brown in colour.  It has a characteristic 

husk that spreads out rather like a skirt.  The kernels have little fibre but do not 

blanch. 
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Methods used for cultivar identification 
 

As described in Chapter 3, Methods, Section 3.5 ‘Experimental design and cultivars’, 

a total of 26 hazelnut cultivars were evaluated for floral phenology, growth, nut yields 

and some aspects of kernel quality, with data on fruit characteristics also being 

obtained.  Some additional cultivars were included in surrounding buffer rows as 

pollinisers; some phenological data was obtained on these as well as fruit, nut and 

kernel characteristics. 

 

The cultivars included in the experiments were mainly named cultivars, of European 

and North American origin, but also included some Australian selections such as 

‘Atlas’, ‘Tonollo’ and ‘Tokolyi Brownfield Cosford’ (‘TBC’).  The planting material 

used for the experiments was obtained from a range of sources, including nursery 

propagators and individual growers, as explained in Chapter 3, Methods.  

 

The USDA database uses a total of 40 descriptors, based on the evaluation system 

recommended by Thompson et al. (1987).  It includes descriptors of growth and 

morphological, phenological and production characteristics.  In this research, 16 of 

these key descriptors have been used, Table A1.1, to describe all the cultivars 

evaluated in the field experiments, including some additional cultivars that were 

planted in the rows surrounding the experimental plots.  These descriptors have been 

placed in 2 broad groups.  The first is based on morphological characteristics that are 

observed in the winter–spring period, along with phenological developments of 

anthesis and bud break.  The second group are based on morphological traits of fruits, 

nuts and kernels that are observed in the summer.  Observations of these key 

characteristics were recorded for the cultivars at all sites.  The recorded indicators for 

the imported cultivars have been compared with the observations for the same 

cultivars in the USDA database to ascertain if they were true to cultivar name.  

Comparisons are shown in Tables A1.2 and A1.3.  As descriptors were not available 

for all the imported cultivars, the “Narrative” on the cultivars has been used to try and 

develop the descriptors as well as to use the key characteristics given to ascertain 

trueness to cultivar name. 
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In addition, samples of fruits and nuts of all cultivars were sent to Professor Shawn 

Mehlenbacher, a hazelnut breeder at the Oregon State University, to obtain his 

opinion of whether they were true to name. 

 

Descriptors for the Australian selections were also developed.  These are shown in 

Tables A1.4 and A1.5 and are available so that Australian growers can compare data 

obtained from their own trees to assess the cultivars in their orchards.  This 

information has been made available to growers through a report prepared for the 

Hazelnut Growers of Australia (HGA) using funds from Horticulture Australia Ltd. 

(Project NT04010, Baldwin, 2007). 

 

Comments on the value of the descriptors and any difficulties encountered in their use 

are included in Table A1.1. 
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Table A.1.1 Characteristics used to describe cultivars and Australian seedling 

selections, based on those used for the USDA hazelnut germplasm collection. 
Trait Ratings/descriptor Comments 

 

Winter-spring observations of vegetative buds, flowering and leafing out 

 

Tree habit 1 (very upright) – 5 (very 

spreading)  

 

Not very useful as the range for standard 

cultivars included in these studies were 

restricted to the 2-3 category 

Tree vigour 1 (very weak) – 5 (very 

vigorous) 

Observed bare trees in winter 

‘Negret’ (3), ‘Barcelona’ (4) 

Catkins – average 

number 

Average number of catkins per 

cluster 

Generally a range of 1-5, average taken 

over 10 bunches 

Catkins – relative 

number 

The relative number of catkins 1 

(few) – 6 (many) 

Assessed on dormant trees prior to pollen 

shed. 

Dormant buds – size 

and shape 

L (large), M (medium),  

 S (small).  

P (pointed), R (round). 

Difficult to be definitive about size as 

there was a gradation of sizes 

Dormant buds – colour BR (brown), GR (green),  

R (red), T (tan) 

Tan is a golden or yellow brown 

Staminate anthesis 

(Relative date of 

pollen shed) 

 

1 (very early) – 9 (very late) 

A relative measure, compared over a 

range of cultivars.  It appeared to be a 

useful descriptor. 

Pistillate anthesis 

(Relative date of 

female anthesis) 

 

1 (very early) – 9 (very late) 

A relative measure of the date of female 

flowering of cultivars.  Also a useful 

descriptor. 

Leafing out Julian day of leafing out Averaged over all seasons and sites 

 

Summer - autumn observations of fruits, nuts and kernels 

 

Nuts per cluster Average number of nuts per 

cluster 

Generally a range such as 1-6, average 

taken over 10 clusters 

Relative husk length 1 (short) – 9 (long) Examples: Negret (3) and Du Chilly (8) 

Average nut weight (g) Average weight of nuts in grams Average of 100 nuts, varies with seasons 

Nut shape index Length/width Long nuts have a high ratio  

Shell colour DB (dark brown), LB (light 

brown), T (tan). 

Colour of freshly-harvested nuts 

Shell stripe 1 (inconspicuous) – 3 

(pronounced) 

Degree of striping on the nut shell 

Percent kernel  Using 10 good kernels (Kernel 

wt/nut wt) 

Range: 0.4 ‘Halls Giant’  

– 0.52 ‘Daviana’ 

Kernel fibre 1 (none) – 4 (high fibre) Observed after cracking 

Blanching Removal of pellicle 1 (complete)  

– 7 (no pellicle removal) 

Pellicle remaining after rubbing the 

kernels, following heating at 150
°
C for 

20 minutes 

 

Observations and measurements on tree habit, tree vigour, the relative number of 

catkins, the relative dates of pollen shed, female anthesis and leafing out, average nut 

weight (g), percent kernel, kernel fibre and blanching were made for all cultivars at all 

sites throughout the course of the study.  Any plants that did not appear to have the 

general characteristics of the cultivar that was planted were noted as they were 

potentially not true to the cultivar being evaluated and could contribute to erroneous 

data. 
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In 2005, data was collected on the average number of catkins, the size, shape and 

colour of dormant buds, the number of nuts per cluster, the relative husk length, the 

nut shape index and the colour and striping on the nut shell, from the cultivars at the 

Orange, Myrtleford and Kettering sites. 

 

All the data collected was collated and summarised to provide scores for the cultivars 

in the study, as described in Crop descriptors for hazelnuts under Hazelnut Genetic 

Resources at www.ars.usda.gov/Main/docshtm?docid=11305 .  The data is presented 

in the next section. 

 

 

Results and discussion 
 

The observations on some floral characteristics and buds are shown in Table A1.2 for 

the imported cultivars included in the field experiments, compared with those in the 

USDA database.  Some cultivars, such as ‘Royal’, are included in the Corylus 

germplasm repository at Corvallis but there is only general narrative available with no 

descriptors.  In such cases, the general narrative has been used to produce the clonal 

descriptors in the tables.  There were a few cultivars, such as ‘Whiteheart’, that are 

not in the repository at Corvallis; in those cases, ratings for characteristics have been 

constructed from other reference sources with notations below the table. 

 

The day of the year (DOY) for leafing out is based on the average day at the study 

sites; a value of 180 days was added to the USDA (CGR-C) data for comparative 

purposes.  

http://www.ars.usda.gov/Main/docshtm?docid=11305
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Table A.1.2 Observations of catkins, relative dates of pollen shed and bloom, 

dormant bud morphology and the date of leafing out for a range of imported 

cultivars grown at the study sites compared with observations for the same 

cultivars in the Corylus germplasm repository in Corvallis (CGR). 

Cultivar 

Data 

source 

Catkins Relative date Dormant buds  

Leafing 

out 

(DOY) 
Average 

number. 

Relative 

number 

Pollen 

shed  

(1-9) 

Female 

anthesis 

Size 

and 

shape Colour 

‘Barcelona’ 

Obs. 3 3 3 4 MP T 246 

CGR 3 3 3 4 - - 250 

‘Butler’ 

Obs. 3 2 4 7 MP BR 266 

CGR 3 3-4 5 5 MR BR 260 

‘Casina’ 

Obs. 3 3 6 7 MR GR 264 

CGR 3 5 6 6 MR T 260 

‘Daviana’ 

Obs. 2 3 6 7 M,P GR 267 

CGR 3 2-3 6 7 - - 275 

‘Ennis’ 

Obs. 3 3 4 7 SP GR 265 

CGR 4 5 5 7 MP GR 268 

‘Halls Giant’ 

Obs. 2 4 7 8 MP R 270 

CGR 3 5 7 7 - - 275 

Jemtegaard 5 

Aus 3 4 8 8 MR GR 266 

Nar3   6-7 6-7    

‘Kentish Cob’ 

(‘Du Chilly’) 

Obs. 2 2 6-7 7   270 

CGR 3 2 7 7 - - 275 

‘Lewis’ 

Obs. 3 3 5 5 SP BR 242 

Nar4    4    

‘Montebello’ 

(‘Nocchione’) 

Obs.  3 3 3 SR GR 243 

Nar1

&2 3 4-5 3 3 SR GR 250 

‘Negret’ 

Obs. 2 2 5 4 MR BR 256 

CGR 3 3-5 5 4 MR BR 255 

‘Royal’ 

Obs. 2 3 3 6 SP BR 238 

Nar1   3 4-5 MR GR  

 

‘Segorbe’ 

Obs. 3 3 3 6 SP GR 260 

CGR 4 5 4 6 SP GR 259 

‘Tonda Gentile 

delle Langhe’ 

Obs. 2 2 1 3 SR GR 233 

CGR 2 2  2 3 SR GR 240 

‘Tonda di 

Giffoni’ 

Obs. 2 3 3 3 MR GR 232 

CGR 2 3-4 2 3 MR GR 250 

‘Tonda 

Romana’  

Obs. 2 4 2 3 SR BR 242 

CGR 2 3-5 6 5 - BR 252 

‘Wanliss Pride’ 

(‘Imperial de 

Trebizonde’) 

Obs. 2 2 5 4 MP BR 242 

CGR - 3 4 4 - - - 

‘White 

Avelline’ 

Obs. 2 2 6 7 LR R 240 

Nar1        

‘Whiteheart’ 

Obs 2 2 7 9 LR BR 260 

Nar2   6 9 R GR  

‘Willamette’ 

Obs. 3 2 5 6 LR BR 260 

Nar5 2 3 4 5 LR BR 247 

Source: CGR USDA, Agricultural Research Service, Hazelnut Clonal Germplasm Repository, Corvallis, 

GRIN database www.ars.usda.gov/Main/docshtm?docid=11305 . 

Nar 1 Agricultural Research Service, Hazelnut Clonal Germplasm Repository – Corvallis  

Nar 2 New Zealand Nutgrowers Association 2010 hazelnut.org.nz/variety/whiteheart.html  

Nar3 Germain and Sarraquigne, 2004a  

Nar4 Mehlenbacher et al, 2000 

Nar5 Mehlenbacher et al, 1991 

http://www.ars.usda.gov/Main/docshtm?docid=11305
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Table A.1.3 Observations of fruits, nuts and kernels for a range of imported 

cultivars compared with observations for the same cultivars in the USDA 

collection at Corvallis. 

. 

 

Data 

source 

Nuts 

per 

cluster 

Rel. 

husk 

length 

Av 

nut 

wt 

(g) 

Nut 

shape 

index 

Shell 

colour 

Shell 

stripe 

 

 

Kernel 

% 

Kernel 

fibre 

(1-4) 

Blanch 

(1-7) 

‘Barcelona’ 

Aus 3 5 3.1 0.95 DB 2  3 3.6 

CGR 2-3 4-5 3.6 0.91 DB pron  3 4 

‘Butler’ 

Aus 2 4 3.3 0.95 T 3  2 6.3 

CGR 3 3 NA 0.84 NA NA  2 6 

‘Casina’ 

Aus 4 6 1.8 0.94 LB 1  1.5 5.7 

CGR 2-4 6 2.0 0.97 LB 2  NA 5 

‘Daviana’ 

Aus 2 5 2.8 1.1 LB 2  2 5.4 

CGR 1 6 3.2 0.7 LB 2  NA 7 

‘Ennis’ 

Aus 2 5 4 1.1 LB pron  1.5 6.6 

CGR 2 4 - 5 4.3 0.87 LB pron  NA 7 

‘Halls Giant’ 

(‘Merveille de 

Bollwiller’) 

Aus 3 6 3.4 1.0 LB 1  1.3 3.4 

CGR 2 4 3.6 0.85 LB 2 
 

NA 4 

‘Jemtegaard 5’ 

Aus          

Nar3 2-3 4 3.1    49 3  

‘Kentish Cob’ 

(‘Du Chilly’) 

Aus          

CGR 2 8 2.3    48 2 7 

‘Lewis’ 

Aus          

Nar4   3.0    45  3 

‘Montebello’ 

(‘Nocchione’) 

Aus NA NA 2.9 0.92 DB 1  2.5 2.7 

Nar1&

2 3-4 4-5 3 1 GB 1 

 

35-38 3 1-2 

‘Negret’ 

Aus 3 4 1.7 0.87 LB 1  2 1.7 

CGR 3 3 2.4 0.74 LB 2  NA 1 

‘Royal’ 

Obs. 2-4 5 3.9 1.2 T 3  4 4.5 

Nar1    1.1   M-H   

‘Segorbe’ 

Aus 4 5 2.3 0.95 LB 2  1.7 4.5 

CGR 2-4 4 2.8 0.9 LB 2  NA 4 

‘Tonda Gentile 

delle Langhe’ 

Aus 3 4 2.1 0.99 T 2  2 3.2 

CGR 3 3 2.6 0.94 T 2  3 2 

‘Tonda di Giffoni’ 

Aus 4 5 2.6 0.9 LB 2  2 3.1 

CGR 4 4 3.1 1 LB pron  2 1 

‘Tonda Romana’  

Aus 4 4 3 0.99 LB 2  2 3 

CGR 2-4 6 3 0.95 LBr pron 44-48 2 6 

‘Wanliss Pride’ Obs. 3-4 6 3.1 0.81 T 1  2 2 

‘Imperial de 

Trebizonde’ CGR 5 7 2.9    

 

50 1 1 

‘White Avelline’ 

Obs. 5-6 7 2.3  Dull Br   1  

Nar1 3-5 7   DullBr     

‘Whiteheart’ 

Obs 3-5 6 1.9 0.99 DB 1  2 2.8 

Nar2 3-8 7  RD B  47-50 1 1 

‘Willamette’ 

Obs. 3.5 6 2.5 1.0   LB 1  1 1  

Nar 5   2.8  B  50 1 1 

Source: CGR USDA, Agricultural Research Service, Hazelnut Clonal Germplasm Repository, Corvallis, 

GRIN database www.ars.usda.gov/Main/docshtm?docid=11305 . 

Nar 1 Agricultural Research Service, Hazelnut Clonal Germplasm Repository – Corvallis  

Nar 2 New Zealand Nutgrowers Association 2010 hazelnut.org.nz/variety/whiteheart.html  

Nar3 Germain and Sarraquigne, 2004a  

Nar4 Mehlenbacher et al, 2000 

Nar5 Mehlenbacher et al, 1991 

http://www.ars.usda.gov/Main/docshtm?docid=11305
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It can be seen that all the imported cultivars had descriptors that generally matched 

either those from the Hazelnut Germplasm Repository in Corvallis or those obtained from 

other sources.  However, the cultivar provided by Milan Paskas known as ‘Tonda 

Romana’, which had been imported by Baxter of the Victorian Department of 

Agriculture, did not match the descriptors of the ‘Tonda Romana’ in the Corvallis 

collection.  The material provided by Paskas was earlier into pollen shed and female 

anthesis.  It was also earlier into leaf.  It had short husks with no pronounced stripe on 

the nuts.  The shell was relatively thick with a relatively low kernel percentage and 

the kernels blanched more readily than the ‘Tonda Romana’ in the USDA collection.  

These variations gave a strong indication that the plants provided as ‘Tonda Romana’ 

were not that cultivar. 

 

Samples of nuts of all the cultivars were sent to Professor Shawn Mehlenbacher, a 

hazelnut breeder at the Corvallis State University, his comments on the imported 

cultivars are given in Table A1.4 (Mehlenbacher, pers. comm., 18 July 2003).  

 

Table A.1.4 Feedback on nut samples of imported cultivars from Myrtleford, 

inspected by Professor Shawn Mehlenbacher on 18 July 2003. 
Cultivars Comments 

‘Barcelona’ OK 

‘Butler’  OK 

‘Casina’  OK 

‘Daviana’  OK 

‘Ennis’ OK 

‘Hall's Giant’ and 

‘Merveille de Bollwiller’  

Both OK 

‘Montebello’  OK 

‘Negret’  OK 

‘Royal’  OK 

‘Segorbe’ Not sure.  Shell colour, size and shape are similar but not quite identical to 

our ‘Segorbe’ but the difference may be due to climate or location. A 

comparison of husks would help.   

‘Tonda di Giffoni’  OK 

‘Tonda Gentile delle 

Langhe’  

Initial sample - NO.  This is ‘Montebello’ with a large apical scar.   

A subsequent sample was considered OK. 

‘Tonda Romana’ 

Provided by Milan 

Paskas, imported by 

Baxter. 

NO.  This looks like ‘Montebello’.  It is NOT ‘Tonda Romana’. This 

appears to be a Sicilian type, and thus closely related to ‘Montebello’.  But 

the apical scar is very small, while that of ‘Montebello’ is large.   

‘Willamette’ OK although nuts are small for this cultivar 

 

The ‘Tonda Romana’ from Paskas was not considered to be true to type and could not 

be identified as a specific cultivar.  As it could possibly have been of Sicilian origin, it 

was named “Sicilian type” in this thesis. 
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Professor Mehlenbacher also had some reservations about ‘Segorbe’ but a subsequent 

examination of husks and other plant characteristics indicated that this cultivar was 

true to name. 

 

A subsequent importation of ‘Tonda Romana’ by Ferrero appeared to be true to 

cultivar name. 

 

 

Australian selections 
 

Observations on morphological, phenological and fruiting characteristics were 

recorded for the Australian cultivar selections.  These are presented in Tables A1.5 

and A1.6.  Comparisons were made with the descriptors of cultivars in the Corvallis 

hazelnut germplasm repository that had similar names.  However, apart from the ‘TBC’ and 

‘Wanliss Pride’ which are in the repository, none of the selections matched the descriptors of 

any material in the collection. 

 

Table A.1.5 Observations of catkins, relative dates of pollen shed and bloom, 

dormant buds and the average date of leafing-out for a range of Australian 

seedling selections. 

Variety  Catkins 

 

Relative date Dormant buds 

Leafing-out 

(JD) 

 Average 

number 

Relative 

number 

Pollen 

shed Bloom 

Size and 

shape Colour 

 

‘Atlas’ 2 3 2 2 LR BR 238 

‘Eclipse’ 3 3. 6 7 MP GR 266 

‘Hammond#17’ 3 3 5 7 MP GR 268 

‘Square Shield’ 3 4 6 7 MP R 266 

‘TBC’ 3 5 5 6 MP BR 261 

‘Tonollo’ 3 2 2 4 LR BR 253 

‘Victoria’ 2.5 4 4 6 SP GR 260 

‘Wanliss Pride’ 2 2 5 4 MP BR 242 

‘Woodnut’ 2.5 4 8 8 MP GR 266 
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Table A.1.6 Observations of fruits, nuts and kernels for a range of Australian 

seedling selections 

 

Nuts per 

cluster 

Relative 

husk 

length 

Av 

nut wt 

(g) 

Nut 

shape 

index 

Shell 

colour 

Shell 

stripe 

Kernel 

fibre 

Blanching 

     (1-7) 

‘Atlas’ 2.1 4 3.1 0.93 LB 1 3 4.1 

‘Eclipse’ 3.8 4 2.6 0.96 LB 1 2 3.5 

‘Hammond#17’ 2.4 4 3.3 1.1 T 3 2 5.5 

‘Square Shield’ 2.8 3 3.0 0.99 LB 1 2 5.1 

‘TBC’ 3.0 5 3.0 1.05 LB 2 3 3.3 

‘Tonollo’ 2.6 4 3.3 0.98 LB 1 3 3.8 

‘Victoria’ 5.6 4 3.0 1.06 T 2 2 5.3 

‘Wanliss Pride’ 3.2 6 3.1 0.81 T 1 2 2.7 

‘Woodnut’ 2.1 5 2.9 1.3 LB 2 1 7 (none) 

 

Nuts of these selections were also sent to Professor Mehlenbacher, who commented that 

apart from the ‘TBC’ and ‘Wanliss Pride’, none of the nuts matched samples in the 

Corvallis collection (Table A1.7).  Mehlenbacher’s comments (Mehlenbacher, pers 

comm. 18 July, 2003) on the Australian cultivars gives weight to the view that they 

are seedling selections and not true to cultivar name, as stated by Dr Maxine 

Thompson and reported by Bean and Kenez, (1991).  The data collected on the 

descriptors of the imported cultivars and the Australian selections was used to prepare 

a booklet for hazelnut growers to aid in cultivar identification (Baldwin, 2007). 

 

Table A.1.7 Feedback on nut samples of Australian selections from Myrtleford 

inspected by Professor Shawn Mehlenbacher on 18 July 2003 

Australian selections 
 

‘Hammond #17’ 

I am not familiar with this one.  It is similar to ‘Butler’, but is 

probably a seedling of some sort.   

‘Victoria’ Appears to have a big problem with poorly-filled nuts 

‘Wanliss Pride’ and ‘TBC’ Same as our trees in Corvallis 

‘Atlas’, ‘Eclipse’,  

‘Square Shield’, ‘Tonollo’  

Local Australian cultivars and others for which I have no nut 

samples, and so cannot determine trueness-to-name. 

 

 

Discussion and Conclusions 
 

Apart from the ‘Tonda Romana’ provided by Paskas from a collection by Baxter, all 

the imported cultivars assessed in this study were considered to be true to cultivar 

name.  However, some individual trees in the field were not true to type, due to some 

planting errors and failure of some grafted material.  When errors were noted, the data 

from those incorrect trees was not used.  As the research progressed, the author 
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became more proficient in recognising the traits of the cultivars and more able to 

identify any errors in the cultivar treatments. 

 

Although morphological and phenological data was used in this study to assess 

whether the cultivars were true to name, it is recognised that biochemical tests can be 

used for the genetic identification of hazelnuts.  The visual tests were chosen in this 

instance for reasons of lower cost and to provide a tool that growers could also use to 

identify their own cultivars.  
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APPENDIX B - SITE PLANS 
 

Orange site 
 

Initial plantings, July 1995 

 

Layout: 4 replicates, each with 4 rows of trees and 4 treatment plots (cultivars) within each 

row consisting of 4 trees per plot. 

 

The borders of replicates are shown in red.  

 

The rows were at 5 m spacing with trees 3 m apart in the rows. 

 

Original planting plan 

 
8 7 6 5 4 3 2 1

REP 1 REP 2

M.de Bollwiller Daviana TBC TBC Daviana TBC Daviana TBC Royal Wanliss Pride

Mon W. P Tonollo

Victoria Royal 

Daviana Red Avelline

TBC F. de Coutarde

M.de Bollwiller Victoria

Royal M de Bollwiller

Daviana Daviana

Werai 2 Jemtegaard. 5

Mon. W. P. Mon. WP 

F. de Coutarde F. de Coutarde

Victoria Jemteg. 5

N. E Barc White Aveline

Daviana Daviana

F. de Coutarde F. de Coutarde

White Aveline Victoria

Daviana M de Bollwiller

Mon. W.P. Mon. W. P.

M.de Bollwiller Werai 2

F. de Coutarde F. de Coutarde

Victoria Victoria

Werai 1 White Aveline

Daviana Daviana

F. de Coutarde F. de Coutarde

TBC Werai 1

Mon. W. P Mon W P

Royal N.E. Barc.

White Aveline White Aveline

Daviana Daviana

F. de Coutarde F. de Coutarde

Daviana Victoria

M.de Bollwiller Casina

Victoria Woodnut

Red Avelline Butler Woodnut Kentish Cob Hammond 17 Butler Red Avelline Woodnut Butler** Royal 

REP 3 REP 4

Hall's Giant Ennis Casina**
Wanliss 

Pride

Tonda di 

Giffoni
Barcelona Atlas Segorbe

TBC Victoria
Negret** 

/Willamette

Tonda 

Romana

Eclipse Butler
Square 

Shield**

T.G.D.L. 

(Lewis)

Hall's Giant

Hall's Giant

Hall's Giant

Ennis

Ennis Ennis
Square 

Shield**

Tonda 

Romana

Butler

Butler

Barcelona

Barcelona

Barcelona

Atlas

Atlas

Atlas

Segorbe

Segorbe
Square 

Shield**

Square 

Shield**

Tonda di 

Giffoni

Tonda di 

Giffoni

Tonda di 

Giffoni

Wanliss 

Pride

Wanliss 

Pride

Wanliss 

Pride

Tonda 

Romana

Tonda 

Romana

T.G.D.L. 

(Lewis)

Butler

Negret** 

/Willamette

Negret** 

/Willamette

Negret** 

/Willamette

Casina**

TBC

TBC

TBC

T.G.D.L. 

(Lewis)

T.G.D.L. 

(Lewis)

Eclipse

Victoria

Victoria

VictoriaCasina**

Casina**Segorbe

Eclipse Eclipse

 
 
Notes: A cultivar known as ‘Tonda Romana’ was planted at all sites.  It was not true to type 

and was later considered to be a “Sicilian type” and named thus throughout the thesis.   

The plants of ‘Negret’ and ‘TGDL’, that were planted initially, failed to develop.  The middle 

2 plants in each treatment of these 2 cultivars were removed and replaced with ‘Willamette’ 

and ‘Lewis’, respectively.   
 

North 
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Moss Vale 
 

Initial plantings July 1996 

 

Layout: 4 replicates, each with 4 rows of trees and 3 treatment plots (cultivars) within each 

row consisting of 2 trees per plot. 

 

The borders of replicates are shown in red. 

 

The rows were at 5 m spacing with trees 3 m apart in the rows. 

 

Original planting plan 
 

REP 1 REP 2
Rows 1 2 3 4 5 6 7 8

Atlas TBC Negret TBC W.Avelline TBC Daviana TBC Butler Waterloo

Daviana Werai 1

Turk Cos TBC

Woodnut W. Avelline

TBC TBC

MonbulkWP MonbulkWP

Barcelona Barcelona

W. Avelline Werai 2

Barcelona Barcelona

Daviana Paskas Late

Barcelona Barcelona

Negret* Woodnut

Atlas Butler

Waterloo Butler Woodnut W. Avelline TBC Turkish Cos TBC Werai 1 TBC Tonollo

REP 3 REP 4

Atlas

Atlas Segorbe

T. Romana 

(Sicilian 

type)

Barcelona Halls Giant W. Pride TBC

T. di Giffoni Casina** Victoria T. di GiffoniBarcelona

Victoria

Ennis TBC

Segorbe

T. Romana 

(Sicilian 

type)

Ennis RoyalRoyal Casina** Halls Giant W. Pride

Casina** Royal Victoria TBC Halls Giant TBC

T. Romana 

(Sicilian 

type)

Victoria

Ennis T. di Giffoni W. Pride SegorbeSegorbe Halls Giant Atlas Ennis

Royal Atlas Barcelona Casina**Barcelona T. di Giffoni W. Pride

T. Romana 

(Sicilian 

type)

 
 

Notes: 

 ‘Monbulk WP’ (‘Wanliss Pride’).  Source: Monbulk Nurseries, Victoria.  It was not 

discernible from any other source of ‘Wanliss Pride’ 

 ** grafted trees 

 The cultivar shown as ‘Tonda Romana’ was not true to type and was considered to be 

a “Sicilian type”. 

 

North 
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Myrtleford 
 
Initial plantings July 1996 

 

Layout: 4 replicates, each with 6 rows of trees and 4 treatment plots (cultivars) within each 

row consisting of 2 trees per plot. 

 

The borders of replicates are shown in red. 

 

The rows were at 5 m spacing with trees 3 m apart in the rows. 

 

Original planting plan 
 

REP 1 REP 2
Rows 1 2 3 4 5 6 7 8 9 10 11 12

TBC Atlas TBC Atlas TBC Atlas TBC Atlas TBC Atlas TBC Atlas TBC TBC

W. Avelline Woodnut Werai II TBC W. Avelline TBC W. Avelline Woodnut W. Avelline L d'Espagne W. Avelline TBC W. Avelline Woodnut

Wanliss Pride Werai II

Werai II Wanliss Pride

Wanliss Pride W. Avelline

Werai I Wanliss Pride

Woodnut Werai I

W. Avelline Woodnut

Wanliss Pride W. Avelline

Werai II Wanliss Pride

Wanliss Pride Werai II

Werai I N.E. Barc

Woodnut Werai I

W.  Avelline Woodnut

Wanliss Pride W. Avelline

Werai II Wanliss Pride

Wanliss Pride W. Avelline

W.  Avelline Werai I

Woodnut L d'Espagne W. Pride R. Avelline W. Pride L d'Espagne W.  Pride R. Avelline W.  Pride L d'Espagne W.  Pride R. Avelline W.  Pride L d'Espagne

TBC Hamm. 4** Hamm. 4** W. Pride (M) R. Avelline W Pride (M) R Avelline W Pride (M) R. Avelline W. Pride (M) R Avelline W Pride (M) W Pride (M) unknown

REP 3 REP 4

Butler**
Tond di 

Giffoni
EnnisTBC

Tond di 

Giffoni

Ennis** 

(Willamette)

Tonda 

Romana
Eclipse**Atlas Tonollo Ennis

Wanliss 

Pride

Atlas Barcelona TGDLVictoria RoyalNegret*

American 

White 

(Lewis)

Hall's Giant*

American 

White 

(Lewis)

Victoria Sq Shield**T.GD.L. Negret*Casina**
Ennis** 

(Willamette)

Merveille de 

Bollwiller
TBC

Wanliss 

Pride
Hamm. 17**Montebello

Royal

Casina**

Sq. Shield**
Tonda 

Romana

Tonollo Hamm. 17** Daviana
Merveille de 

Bollwiller

Royal Eclipse**

Daviana MontebelloButler** SegorbeSegorbe Barcelona Eclipse** Hall's Giant*

Merveille de 

Bollwiller
 Barcelona

American 

White 

(Lewis)

Ennis** 

(Willamette)

Tonda 

Romana
Hall's Giant*

Tond di 

Giffoni

Tonda 

Romana
T.G.D.L. Royal Daviana

Wanliss 

Pride
Sq. Shield**

AtlasBarcelona Daviana* Tonollo
Wanliss 

Pride
Segorbe Casina**

American 

White 

(Lewis)

TBC

Ennis Ennis Segorbe Butler**Atlas Hamm. 17*
Ennis** 

(Willamette)
Victoria Eclipse** Negret* Victoria Negret*

Butler** Montebello TBC TGDL Sq Shield** Casina** Hall's Giant* MontebelloTonollo
Tond di 

Giffoni

Merveille de 

Bollwiller
Hamm. 17**

 
 

Notes: 

 ** grafted and girdled trees 

 The graft on some ‘TGDL’ failed; the rootstock produced a small tree that produced 

a heavy crop of nuts with relatively thick shells.  It became known as a Damn Fine 

Tree (DFT)! 

 A cultivar known as ‘Tonda Romana’ was planted at all sites.  It was not true to type 

and was considered to be a “Sicilian type”.  It is shown on the plan as ‘Sicilian’. 

  ‘Willamette’ was planted in 1999 it replaced grafted Ennis’ trees 

 ‘Lewis’ was planted in 2001; it replaced ‘American White’ which appeared to be 

identical to ‘Wanliss Pride’. 

North 
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Toolangi 
 
Initial plantings July 1995 

 

Layout: 4 replicates, each with 4 rows of trees and 4 treatment plots (cultivars) within each 

row consisting of 4 trees per plot. 

 

The borders of replicates are shown in red. 

 

The rows were at 5 m spacing with trees 3 m apart within the rows. 

 

Original planting plan 

 
REP 1 REP 2         N

1 2 3 4 5 6 7 8

Atlas Woodnut Butler Werai 1 2 - 1 W. Avelline N.E. Barcelona Red Avelline F. de Coutarde Atlas

W. Avellline Butler

F. de Coutarde Barcelona Negret T.G.D.L. Hall's Giant Negret Butler W. Pride Victoria Woodnut

W. Aveline W. Avelline

W. Pride W. Pride

TBC TBC

F. de Coutarde Casina Butler TBC Segorbe T. di Giffoni Sq. Shield Hall's Giant Segorbe F de C

W. Avellline Red Avelline

Daviana Daviana

W. Pride W. Pride

F. de Coutarde T.  Romana Victoria Ennis Sq. Shield TBC T.G.D.L. Ennis Atlas F de C

W. Pride W. Pride

Red.Avelline Red Avelline

W. Avellline W. Avelline

W. Pride Eclipse W. Pride Atlas T. di Giffoni T. Romana Eclipse Casina Barcelona W.Pride

TBC TBC

F. de Coutarde F de C

R .Aveline Red Avelline

Daviana Ennis T. di Giffoni  Barcelona Butler T.G.D.L. Sq. Shield Butler Eclipse Dav

F. de Coutarde F de C

Werai 1 Werai1

TBC TBC

F. de Coutarde Eclipse Victoria TBC Hall's Giant T. Romana Negret T. di Giffoni TBC F de C

Red.Avelline Red Avelline

W. Pride W. Pride

F. de Coutarde F de C

W. Pride Segorbe T.G.D.L. W. Pride T. Romana Segorbe Atlas  Barcelona Victoria W. Avelline

Daviana Royal

F. de Coutarde F de Coutarde

TBC TBC

Red Avelline Negret Casina Sq. Shield Atlas W. Pride Casina Ennis Hall's Giant Red Avelline

W. Pride W. Pride

W. Avellline W. Avelline

F. de Coutarde Werai 1 F. de Coutarde Daviana Red  Avelline ? W. Pride F. de Coutarde N.E.  Barcelona F de C

GATE REP 3 REP 4  
 
Notes: 

‘Butler’, ‘Casina’, ‘Negret’, ‘Tonda di Giffoni’ and ‘Victoria’ were planted in 1996 
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Kettering 
 

Initial plantings July 1999 

 

Layout: 3 replicates, each with 4 rows of trees and 5 treatment plots (cultivars) within each 

row consisting of 2 trees per plot. 

 

The borders of replicates are shown in red. 

 

The rows were at 5 m spacing with trees 3 m apart within the rows. 

 

Original planting plan 
 

REP 1 REP 2 REP 3

Rows 1 2 3 4 5 6 7 8 9 10 11 12

Segorbe Barcelona TBC Lewis T.G.D.L. Butler Whiteheart Victoria

T.G.D.L. Segorbe Montebello Willamette Casina Butler Eclipse

Eclipse Willamette TBC Victoria T.G.D.L. Royal Casina Segorbe

Royal Barcelona Butler Ennis Eclipse Whiteheart Lewis Montebello TBC

Whiteheart Casina Lewis Victoria Royal Montebello Ennis Barcelona Willamette

Wanliss 

Pride

Wanliss 

Pride

Wanliss 

Pride

Tonda di 

Giffoni

Tonda di 

Giffoni

Tonda di 

Giffoni

Square 

Shield

Square 

Shield

Merveille de 

Bollwiller

Hammond. 

17

Square 

Shield

Tonda 

Romana 

(Sicillian)

Ennis

Tonda 

Romana 

(Sicillian)

Tonda 

Romana 

(Sicillian)

Hammond. 

17

Merveille de 

Bollwiller

Merveille de 

Bollwiller

Hammond. 

17

 
 

Notes:  

‘Segorbe’ and ‘Whiteheart’ were planted in 2000 

 

 

North 
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APPENDIX C 

Manganese Sand Culture Experiment 

Objective 

The sand culture nutrition experiment was designed to test the hypothesis that 

hazelnuts could be sensitive to manganese and that there could be a difference in 

cultivar tolerance. 

 

Methods 

 

Six (6) levels of Mn solution: 0, 0.5, 2, 5, 20 and 50 ppm 

Two (2) cultivars of Corylus avellana: ‘Wanliss Pride’ and ‘Barcelona’ 

A factorial design was used, ie 12 treatments, with 2 replicates, giving a total of 24 

treatments. 

 

Twenty four (24) plastic tubs measuring 430 mm diameter and 310 mm height with a 

capacity of 40L had four (4) holes of 5 mm diameter drilled in their base for drainage. 

Dormant hazelnut plants of the cultivars ‘Barcelona’ and ‘Wanliss Pride’ were 

planted in these on 13 September 2004.  The tubs were filled with washed river sand 

to within 5 cm of their tops.  The tubs were watered and kept moist.  Bud burst 

occurred about 19 September.  On 5 October, when the trees were at the early leafing 

stage 2L/pot of a nutrient solution prepared from Manutec ® Hydroponic Nutrient for 

Flowers and Vegetables, was applied at half strength.  Subsequent applications were 

at the full strength and given at weekly intervals.  The levels of nutrients in the 

recommended rate for full strength are given in Table 1. 
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Table C1.  Levels of nutrients (ppm) in the Manutec® Hydroponic Nutrient mix for 

flowers and vegetables at the recommended full strength of 200g/100 L water compared 

with Long Ashton Standard Nutrient Solution for fruit trees. 
 

 Manutec® solution 

(Full strength) ppm 

Long Ashton Standard 

Nutrient Solution
(1) 

(ppm). 

Nitrogen 215 168 

Phosphorus 37 41 

Potassium 218 156 

Calcium 152 160 

Sulphur 54 48 

Magnesium 42 36 

Sodium N/A 31 

Iron 4 5.6 

Manganese 0.96 0.6 

Copper 0.36 0.06 

Zinc 0.48 0.07 

Boron 0.04 0.5 

Molybdenum 0.01 0.05 
 

Notes (1) Hewitt, E.J. 1966, Chapter 22, Tables 40 and 41. 

 

Manganese treatments 

Manganese sulphate (MnSO4.H2O), purity 99% 

MnSO4 MW=169, MW Mn=55 

Therefore 154 g of contains 50g Mn 

154 g MnSO4 in 1000 L water = 50 ppm Mn 

Equivalent to 0.77g in 5 L water 

Preparation of Mn solutions: 

A solution 50 ppm was prepared with lower levels of Mn derived by dilution 

50 ppm = 0.77g MnSO4 in 5 L water 

5 ppm Mn = 1 L of 50 ppm mixed with 9 L water 

0.5 ppm Mn = 1 L of 5 ppm mixed with 9 L water 

 

20 ppm = 0.31g MnSO4 in 5 L water 

2 ppm = 1 L of 20 ppm mixed with 9 L water 

 

Applied 1 L of each solution per tub weekly from early November 

 

Sulphur 

Additional sulphur (S) = 14% MnSO4   

50 ppm Mn concentration supplied an additional 2 ppm of S, cv 54 ppm in Manutec 

solution. 
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