Phylogenetics and evolution of the Tillandsia utriculata complex (Bromeliaceae, Tillandsioideae) inferred from three plastid DNA markers and the ETS of the nuclear ribosomal DNA

JUAN P. PINZÓN ${ }^{1,2 *}$, IVÓN M. RAMÍREZ-MORILLO ${ }^{1}$, GERMÁN CARNEVALI ${ }^{1}$, MICHAEL H. J. BARFUSS ${ }^{3}$, WALTER TILL ${ }^{3}$, JUAN TUN ${ }^{2}$ and JUAN J. ORTIZ-DÍAZ ${ }^{2}$
${ }^{1}$ Unidad de Recursos Naturales-Herbario CICY, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 Colonia Chuburná de Hidalgo, CP 96200 Mérida, Yucatán, Mexico
${ }^{2}$ Departamento de Botánica, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km. 15.5, Apdo, Postal 4-115 Itzimná, CP 97100 Mérida, Yucatán, Mexico
${ }^{3}$ Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030 Vienna, Austria

Received 31 July 2015; revised 13 February 2016; accepted for publication 4 March 2016

Abstract

We performed a phylogenetic analysis using maximum parsimony and Bayesian inference of three plastid DNA markers and the external transcribed spacer (ETS) of nuclear ribosomal DNA to assess the species composition of the Tillandsia utriculata complex and their phylogenetic relationships, and to reconstruct patterns of character evolution and biogeography. The results showed that species of the T. utriculata complex are nested in a clade composed mainly of Mexican and Central American species of T. subgenus Tillandsia (Mexican Clade), and are organized in two lineages: the T. utriculata clade and the T. limbata clade. The ancestor of the core Mexican Clade was probably a T. utriculata-like epiphyte (Group II-type remote flowers and flexuous rachises). The T. utriculata clade is defined morphologically by the presence of acute petals. In this clade, there are two lineages: one of high-elevation, saxicolous, grey-leaved plants from the Mexican Plateau; and one which is more widespread and found from the Gulf of Mexico to Venezuela. The T. limbata clade probably arose in western Mesoamerica and is defined by rounded petals. These species are found mainly in tropical dry forests, but one species colonized wet environments of eastern Mesoamerica. Finally, analyses based on the ETS region allowed us to distinguish between T. utriculata and T. pringlei. © 2016 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 181, 362-390

ADDITIONAL KEYWORDS: biogeography - Central America - matK - Mexico - Neotropics -rpl32-trnL - rps16 - taxonomy.

INTRODUCTION

Tillandsia L. is the most diverse genus of Bromeliaceae, with >600 species (Luther, 2012), distributed in tropical and subtropical America, and is one of the most distinctive components of the epiphytic and epilithic flora in that region (Benzing, 2000). The taxonomy of the genus is based mainly on the monograph of subfamily Tillandsioideae (Smith \& Downs, 1977) and the subgeneric classification hinges on one or a

[^0]few floral characters, such as the exsertion of stamens and shape of the sepals. Gardner (1986) challenged the classification of Tillandsia subgenus Tillandsia of Smith \& Downs through a detailed study of floral characters, but that classification remained provisional and has no molecular phylogenetic basis.

For this reason, the phylogenetics of the genus Tillandsia need to be elucidated. To deal with such a large and diverse group, two strategies can be followed: (1) a top-down approach, sampling as many species as possible, trying to represent all the
morphological and ecological variation and the geographical distribution; or (2) a bottom-up approach, sampling all species in a species complex, to deal with a manageable number of taxa with a reduced but representative sampling of the outgroup.

Here, we have chosen to follow the second approach, to answer more fine-scale evolutionary and taxonomic questions than those that could be made for the entire genus. Because Tillandsia utriculata L. is the type species of the genus, it is important to correctly assess the relationships and species limits in the species complex, which is composed of morphologically similar taxa, which are difficult to diagnose.

The T. utriculata complex, as defined by Ramírez, Carnevali \& Chi (2004) (s.s.), is represented by a group of species that share vegetative and floral characteristics, including triangular leaves, spicate or paniculate inflorescences with sessile flowers, a flexuous rachis, and exserted stamens and style. The names initially included by Ramírez et al. (2004) and Ramírez \& Carnevali (2007a,b), in addition to T. utriculata, are T. aesii I.Ramírez \& Carnevali, T. calcicola L.B.Sm. \& Proctor, T. cucaensis Wittm., T. dasyliriifolia Baker, T. geniculata E.Morren ex Baker, T. limbata Schltdl., T. makoyana Baker, T. pinicola I.Ramírez \& Carnevali, T. pringlei S.Watson, T. pulvinata E.Morren ex Baker, T. simplexa Matuda, T. swartzii Baker and T. tehuacana I.Ramírez \& Carnevali. Although not mentioned in the cited references, these species also feature remote floral bracts, which makes the rachis visible, and the flowers are appressed to it.

In addition to the aforementioned taxa, there are two groups of species that, despite sharing the characteristics of the T. utriculata complex s.s., were omitted by Ramírez \& Carnevali (2007a,b) and Ramírez et al. (2004). The first group includes the lithophytic Mexican species T. albida Mez \& Purpus, T. fresnilloensis W.Weber \& Ehlers, T. karwinskyana Schult. \& Schult.f. and T. socialis L.B.Sm. The second group comprises T. extensa Mez, T. hildae Rauh, T. mima L.B.Sm., T. propagulifera Rauh and T. secunda Kunth, which are also lithophytic, but are distributed in north-western South America and are generally larger than the Mexican species. Furthermore, after the publication of the study by Ramírez et al. (2004), subsequent studies described additional species that possess characters similar to those in the complex, namely T. comitanensis Ehlers, T. huamelulaensis Ehlers, T. nicolasensis Ehlers (Ehlers, 2006a,b,c), T. elusiva Pinzón, I.Ramírez \& Carnevali and T. izabalensis Pinzón, I.Ramírez \& Carnevali (Pinzón, Ramírez-Morillo \& Carnevali Fernández-Concha, 2011, 2012).

All of these species (T. utriculata complex s.l.) possess characteristics that agree with Gardner's (1986)

Group II of the classification of Tillandsia subgenus Tillandsia. That is, they present stamens of unequal length based on cross-sections, erect or recurved petal apices and flowers with an open corolla throat. The only exception is T. swartzii, which is a synonym of Vriesea swartzii (Baker) Mez, and is characterized by the presence of appendages at the base of the petals and secund spreading flowers (Mez, 1935).

It is important to note that the T. utriculata complex s.l. is not exactly equivalent to Group II of Gardner (1986), because not all of the species in Group II agree with the characteristics of the T. utriculata complex s.l. Specifically, T. andreana E.Morren ex André and T. funckiana Baker have solitary flowers per rosette, T. argentea Griseb. and T. fuchsii W.Till have filiform leaves and spreading flowers and T. flagellata L.B.Sm. (= T. lehmannii Rauh), T. kegeliana Mez and T. paraensis Mez have imbricate floral bracts and the rachis is not regularly flexuous.

Although there are a number of molecular phylogenetic studies that have included Tillandsia spp., these were aimed at either addressing taxonomic problems at the family or subfamily levels (Ranker et al., 1990; Terry, Brown \& Olmstead, 1997a,b; Horres et al., 2000; Crayn, Winter \& Smith, 2004; Givnish et al., 2004, 2011; Barfuss et al., 2005) or focused on understanding the evolution of different species complexes in Tillandsia (Granados, 2008; Chew, De Luna \& González, 2010). Therefore, such studies include a limited sampling of species belonging to the T. utriculata complex. Barfuss et al. (2005) provided the most exhaustive sampling of Tillandsia conducted to date, including 58 species, but only included one species (T. utriculata) from the T. utriculata complex.

One of the goals of this study is to assess the phylogenetic relationships of the species that share characteristics of the T. utriculata complex. The questions we seek to address are as follows. Do species of the T. utriculata complex constitute a monophyletic group? If so, are the Mexican lithophytic species and the South American taxa related to T. mima part of the T. utriculata complex? Are the South American species with similar characteristics part of this group? Based on these analyses, we also provide a test of monophyly of Group II proposed by Gardner (1986).

By assessing the species composition of the T. utriculata complex, of Group II, and the phylogenetic relationships among their constituent species, we are also able to propose probable scenarios of evolution, biogeography and diversification of this group. In addition, the inclusion of specimens from different populations for some of the species analysed (e.g. Tillandsia karwinskyana, T. pringlei and T. utriculata
or T. makoyana and T. tehuacana) will contribute to resolve taxonomic issues that have remained diffuse and have hindered the delimitation of some of these taxa.

METHODS

Taxon selection

To determine the phylogenetic position of the T. utriculata complex s.l. in the genus, we conducted independent phylogenetic analyses using the matK gene and a section of the 3^{\prime} end of the $\operatorname{trn} K$ intron (matK-trnK) and the rps16 intron (rps16), and combined analyses of the two regions (hereafter referred to as 'broad analyses'). We selected these markers as they have been used for the largest number of Tillandsia spp. available from public databases. For the analyses of matK-trnK, we included 175 accessions which represented 122 Tillandsia spp. (169 accessions), two species of Racinaea M.A.Spencer \& L.B.Sm. (two accessions), one species of Vriesea Lindl. (three accessions) and Catopsis nutans (Sw.) Griseb. as a functional outgroup (one accession), as the results reported by Barfuss et al. (2005) indicate that Catopsis Griseb. and Glomeropitcairnia Mez form the sister group of the rest of Tillandsioideae. For the analyses using rps16, we included 168 accessions representing 113 Tillandsia spp. (164 accessions), one Racinaea sp. (one accession), one Vriesea sp. (two accessions) and C. nutans (one accession). The 'broad analyses' combining the two regions (i.e. matK-trnK and rps16) were performed with 108 Tillandsia spp. (145 accessions), one Racinaea sp. (one accession), one Vriesea sp. (one accession) and C. nutans (one accession). Sequences were generated during this study or obtained from GenBank based on studies by Crayn et al. (2004), Barfuss et al. (2005), Granados (2008), De Castro et al. (2009) and Rex et al. (2009) (accession numbers: Appendix 1).
A second set of analyses was also performed, hereafter called 'restricted analyses', with more characters, but fewer taxa. Here, we included all the species that exhibited morphological characteristics present in the T. utriculata complex s.l., most of the species belonging to Group II (Gardner, 1986) and belonging to the clades that were more closely related to species of the T. utriculata complex based on results from the broad analyses. For the 'restricted analyses', we used matK-trnK, rps16 and the rpl32-trnL region combined and the external transcribed spacer (ETS) of the nuclear ribosomal (nr) DNA region alone.
Of the names included in the T. utriculata complex s.l. (see Introduction) and Gardner's Group II, we excluded the following: T. simplexa which is a syn-
onym of T. makoyana, T. geniculata which is a synonym of T. limbata, T. aesii which is a synonym of T. cucaensis (Pinzón et al., 2012), T. pulvinata which is a synonym of T. dasyliriifolia and T. lehmannii which is a synonym of T. flagellata. Tillandsia swartzii was also excluded, as we had no access to the original material and it belongs to Vriesea (Smith \& Downs, 1977).

DNA extraction, amplification and sequencing

For the DNA extraction, we used dried (with silica gel) or fresh plant material, obtained from the field or from exchange with the Botanical Garden of the University of Vienna (Austria) or the Marie Selby Botanical Garden (Florida, USA). The herbarium vouchers are listed in Appendix 1. DNA extraction was performed following the cetyltrimethylammonium bromide (CTAB) protocol (Doyle \& Doyle, 1987). To amplify the plastid DNA regions, we used the following reagents and final concentrations: buffer ($1 \times$), MgCl_{2} (5 mm), deoxynucleoside triphosphates (dNTPs) ($200 \mu \mathrm{~m}$), 'forward' and 'reverse' primers $(0.4 \mu \mathrm{M})$, Taq DNA polymerase (1 U), $1 \mu \mathrm{~L}$ DNA dilution and the remaining volume of distilled $\mathrm{H}_{2} \mathrm{O}$. For the amplification of rpl32-trnL, we modified the MgCl_{2} concentration to 1.5 mm) and added bovine serum albumin (BSA) ($0.2 \mu \mathrm{~g} / \mu \mathrm{L}$) (Shaw et al., 2007) and, for ETS, we used MgCl_{2} at 2.25 mm and added dimethylsulphoxide (DMSO) at 2.7\%.

The pairs of primers used to amplify the matKtrnK region were matK-19F (Molvray, Kores \& Chase, 2000) with trnK2R (Johnson \& Soltis, 1995) and matK-19F with matK1520R (Whitten, Williams \& Chase, 2000), or the pairs matK-19F/matK966rBRO and matK808fBRO/trnK2R* (Barfuss, 2012). For rps16, we used the primers rpsF and rpsR2 (Oxelman, Lidén \& Berglund, 1997). For rpl32-trnL, we used $\operatorname{trnL}(\mathrm{UAG})$ and rpl32-F (Shaw et al., 2007). For ETS, we used the primers Till2 (Chew et al., 2010) and 18S-IGS (Baldwin \& Markos, 1998). The PCR conditions for matK-trnK and rps16 were the same as in Barfuss et al. (2005) and, for rpl32-trnL, we followed Shaw et al. (2007). For ETS, we used the following protocol: initial denaturation at $97^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 15$ cycles at $99^{\circ} \mathrm{C}$ for 2 min , annealing at $68^{\circ} \mathrm{C}$ for 30 s and extension at $72^{\circ} \mathrm{C}$ for 1 min , followed by 20 cycles under the same conditions, but with an increment of $5 \mathrm{~s} / \mathrm{cycle}$ during the extension step; subsequently, a final extension at $72^{\circ} \mathrm{C}$ for 7 min and hold at $4^{\circ} \mathrm{C}$.

To verify that DNA extraction and amplification were successful, we performed electrophoresis on 1% agarose gel stained with ethidium bromide. The purification was performed with a QIAquick
(QIAGEN) purification kit following the manufacturer's instructions. Sequencing was performed using the Sanger method with the same primers as used for the amplification on an ABI3730XL (Applied Biosystems) sequencer.

SEQUENCE ASSEMBLY AND ALIGNMENT AND CODING OF INSERTIONS/DELETIONS

Sequences were assembled with Geneious 4.1.4 (Biomatters Ltd., Auckland, New Zealand) and aligned using the algorithm MUSCLE 3.6 (Edgar, 2004) as implemented in the platform eBioTools (www.ebioinformatics.org), through eBioX 1.5.1 (Lagercrantz, 2008), and checked visually. Insertion/deletions (indels) were coded following the simple coding method of Simmons \& Ochoterena (2000).

Phylogenetic analyses

We conducted separate analyses with the matrices of matK-trnK and rps16 and with the matrix of both regions combined (broad analysis), including indels. The restricted analyses included the combined analysis of three regions of the plastid DNA (matK-trnK, rps16 and rpl32-trnL) and indels, and also the analysis with the ETS nrDNA.

All analyses were performed using the parsimony algorithm of Fitch with equal weight for all characters. The most-parsimonious trees (MPTs) were retrieved from heuristic searches with 10000 replicates, retaining ten trees per replicate and using tree bisection-reconnection (TBR) as the branch swapping algorithm. The maximum number of trees was fixed at 100000 (Max. trees). To assess branch support, we performed a bootstrap (BS) analysis with 10000 iterations employing heuristic searches with ten replicates, and retained ten trees per replicate using the support levels as in Sung et al. (2007) for the interpretation of the results. Given that we obtained multiple MPTs in all the analyses, we calculated strict consensus trees. All of these analyses were performed with the program TNT 1.1 (Goloboff, Farris \& Nixon, 2003). The consistency index (CI) and retention index (RI) of the MPTs were calculated with the WinClada 1.00 .08 platform (Nixon, 2002).

We also conducted Bayesian analyses of all the matrices explained above with MrBayes 3.1 (Ronquist \& Huelsenbeck, 2003). The nucleotide substitution model for each DNA partition was selected under the Akaike information criterion (AIC) with three substitution schemes, in program jModelTest 0.1.1 (Posada, 2008). For all analyses, data partitions were set corresponding to each DNA region and indels. For the broad analysis, the nucleotide substitution model used for partitions of matK and rps16
was $G T R+I+\Gamma$ and the model for $\operatorname{trn} K$ was GTR $+\Gamma$. For the restricted analysis with the three plastid DNA regions combined and the indels, we used the models GTR $+\mathrm{I}+\Gamma$ for the matK and rps 16 partitions, GTR $+\Gamma$ for the $\operatorname{trn} K$ partition and HKY $+\Gamma$ for the rpl32-trnL partition. Finally, the model used for ETS was HKY $+\mathrm{I}+\Gamma$. In all cases, the partitions of indels were treated under the binary model, using type of data as 'restriction' and establishing the coding option as 'variable'. For all the analyses, we unlinked the estimation of the parameters of each partition (except for topology and branch length), and the global rate was allowed to vary independently for each partition.

The broad analysis consisted of three simultaneous but independent runs, each consisting of 5000000 generations produced by the Metropolis-coupled Markov chain Monte Carlo (MCMCMC), with a sampling every 100 generations using one cold chain and four hot chains with a temperature of 0.17 , whereas, for the remaining parameters, we used the default values given by the program MrBayes 3.1. The restricted analyses of the four regions of the plastid DNA plus indels and of the ETS region were performed using the same parameters specified in the previous analyses, but in this case with 10000000 . Convergence of parameters between runs was considered as reached when the 'average standard deviation of split frequencies' was <0.01, as recommended by Ronquist, Huelsenbeck \& Teslenko (2011), and also by visual examination of the plot of generation vs. log likelihood, considering the convergence achieved when the dots that represented different runs were mixed. For the estimation of parameters and posterior probabilities (PPs), in all cases we discarded 25% of the initial generations.

The clades of interest were labelled with letters in the tree that resulted from the broad analysis with matK-trnK, rsp16 and indels. For the trees produced by the other analyses, we repeated letters for clades that shared species and were congruent with the clades from the first analysis (although tree internal topologies and numbers of species were not necessarily identical between these analyses). To assess the suitability of analysing the plastid DNA and nrDNA (ETS) data together, we performed the incongruence length difference (ILD) test (Farris et al., 1994).

The infrageneric allocation of Tillandsia spp. to the trees shown was performed following the circumscription of Smith \& Downs (1977), with the exception of T.tortilis Klotzsch ex Baker and T. lepidosepala L.B.Sm. Although the last two species were considered as part of T. subgenus Tillandsia by Smith \& Downs (1977), subsequent studies found that they belong to T. subgenus Allardtia (A.Dietrich) Baker (Gardner, 1982; Ehlers (2009).

Character evolution and biogeographical analysis

To explain the evolution of the studied group, we conducted a parsimony-based reconstruction with unordered character states for several morphological and ecological characters with Mesquite 2.75 (Maddison \& Maddison, 2011), using the strict consensus tree generated from the parsimony analysis with the three plastid DNA regions and indels.
We reconstructed five groups of morphological characters: (1) the T. utriculata complex syndrome, i.e. the combination of characters that define the complex, such as the inflorescence in a spike or panicle, a flexuous rachis, flowers appressed to the rachis, remote floral bracts and exserted stamens and style; (2) the Group II syndrome, i.e. the combination of open corolla throat, filaments in series of two lengths, round and of the same width throughout their entire length; (3) the presence or absence of vegetative reproduction and the position of propagules when present: monocarpic genet, axillary propagules, basal propagules, caespitose growth and propagules originating from the inflorescence; (4) inflorescence colour (including the peduncle), the main axis of a compound inflorescence, the rachis and the floral bracts; and (5) petal colour. The ecological characters that have been reconstructed are the type of substrate in which the species grows as an epiphyte, lithophyte or terrestrial.
We also performed an analysis for the reconstruction of the ancestral distribution areas with maximum parsimony in the same way as for the characters above and with the Bayesian binary MCMC method (BBM) (Ronquist \& Huelsenbeck, 2003), as implemented in RASP (Yu et al., 2015) using the default configuration, on one of the 63 MPTs obtained from the restricted analysis of the plastid DNA markers. Both analyses were based on the phytogeographical regions proposed by Gentry (1982): Mexico and Central America; West Indies; northern Venezuela and Colombia; northern Andes; southern Andes; and the Amazon Basin. The region of Mexico and Central America was subdivided into three areas, because most of the studied species are distributed in this region and the use of a finer geographical subdivision was helpful to describe the biogeographical patterns appropriately. This subdivision consisted of: (1) Gulf of Mexico and Caribbean coast; (2) Pacific Ocean coast and mountainous region; and (3) the Mexican Plateau. The subdivision of this phytogeographical region along an east-west (1 and 2) axis, taking, as the division line, the Sierra Madre Oriental and the mountains of northern Oaxaca and Chiapas, was based on the cladistic biogeographical study by Escalante et al. (2007), which recognized biogeographical affinities between the combined pro-
vinces of the Gulf of Mexico and the Yucatan Peninsula and the combined Pacific coast and the mountains of Oaxaca and Chiapas provinces. The biogeographical province of eastern Central America was included in the Gulf of Mexico coast and the Caribbean. The mountainous zone of Central America (Guatemala, Honduras and Nicaragua) was grouped with the Pacific coast, as both are found in the same province as the mountains of Chiapas (Morrone, 2001). The Mexican Plateau zone was considered as a third subdivision because it has been classified as part of the Nearctic region (Morrone, 2001, 2005) and is limited to the east by the Sierra Madre Oriental, to the west by the Sierra Madre Occidental and to the south by the Trans-Mexican Volcanic Belt. In addition, we included the peninsula of Florida as part of the West Indies region. The areas were assigned to the terminals in a presence/ absence scheme, in accordance with the observed distribution of specimens observed in the field, registered in herbaria CICY, WU, MEXU and XAL, or cited in Smith \& Downs (1977). When several accessions of the same species were included, the distribution of the whole species was assigned to each accession.

RESULTS

Characterization of DNA regions

Table 1 shows the characteristics of the DNA regions used in the parsimony analyses, such as size and percentage, and number of variable and potentially informative sites. The most variable plastid DNA region with the greatest percentage of potentially parsimony-informative characters was $\operatorname{trn} K$ (partial) in both the broad and restricted analyses, followed by matK. The rps 16 intron was the least informative region. Although $\operatorname{trn} K$ was the most variable and informative region in terms of percentage of informative sites, matK provided a greater absolute number of variable and informative characters. For the restricted analysis of plastid DNA regions, the most variable and informative region was again trnK, followed by rpl32-trnL, matK and, lastly, rps16. The level of variability in ETS was more than double that observed for $\operatorname{trn} K$, and the percentage of potentially parsimony-informative characters was almost four times greater relative to this region.

Phylogenetic relationships

Broad analyses (Fig. 1)

The parsimony analysis with the matK-trn K region yielded 54 MPTs with $\mathrm{CI}=0.73$ and $\mathrm{RI}=0.93$, whereas that of the rps16 region and indels resulted

Table 1. Size, variability and level of information for the parsimony of the DNA markers used for the phylogenetic analyses

Marker	Aligned size (bp)	Variable sites (number, \%)	Parsimonyinformative characters (number, \%)	Matrix	Number of species/ specimens
matK	1438	222, 15.4\%	119, 8.3\%	matK-trnK	126/175
matK	1438	205, 14.3\%	103, 7.2\%	matK-trnK + rps16 + indels	111/148
matK	1438	146, 10.2\%	53, 3.7\%	$\begin{gathered} \text { matK-trn } K+r p s 16+ \\ \text { rpl } 32-\text { trn } K+\text { indels } \end{gathered}$	62/88
$t r n K$ intron (partial)	137	38, 27.7\%	20, 14.6\%	matK-trnK	126/175
trnK intron (partial)	137	36, 26.3\%	19, 13.9\%	matK-trnK + rps $16+$ indels	111/148
$t r n K$ intron (partial)	137	30, 21.9\%	9, 6.6\%	$\begin{gathered} \text { matK-trn } K+r p s 16+ \\ \text { rpl32-trnK + indels } \end{gathered}$	62/88
rps16 intron	873	105, 12.0\%	47, 5.4\%	rps16 + indels	116/168
rps16 intron	873	105, 12.0\%	44, 5.0\%	matK-trnK + rps16 + indels	111/148
rps16 intron	858	82, 9.6\%	25, 2.9\%	$\begin{gathered} \operatorname{mat} K-\operatorname{trn} K+r p s 16+ \\ r p l 32-\operatorname{trn} K+\text { indels } \end{gathered}$	62/88
$\begin{aligned} & \text { rpl32-trnL } \\ & \text { intergenic spacer } \end{aligned}$	1003	135, 13.5\%	52, 5.2\%	$\begin{array}{r} \text { mat } K-\operatorname{trn} K+r p s 16+ \\ \text { rpl32-trn } K+\text { indels } \end{array}$	62/88
External transcribed spacer (partial) (ETS)	440 (423)	$\begin{aligned} & 255,58.0 \% \\ & (229,54.1 \%) \end{aligned}$	$\begin{aligned} & 137,31.1 \% \\ & (108,25.5 \%) \end{aligned}$	ETS	72/100

in 13360 MPTs with $\mathrm{CI}=0.73$ and $\mathrm{RI}=0.92$. In addition, the parsimony analysis of the combined matrices generated 2196 MPTs with $\mathrm{CI}=0.73$ and $R I=0.92$. The strict consensus tree based on these trees and the majority rule consensus tree from the Bayesian analysis (Fig. 1) did not exhibit incongruence, although the latter had a higher resolution.

The individual analyses of matK-trnK and rps16 (not shown) and the combined analysis yielded a clade composed mainly of taxa of Tillandsia subgenus Tillandsia (Fig 1, clade A) ($\mathrm{BS}=57, \mathrm{PP}=1$), which also included the T. utriculata complex s.l. However, some species inserted in clade A belong to T. subgenus Allardtia (e.g. T. guatemalensis L.B.Sm.) or to T. subgenus Pseudalcantarea Mez [e.g. T. paniculata (L.) L]. Clade A consists of a trichotomy (clades B, C and D). Clade B received high support ($\mathrm{BS}=93, \mathrm{PP}=1$), whereas clade C had weak support $(\mathrm{BS}=73, \mathrm{PP}=1)$. Within these two clades, some species of the Tillandsia utriculata complex s.l. were found, such as T. secunda, T. propagulifera and T. mima (clade B) and T. hildae (clade C). In clade B, we also found T. adpressiflora Mez and T. marnier-lapostollei Rauh (Allardtia), whereas, for clade C , we had Vriesea malzinei E.Morren and T. paniculata (subgenus Pseudalcantarea).

Clade D (Mexican clade) was also strongly supported ($\mathrm{BS}=98, \mathrm{PP}=1$) and included a larger number of species (44). The species of the T. utriculata
complex s.s. were placed here and distributed mainly in two clades: clade E, which we named the T. utriculata clade, received moderate to high support ($\mathrm{BS}=80, \mathrm{PP}=1$), and clade F , which we named the T. limbata clade, also received moderate to high support $(\mathrm{BS}=88, \mathrm{PP}=1)$. Tillandsia socialis also exhibits a morphology similar to species of the T. utriculata complex, but its relationship with the clades of the complex remains unclear, as it is part of a polytomy at the base of the clade containing clades E, F, G and H. Tillandsia tehuacana and T. nicolasensis were grouped with the T. limbata clade in the majority rule consensus tree from the Bayesian analysis, albeit without statistical support. This relationship was not observed in the strict consensus tree from the parsimony analysis (Fig. 4).

The internal relationships of the T. utriculata clade showed a dichotomy formed by the Mexican Plateau clade (T. albida, T. fresnilloensis and T. karwinskyana) $(\mathrm{BS}=62 ; \mathrm{PP}=1)$ and the Gulf-Antillean clade $(\mathrm{BS}=74 ; \quad \mathrm{PP}=1)$, comprising T. calcicola, T. elusiva, T. pringlei and T. utriculata. In the T. limbata clade, two lineages can be observed, one called here the western Mesoamerican clade (T. comitanensis, T. cucaensis, T. huamelulaensis, T. pinicola and T. makoyana) and the other named here the eastern Mesoamerican clade (T. izabalensis, T. limbata, T. may-patii and T. dasyliriifolia).

In clade D, another lineage can be observed, which is composed of species from subgenus Allardtia

Figure 1. Majority rule consensus phylogram resulting from the Bayesian inference analysis of species of the Tillandsia utriculata complex s.l. and the outgroup, using the plastid DNA regions matK, trnK, rps16 and indels for the latter (broad analysis). Above and below each branch, we indicate the bootstrap and posterior probability values, respectively. For a description of the clades labelled with letters, see text.
(clade G) and a clade in which none of the species exhibits the morphology of the T. utriculata complex (clade H). Clade G received weak support ($\mathrm{BS}<50$, $\mathrm{PP}=1$), whereas clade H had strong support $(\mathrm{BS}=93, \mathrm{PP}=1)$.

Restricted analyses with plastid DNA (Fig. 2)
Parsimony analyses of matK-trnK, rps16 and indels, and rpl32-trnL and indels, yielded 63 MPTs with $\mathrm{CI}=0.76$ and $\mathrm{RI}=0.88$. Clades $\mathrm{A}-\mathrm{H}$ (from the broad analyses) were also recovered in strict consensus to the MPTs and the majority rule consensus tree of the Bayesian analysis. There were some incongruences between the topologies of these two trees, but these were only present outside clade A. This clade also received weaker support ($\mathrm{BS}=49, \mathrm{PP}=1$) in comparison with the same clade in the broad analyses. In contrast, clades B and C received improved support ($\mathrm{BS}=97$ and 88 , respectively) and the latter also showed better resolution. Clade D also received improved support ($\mathrm{BS}=99, \mathrm{PP}=1$). In clade D , clades G (subgenus Allardtia), H and F (T. limbata clade) received stronger support with BS values of 71, 99 and 95, respectively (with $\mathrm{PP}=0.98$ and 1). Tillandsia nicolasensis and T. tehuacana were not found in sister group position to clade F , whereas clade E (the T. utriculata clade) showed a slightly lower support $(\mathrm{BS}=78, \mathrm{PP}=1)$. The internal relationships of clades E and F did not change. Based on the Bayesian analysis, T. fuchsii and T. socialis were grouped together in a clade ($\mathrm{PP}=0.91$), whereas, for the parsimony analysis, their relationships in clade D were not resolved.

Restricted analyses with ETS (Fig. 3)

The parsimony analysis produced 19169 MPTs with $\mathrm{CI}=0.60$ and $\mathrm{RI}=0.77$. The strict consensus of this latter analysis (not shown) and the majority rule consensus tree from the Bayesian analysis (Fig. 3) exhibited a few incongruences in the earlier divergent clades, but none of these was well supported ($\mathrm{BS}<50, \mathrm{PP}<0.85$). For clades $\mathrm{A}-\mathrm{H}$ resulting from the plastid DNA analysis, only clade G was recovered; all the rest exhibited incongruences. With respect to the phylogenetic relationships of the T. utriculata complex s.s., only two clades were recovered: one with weak support ($\mathrm{BS}=73, \mathrm{PP}=1$), which included T. calcicola, T. elusiva and T. utriculata, and another with moderate support based on the Bayesian analysis ($\mathrm{PP}=0.98$), which included species of the T. limbata clade (according to the plastid DNA data) and all specimens of T. pringlei. Tillandsia fuchsii and T. socialis formed a group with stronger support than in the analyses based on plastid DNA regions $(\mathrm{BS}=87, \mathrm{PP}=1)$.

Test of incongruence

The ILD test showed that the matrices of plastid DNA and ETS are significantly incongruent ($P=0.0909$).

Character evolution and biogeographical analyses (Fig. 4)

Tillandsia utriculata syndrome

The reconstruction of ancestral states indicated that this set of characters coincided together in clade A at least three times independently. In clade B, they were found together at least once, although it is not clear whether there are two reversions or three gains. All species of this clade have in common many features of the T. utriculata complex, with the exception of T. adpressiflora and T. marnier-lapostollei which have included stamens and T. spiraliflora which has polystichous flowers.

In the core Mexican clade (excluding the clade formed by T. punctulata, T. gymnobotrya and T. prodigiosa), these characters are again found together. Most of the species have stamens and style exserted, but clade H has lost the Group II floral morphology and changed to Group I floral morphology, whereas, in clade G, there is a reversion to included stamens.

Floral morphology

The Group II-type floral morphology presumably emerged at least four times: once in clade B, with one reversion; one to three times in clade C ; and one to four times in clade D. The reconstruction placed this morphology as ancestral for the clade formed by clades E, F, G and H and T. fuchsii, T. tehuacana and T. nicolasensis. The evolution of violet petal colour is ambiguous for clade A, but ancestral for clades B and D. The ancestral state of clade E is whitish, whereas the ancestral state for clade F is ambiguous. For one subclade of clade F , composed of T. izabalensis, T. limbata, T. dasyliriifolia, T. comitanensis and T. may-patii, the ancestral petal colour was whitish. Red petal colour evolved independently twice, once in clade C and another in clade D , with T. nicolasensis.

Vegetative reproduction

The ancestral form of vegetative reproduction in clade A was the production of axillary propagules. The change to monocarpic plants presumably occurred independently at least seven times. The ancestral state of clade E is ambiguous, although monocarpy evolved at least once in this clade (in T. utriculata and T. elusiva). In this clade, caespitose growth emerged at least once, in T. pringlei and

Figure 2. Majority rule consensus phylogram from the Bayesian inference analysis of species of the Tillandsia utriculata complex s.l. and the outgroup, using the plastid DNA regions matK, trnK, rps16, rpl32-trnL and indels from the last two (restricted analysis). Above and below each branch, we indicate the bootstrap and posterior probability values, respectively. For a description of the clades labelled with letters, see text.

Figure 3. Majority rule consensus phylogram from the Bayesian inference analysis of species of the Tillandsia utriculata complex s.l. and the outgroup, using the external transcribed spacer (ETS) region from the nuclear ribosomal DNA (restricted analysis). Above and below each branch, we indicate the bootstrap and posterior probability values, respectively. Green: species of the T. utriculata clade complex according to results using plastid DNA; dark green, Gulf-Antillean Clade; light green, Mexican Plateau Clade; salmon pink, T. limbata clade.

Figure 4. Parsimony-based reconstruction of the ancestral states of five morphological characters, one ecological character and the areas of distribution of the Tillandsia utriculata complex and the outgroup. On the branches the series of transformations are indicated by symbols: (1) the solid black rectangular tick indicates the emergence of the T. utriculata morphological syndrome, the white rectangular tick indicates its loss; (2) the solid black arrow indicates the emergence of the Group II floral morphology, the white arrow indicates its loss; (3) the ellipse represents the different methods of vegetative reproduction (or absence) indicated by colours: monocarpic genet (white), axillary propagules (green), basal propagules (blue), caespitose growth (red), propagules in the inflorescence (violet); (4) the inflorescence colour is indicated by the colour of the symbol 'flower with stem'; (5) the petal colour is indicated by the colour of the symbol 'corolla'; (6) the growth substrate is represented by a tree and the states indicated by colour: epiphyte (green), lithophyte (grey), terrestrial (orange). The areas of distribution are represented by the colour of the branches and the regions are indicated in the map in the top left corner. These characters were mapped on the strict consensus of 63 most-parsimonious trees (MPTs) from the parsimony analysis of the T. utriculata complex s.l. and the outgroup, using the plastid DNA regions matK, $\operatorname{trnK}, \operatorname{rps} 16, r p l 32-\operatorname{trn} L$ and indels from the last two (restricted analysis). The pie diagrams show the probabilities of ancestral distribution areas for selected nodes from an analysis of the Bayesian binary Markov chain Monte Carlo (MCMC) method obtained from one of the 63 MPTs from the analysis described above; colour grey indicates an uncertain area or two or more areas. For a description of the clades labelled with letters, see text.
in the clade formed by T. albida, T. karwinskyana and T. fresnilloensis. Propagation via basal propagules, but without caespitose growth, arose at least four times in clade A, once in clade B (T. mima), once in clade C (T. hildae) and at least five times in clade D. In the T. limbata clade (clade F), monocarpy evolved at least three times, in T. comitanensis, T. aff. comitanensis, T. izabalensis and T. huamelulaensis. In contrast, the production of propagules in the inflorescence arose independently at least three times, once in clade B, once in clade C (T. flexuosa) and once in clade F (T. dasyliriifolia).

Epiphytism

Epiphytism is the ancestral state in clades A, C, D, F, G and H. The ancestral states of clades B and E are ambiguous. The invasion of the saxicolous habitat occurred at least six times in clade A, once in clade B, three times in clade C, at least once in clade E and at least once in clade H . The invasion of terrestrial habitats occurred only once in clade A, with T. dasyliriifolia (clade F).

Biogeographical analysis

The parsimony-based character state reconstruction indicated that the northern zone of the Andean Region was the ancestral distribution for clades A and B, and this is congruent with the BBM ancestral state reconstruction, which reports a probability of 86.1% and 76.0%, respectively, for the same area. In the latter clade, there was one colonization to the Amazonian region (T. adpressiflora). The ancestral distribution area of clade C is ambiguous with parsimony, but BBM analysis showed a probability of 63.9% for the West Indies as the ancestral area for this node. This clade exhibits a broad distribution and is represented in the southern and northern Andes, in northern Venezuela, in the West Indies, in the Amazonian
region and in the eastern Mesoamerican Zone. Conversely, the ancestral area of distribution of clade D , according to both parsimony-based reconstruction and BBM, was the western Mesoamerican Zone (97.6\%). From this point, there were two colonizations of the Mexican Plateau, one with T. tehuacana and another with clade E (the latter at 78.9%), at least two colonizations of the eastern Mesoamerican Zone (one in clade F and one in clade H), and at least one colonization of the West Indies and Florida in clade E (T. utriculata and T. calcicola).

DISCUSSION

General considerations

To date, the broad analysis presented in our study includes the largest number of Tillandsia spp. (108 species of >620 species in this genus; Luther, 2012). The number of species used in this analysis represented 17.4% of the species of this genus, in contrast with the 58 species (9.3%) analysed by Barfuss et al. (2005). It is important to note that the sampling of taxa conducted in our study was designed to assess the phylogenetic position of the species of the T. utriculata complex and of species with similar morphology in Tillandsia, and to determine the phylogenetic relationships among these species. As a result of the bias in our sampling scheme, any conclusions about the results from phylogenetic analyses at the generic or subgeneric level should be taken with caution. Having said this, we proceed to make observations for some of the most important results from these analyses.

Clade A, or the clade of Tillandsia subgenus Tillandsia s.s., is equivalent to clade K plus T. paniculata in the study of Barfuss et al. (2005). According to our results, this clade presumably originated in

the northern Andes (at 86.1% probability; this and all further probabilities are based on BBM analysis) (Fig. 4) from an epiphytic ancestor with red inflorescences. All the species with the T. utriculata complex syndrome are found in clade A, although the ancestor of this clade presumably did not exhibit this morphology (Fig. 4). In clade A, the species with the T. utriculata complex syndrome do not form a monophyletic group; rather this combination of characters arose in at least four independent events (Fig. 4).

The Tillandsia utriculata complex s.l.

Early-diverging clades

Clades B and C are composed mostly of South American species, some of which exhibit the morphology of the T. utriculata complex, but were excluded by Ramírez et al. (2004) based on their definition of the complex, and have not been associated with these species in any other study. In clade B (clade of T. secunda), which originated in the northern Andes, the species that share the T. utriculata syndrome are T. secunda, T. propagulifera and T. mima (Fig. 4). The rest of the species are similar, but differ in some characters. For example, T. adpressiflora and T. marnier-lapostollei differ from this syndrome only in that they have stamens that are included in the corolla (subgenus Allardtia), whereas the only character that separates T. spiraliflora is the polystichous flowers. Conversely, species of clade C (clade of T. paniculata) exhibit morphological variation and a broader geographical distribution. In this clade, we find Vriesea malzinei, which is morphologically strikingly dissimilar (mesic species, imbricate floral bracts, appendices in the petals) and a clade that includes species with red petals (T. funckiana, T. argentea, T. flexuosa, T. kegeliana and T. juruana) (Figs 1, 2, 4). Only T. hildae and T. paniculata exhibit the T. utriculata complex syndrome. Tillandsia paniculata is considered to be part of Tillandsia subgenus Pseudalcantarea because of its stamen and petal morphology (Smith \& Downs, 1977), but Beaman \& Judd (1996) concluded that this species is more closely related to subgenus Tillandsia, and this is consistent with our findings. The ancestral distribution of this clade is uncertain, but the BBM shows a slight preference for the West Indies geographical zone.

Tillandsia socialis, which shows a morphology coherent with the T. utriculata complex, is found in the Mexican clade (D). However, it does not group with the T. utriculata clade, but with T. fuchsii, albeit with relatively low support. These two species share the floral morphology of Group II as a symplesiomorphy. Nonetheless, the presence of scales on the floral bracts represents a synapomorphy of this
clade. Tillandsia fuchsii has lost some of the typical characteristics of the T. utriculata complex, given that the flowers of this species are spreading with respect to the rachis (not appressed) and it has undergone a reduction in size, growing as small, globose rosettes with filiform leaves.

The Tillandsia utriculata clade

This lineage is supported by three homoplasious morphological characters, all of which are associated with the petals, namely spathulate shape, acute apex and the loss of violet pigment (petals in these species are whitish or greenish) (Figs 4-6). As a result of the lack of resolution in clade D , the interpretation of the evolution of the ancestral characters is ambiguous in many cases. However, it is possible to infer that the ancestor of this clade already had a morphology similar to the T. utriculata complex and exhibited an inflorescence with red tinges and, as mentioned previously, whitish petals. What remains uncertain, however, is whether this ancestor was epiphytic, had vegetative reproduction or was monocarpic. The distribution of this ancestor could have been restricted to the western Mesoamerican Zone, from where some species presumably invaded the eastern Mesoamerican Zone, the Antilles and Florida in one direction and the Mexican Plateau in another direction (Fig. 4).

The Gulf-Antillean clade (T. utriculata, T. calcicola, T. elusiva and T. pringlei) was named because it has a distribution that is limited to the west by the Sierra Madre Oriental and occupies the Gulf of Mexico, the Continental Caribbean shore (except Panama), the Antilles, Florida and northern Venezuela. The Mexican Plateau clade (T. albida, T. karwinskyana and T. fresnilloensis) is restricted to this dry and high area.

The Gulf-Antillean clade is formed by species distributed from eastern Mesoamerica and the Antilles, which share several morphological characteristics: paniculate inflorescences; a zygomorphic corolla with a lateral opening; and warty wing cells of the foliar scales, which have an entire or crenate margin (Fig. 5). The ancestral area analysis indicated that the most probable ancestral distribution area of this clade was the western Mesoamerican Zone. This ancestor presumably colonized warm montane and humid lowland areas with xeric T. calcicola in the Antilles and with mesic T. utriculata, which has the broadest distribution in this complex, as it is found from arid zones of the Yucatan Peninsula (Mexico) and the Antilles, to warm and humid zones in Mesoamerica, the Gulf of Mexico and the Continental Caribbean slopes and subtropical areas in Florida. Tillandsia elusiva occupied a zone restricted to intermediate elevations of warm and subhumid

Figure 5. Morphology of the species of the Tillandsia utriculata clade, Gulf-Antillean Clade. A, Inflorescence of T. elusiva. B, Petal of T. utriculata (note acute apex). C, Foliar trichome of T. utriculata (note entire margin). D, Flower of T. pringlei (note the lateral opening of the corolla).
climatic conditions in western Chiapas, at the limit of the Gulf of Mexico and Pacific provinces (Pinzón et al., 2011). This species is the only one in the T. utriculata clade that has a pink inflorescence (Fig. 4).

The species of the Mexican Plateau clade (T. albida, T. fresnilloensis and T. karwinskyana) share simple inflorescences and foliar scales with a dentate margin, in addition to having reddish inflorescences with whitish petals and spreading petal tips (Fig. 6). In this group, T. albida (caulescent, with reticulate ornamentation in the wing cells of foliar scales) is the earliest diverging species and subtends the clade formed by T. fresnilloensis and T. karwinskyana (acaulescent, with smooth wing cells of foliar scales). The ancestor of these three species was probably distributed in the Mexican Plateau, growing on rocks and exhibiting caespitose growth (Fig. 4). The aspect of this ancestor may have been similar to that of T. albida but acaulescent, as it presumably had conspicuous foliar sheaths and a dense indumentum, but with scales appressed to the leaf, without the tomentose aspect found in T. fresnilloensis and T. karwinskyana, which lack conspicuous foliar sheaths. This ancestor presumably was adapted to rocky environ-
ments in south-eastern areas of the Mexican Plateau, in the states of Hidalgo, Querétaro and Guanajuato, where it gave rise to T. albida, and to more northern areas with gypsum-rich outcrops, where it gave rise to T. karwinskyana. Towards the western side of the plateau, this ancestor gave rise to T. fresnilloensis, where it adapted to volcanic rocks present in the Sierra de Organos and related systems in the states of Zacatecas, Durango and Jalisco.

The Tillandsia limbata clade

The T. limbata clade (F) is composed almost exclusively of species restricted to or including Mexico in their distribution range, the only exception being T. izabalensis which is distributed from Honduras to Nicaragua (Pinzón et al., 2012). The inclusion of T. nicolasensis and T. tehuacana in this complex is weakly supported and only evident in the broad analysis of matK-trnK and rps16 (Fig. 1). Nonetheless, all species of clade F can be differentiated from the T. utriculata clade in that the apex of the petal is rounded and they have a constriction of the corolla at the height of the ovary apex (Fig. 7). In any case, T. nicolasensis and T. tehuacana appear to have

Figure 6. Morphology of the species of the Tillandsia utriculata clade, Mexican Plateau Clade. A, Inflorescence of T. karwinskyana. B, Foliar trichome of T. albida (note the dentate margin). C, Flower of T. fresnilloensis.
diverged earlier than the rest of the species belonging to the complex. The ancestor of the T. limbata clade, including T. nicolasensis and T. tehuacana, was presumably distributed in the western Mesoamerican Zone. From there, it migrated and gave rise to T. tehuacana in the high-elevation and arid eastern zone of the Trans-Mexican Volcanic Belt Province (Morrone, 2005) and adjacent areas, or in the Valle de Tehuacán-Cuicatlán Province in the phytogeographical scheme of Rzedowski (1978). Tillandsia nicolasensis remained in the lowlands and eventually occupied (as at present) coastal areas in southern Mexico. An autapomorphic change that appeared in this species is the red pigment in the petals, which is a unique characteristic in this complex and is rare in the Mexican clade and in Tillandsia as a whole (Smith \& Downs, 1977) (Fig. 4).

The western Mesoamerican clade (T. comitanensis, T. cucaensis, T. huamelulaensis, T. pinicola and T. makoyana) is unresolved, except for the position of one early-diverging specimen of T. cucaensis, which is separated from the rest of the species, which themselves form a polytomy that includes the remaining specimens of T. cucaensis. This early-diverging specimen could represent a cryptic species, but phylogeographical analyses are needed to test this hypothesis.

Although the eastern Mesoamerican clade (T. izabalensis, T. limbata, T. may-patii and T. dasyliriifolia) has moderate to low support, it exhibits geographical, morphological and ecological congruence. The inclusion of T. may-patii in this clade is remarkable because this taxon does not exhibit the characteristics of the T. utriculata complex, instead having a cylindrical and compact paniculate inflorescence and imbricate bracts. Tillandsia may-patii is probably a natural hybrid for which T. dasyliriifolia is the maternal parent, as this species is the only species in this clade that is sympatric with the former (Ramírez \& Carnevali, 1999). The ancestor of the T. limbata clade presumably colonized lowlands with a warm subhumid climate present in the Gulf of Mexico and Gulf of Honduras coming from the west, from the other side of the mountains in Mexico and Central America. The invasion of this biogeographical zone presumably occurred once in the T. limbata clade, but it is not clear whether the ancestral area of distribution was the actual eastern Mesoamerican Zone (42.68\%) or a broader area, including both eastern and western Mesoamerican Zones (42.93\%). This ancestor had, according to the parsimony-based reconstruction, reddish inflorescences, whitish petals, was an epiphyte and produced

Figure 7. Morphology of the species of the Tillandsia limbata clade. A, Inflorescence of T. cucaensis. B, Petal of T. cucaensis (note the rounded apex). C, Foliar trichome of T. dasyliriifolia. D, Corolla, androecium and gynoecium of T. pinicola (note the constriction towards the base of the corolla).
axillary propagules (Fig. 4). The three species of the eastern Mesoamerican clade invaded different environments: T. dasyliriifolia became established on the Yucatan Peninsula, in warm subhumid environments, and in the arid north-western zone of this region as an epiphytic or terrestrial species with the capacity to produce propagules in the inflorescence (Fig. 4); T. limbata occupies the warm and humid region of the Gulf of Mexico and the temperate subhumid mountainous zone of the Sierra Madre Oriental and northern Chiapas (this colonization to midelevations was secondary); and T. izabalensis occupies the warm humid zone of the Gulf of Honduras, of southern Belize, Guatemala, Honduras and northern Nicaragua. Based on this information, the ancestor of the Gulf-Caribbean clade could have been similar in aspect to T. izabalensis.

The ETS nkDNA

The most interesting finding of this analysis is that the Mexican Plateau species of the T. utriculata clade and T. pringlei are grouped in a lineage together with species of the T. limbata clade and not with T. utriculata, T. calcicola and T. elusiva (Fig. 3). This incon-
gruence could have been caused by homoplasious characters (which probably resulted in low support), but could also be indicative of reticulate evolution for which species of the Mexican Plateau clade and T. pringlei would have shared a maternal parent of the T. utriculata clade and a paternal parent of the T. limbata clade. Nonetheless, further exploration using more nuclear molecular markers is needed to reach stronger conclusions in this regard. What is clear is that T. pringlei is different from T. utriculata, as it is located outside the Gulf-Antillean clade, with up to seven different positions in the alignment.

With regard to the remaining species of the GulfAntillean clade, we observed a grouping that included T. utriculata specimens from the humid zone of the Gulf and continental Caribbean slopes (Chiapas and Guatemala) and T. elusiva, which is found in subhumid and semiarid environments of the transition zone of the Gulf of Mexico Province and the Pacific Province (sensu Morrone, 2005). From these results, we did not find evidence that T. elusiva is a hybrid between T. utriculata and any species of the T. limbata clade, as suggested by Gardner (1984). The specimens of T. utriculata from the Antilles and T. calcicola formed a polytomy at the
base of the Gulf-Antillean clade. Because of the low resolution of the clade, it is not possible to determine whether the populations of the continental tropical area form a species that is different with respect to Antillean populations, as there were insufficient morphological differences to separate them. The only difference we detected was the inflorescence colour, which is dark purple in the continental populations from humid zones and red or green in the populations from the Antilles and the Yucatan Peninsula.

Incongruence of plastid DNA and ETS PHYLOGENETIC TREES

It is important to mention that results based solely on plastid DNA data, as used primarily in this study, only allow the discussion of maternal-side phylogenetic relationships. In a group with no reticulate evolution, the maternal and paternal phylogenetic history should be identical, but we have evidence that natural hybridization in Tillandsia is, if not ubiquitous, at least possible, and there are several reports of putative natural hybrids (Gardner, 1984). Furthermore, there is evidence of reticulate evolution and probably plastid capture in other genera of Bromeliaceae, e.g. in Puya Molina, in which plastid data strongly support a Chilean clade, whereas the PHYC marker splits Chilean Puya into two clades, one of them sister to the core Puya clade (Jabaily \& Sytsma, 2010). A similar pattern occurs in the Deuterocohnia Mez/Abromeitiella Mez alliance, which, with nuclear DNA data, forms a monophyletic group, but, with plastid DNA, forms a paraphyletic group, with one of the clades sister to Dyckia Schult.f. and Encholirium Mart. ex Schult.f. (Schütz, 2012). The author interprets this pattern as plastid capture from a Dyckia/Encholirium ancestor through hybridization and introgression of a Deuterocohnia ancestor through pollination (Schütz, 2012).

Although we found that the matrices with plastid DNA and ETS are not congruent, as the ILD test shows, there are not hard incongruences in the phylogenetic trees, i.e. the incongruent clades in the analysis with ETS have low support. Hence, these incongruences could be a result of plastid capture, but also could be an effect of high homoplasy in the ETS data. To assess this, it is necessary to explore other nuclear DNA markers for comparison with the phylogenetic trees obtained with plastid data.

Comparison with other phylogenetic studies

Previous phylogenetic studies included only a few species of the T. limbata and T. utriculata clades obtained here. One of the first phylogenetic studies of Bromeliaceae (Terry et al., 1997b) only included
T. utriculata, which was located in a clade with T. secunda and Vriesea espinosae (L.B.Sm.) Gilmartin. Excluding V. espinosae, this clade would be equivalent to clade A in our study. It seems likely that there was an error in assigning the sequence to V. espinosae, as this species is located outside clade A, with other grey-leaved xeric Vriesea spp. (Barfuss, 2012). The study of Barfuss et al. (2005) only included two accessions of T. utriculata which were located in a clade that is equivalent to clades D (clade K in Barfuss et al., 2005) and A (equivalent to clade K plus T. paniculata in Barfuss et al., 2005) in our study, and therefore results are consistent. In addition, the phylogenetic study of the T. macdougallii L.B.Sm. complex by Granados (2008) included T. utriculata and T. makoyana. These species formed a polytomy in a clade equivalent to clade D in our study. Also, the phylogenetic analysis with ETS by Chew et al. (2010) for species of T. subgenus Tillandsia with pseudobulbs did not resolve the relationships of T. utriculata, which formed a polytomy at the base of their cladogram (excluding T. deppeana Steud.); on the other hand, T. dasyliriifolia and T. makoyana were grouped in a clade with low support ($\mathrm{BS}=62$), which is consistent with clade F in our study. In the combined analysis of 5.8 S , ITS2, ETS nrDNA and coded indels as a fifth state, T. makoyana was grouped with T. filifolia Schltdl. \& Cham., although this relationship is unsupported. However, the coding of indels as a fifth character state is controversial and has not been used often, because it can be redundant in indelrich markers, giving excessive weight to indels during the phylogenetic reconstruction. This relationship is also not consistent with our analyses, even in the topology obtained here with the ETS nrDNA (Fig. 3).

CONCLUSIONS

Based on our phylogenetic analyses, we conclude that the species that share characteristics of the T. utriculata complex do not constitute a monophyletic group, and we instead suggest that this syndrome has been gained and lost repeatedly throughout the evolution of T. subgenus Tillandsia. However, all the species with this morphology are located in a clade dominated by species of T. subgenus Tillandsia. The South American species with this morphology are found in two lineages in a trichotomy with the Mexican clade in T. subgenus Tillandsia and are not closely related to T. utriculata. The species originally proposed as part of the complex (T. utriculata s.l.) are found in a predominantly Mexican clade, forming two lineages: the T. utriculata clade and the T. limbata clade. Based on the available information, it is not possible to determine
whether these two complexes represent a monophyletic group. The origin of both lineages appears to be western and central Mesoamerica and the T. utriculata complex is symplesiomorphic. In this zone, there were several colonizations of different habitats. The Mexican Plateau clade underwent a diversification in this area and gave rise to lithophytic species with caespitose growth and simple inflorescences; the Gulf-Antillean clade presumably migrated to the Gulf of Mexico region and Antilles, whereas monocarpy arose in T. utriculata and T. elusiva. Conversely, the western Mesoamerican clade radiated in its ancestral distribution area, where it originally occupied an epiphytic niche and was distributed in tropical and subtropical zones, and, lastly, the eastern Mesoamerican clade colonized lower, warm and humid or subhumid areas in the eastern Mesoamerican zone, adapting to mesic conditions. The analysis with ETS resulted in low resolution, but allowed us to distinguish T. utriculata and T. pringlei, which were previously considered to be subspecies of the same species.

ACKNOWLEDGEMENTS

The first author acknowledges Consejo Nacional de Ciencia y Tecnología (National Counsil on Science and Technology) for providing a scholarship during his doctoral studies at the CICY and postdoctoral stay at the University of Vienna. We are especially indebted to Peter Tristram for organizing funding that partially covered the costs of this project and all the organizations that provided funds: the Bromeliad Societies of Australia, Cairns, Hunter, Illawarra, New South Wales, Queensland, and South Australia, and the German Bromeliad Society. We also thank the following persons who have made donations: Greg Aizlewood, Peter Bak, Margaret and Derek Butcher, Brenton Cadd, Ray Clark, Len Colgan, Nanette Collingwood, Terry Davis, Joe DeGabriel, Laurie Dorfer, Renate Ehlers, Barry Genn, Brad Gillis, Ian Hook, Paul Isley III, Maurice Kellett, Chris Larson, Justin Lee, Ross Little, Kerry McBurnie, Steve Morgan, G. and J. Newell, George Nieuwenhoven, John Olsen, Grant Paterson, Bob Reilly, Dave Sheumack, Mark Supple, Peter Tristram, Paul Turvey, Shane Weston and Dawn Williams. We also thank Gregorio Amílcar Castillo (CICY), Francisco Chi May (CICY), Rodrigo Duno (CICY), Gustavo A. Romero (AMES) and José Luis Tapia (CICY) for helping with the field work, and Lilia Can and Silvia Hernández (CICY) for herbarium specimen management. We acknowledge Bruce Holst (SEL), Helmut and Lieselotte Hromadnick, and Lyidia and Gerahard Köres, who allowed the senior author access to and to take samples from the living collection
of the Marie Selby Botanical Gardens and their private collections. We thank Carolina Granados (UNAM) for providing sequences of Tillandsia, Luis Abdala Roberts for the translation of the manuscript and Mario Martínez Cordero for helping with the editing of the figures. Finally, we acknowledge the two anonymous reviewers who helped to improve this article significantly.

REFERENCES

Baldwin BG, Markos S. 1998. Phylogenetic utility of the external transcribed spacers (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10: 449-463.
Barfuss MH. 2012. Molecular studies in Bromeliaceae: implications of plastid and nuclear DNA markers for phylogeny, biogeography, and character evolution with emphasis on a new classification of Tillandsioideae. DPhil Thesis, University of Vienna.
Barfuss MH, Samuel R, Till W, Stuessy TF. 2005. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. American Journal of Botany 92: 337-351.
Beaman RS, Judd WS. 1996. Systematics of Tillandsia subgenus Pseudalcantarea. Brittonia 48: 1-19.
Benzing DH. 2000. Bromeliaceae: profile of an adaptive radiation. Cambridge: Cambridge University Press.
Chew T, De Luna E, González D. 2010. Phylogenetic relationships of the pseudobulbous Tillandsia species (Bromeliaceae) inferred from cladistic analyses of ITS2, 5.8 ribosomal RNA gene, and ETS sequences. Systematic Botany 35: 86-95.
Crayn DM, Winter K, Smith JAC. 2004. Multiple origins of the crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proceedings of the National Academy of Sciences 101: 3703-3708.
De Castro O, Cennamo P, Vázquez-Torres M, De Luca P. 2009. Molecular studies about two rare species of the genus Tillandsia L. (T. califanii Rauh and T. tomasellii De Luca, Sabato, Balduzzi). Journal of the Bromeliad Society 59: 206-218.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, Botanical Society of America 19: 13-15.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
Ehlers R. 2006a. Tillandsia huamenulaensis: a new species from the State of Oaxaca, Mexico. Journal of the Bromeliad Society 56: 56-59.
Ehlers R. 2006b. Tillandsia nicolasensis: a new species from coastal Jalisco, Mexico. Journal of the Bromeliad Society 56: 70-72.
Ehlers R. 2006c. Tillandsia comitanensis: a new highland species from Chiapas, Mexico. Journal of the Bromeliad Society 56: 116-119.

Ehlers R. 2009. The green-blooming, small, grey Tillandsias from Mexico. Die Bromelie, Sonderheft, Vol. 6.
Escalante T, Rodríguez G, Cao N, Ebach MC, Morrone JJ. 2007. Cladistic biogeographic analysis suggests an early Caribbean diversification in Mexico. Naturwissenschaften 94: 561-656.
Farris JS, Källersjö M, Kluge AG, Bult C. 1994. Testing significance of incongruence. Cladistics 10: 315-319.
Gardner CS. 1982. Tillandsia ehrenbergii (K. Koch) Klotzsch ex Mez - an ancient case of mistaken identity. Journal of the Bromeliad Society 32: 17.
Gardner CS. 1984. Natural hybridization in Tillandsia subgenus Tillandsia. Selbyana 7: 380-393.
Gardner CS. 1986. Preliminary classification of Tillandsia based on floral characters. Selbyana 9: 130-146.
Gentry AH. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557-593.
Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. American Journal of Botany 98: 872-895.
Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC, Berry PE, Sytsma KJ. 2004. Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapataceae and Bromeliaceae based on $n d h F$ sequence data. International Journal of Plant Sciences 165(4 Suppl.): S35-S54.
Goloboff P, Farris J, Nixon K. 2003. T.N.T.: tree analysis using new technology. Program and documentation, available from the authors, and at www.zmuc.dk/public/phylogeny
Granados C. 2008. Sistemática del complejo Tillandsia macdougallii. Master's Thesis, Universidad Nacional Autónoma de México.
Horres R, Zizka G, Kahl G, Weising K. 2000. Molecular phylogenetics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome. Plant Biology 2: 305-315.
Jabaily RS, Sytsma KJ. 2010. Phylogenetics of Puya (Bromeliaceae): Placement, major lineages, and evolution of Chilean species. American Journal of Botany 97: 337-356.
Johnson LA, Soltis DE. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Gardens 82: 149-175.
Lagercrantz E. 2008. eBioX. Version 1.5.1. Available at: http://www.ebioinformatics.org
Luther H. 2012. An alphabetical list of bromeliad binomials, $13 t h$ edn. Sarasota, FL: Marie Selby Botanical Gardens \& Bromeliad Society International.
Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis. v 2.75. Available at: http:// mesquiteproject.org

Mez HC. 1935. Bromeliaceae. In: Engler HGA, ed. Das Pflanzenreich. Regni Vegetabilis Conspectus, Leipzig: Verlag von Wilhelm Engelmann (Grossdruckerei Paul Dünnhaupt, Köthen (Anhalt)).
Molvray M, Kores PJ, Chase M. 2000. Polyphyly of mycoheterotrophic orchids and functional influences on floral and molecular characters. In: Wilson KL, Morrison DA, eds. Monocots: systematics and evolution. Collingwood, Vic.: CSIRO Publishing, 441-448.
Morrone JJ. 2001. Biogeografía de América Latina y el Caribe. Zaragoza: Manuales y Tesis SEA 3.
Morrone JJ. 2005. Hacia una síntesis biogeográfica de México. Revista Mexicana de Biodiversidad 76: 207-252.
Nixon KC. 2002. WinClada ver. 1.00.08. Available at: http:// www.cladistics.com/wincDownload.htm
Oxelman B, Lidén M, Berglund D. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematics and Evolution 206: 393-410.
Pinzón JP, Ramírez-Morillo IM, Carnevali FernándezConcha G. 2011. Morphometric analyses within the Tillandsia utriculata L. complex (Bromeliaceae) allow for the recognition of a new species, with notes on its phylogenetic position. Journal of the Torrey Botanical Society 138: 353-365.
Pinzón JP, Ramírez-Morillo IM, Carnevali FernándezConcha G. 2012. The re-establishment of Tillandsia cucaensis (Bromeliaceae), a good species formerly confused with a new species from the Gulf of Honduras. Phytotaxa 61: 1-16.
Posada D. 2008. jModel Test: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256.
Ramírez I, Carnevali G. 1999. New species of Tillandsia, some new records, and a checklist of the Bromeliaceae from the Yucatan Peninsula. Harvard Papers in Botany 4: 185194.

Ramírez I, Carnevali G. 2007a. Two new species in the Tillandsia utriculata complex (Bromeliaceae) from Mexico. Novon 17: 72-78.
Ramírez I, Carnevali G. 2007b. A new species in the Tillandsia utriculata complex (Bromeliaceae) from Mexico. Novon 17: 383-385.
Ramírez I, Carnevali G, Chi F. 2004. Portraits of Bromeliaceae from the Mexican Yucatan Peninsula IV: Tillandsia dasylirifolia Baker: taxonomy and reproductive biology. Journal of the Bromeliad Society 54: 112-121.
Ranker TA, Soltis DE, Soltis PS, Gilmartin AJ. 1990. Subfamilial phylogenetic relationships of the Bromeliaceae: evidence from chloroplast DNA restriction site variation. Systematic Botany 15: 425-434.
Rex M, Schulte K, Zizka G, Weising K. 2009. Phylogenetic analysis of Fosterella L.B. Sm. (Pitcairnioideae, Bromeliaceae) based on four chloroplast DNA regions. Molecular Phylogenetics and Evolution 51: 472-485.
Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Ronquist F, Huelsenbeck JP, Teslenko M. 2011. MrBayes version 3.2 manual: tutorials and model summaries. Program manual. Available at: www.mrbayes.net

Rzedowski J. 1978. La vegetación de México, 1a ed. digital. Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
Schütz N. 2012. Systematics and evolution of the genus Deuterocohnia Mez (Bromeliaceae). Dr. Rer. Nat. Dissertation, University of Kassel.
Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275-288.
Simmons MP, Ochoterena H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369-381.
Smith LB, Downs RJ. 1977. Tillandsioideae (Bromeliaceae). In: Flora Neotropica, Monograph 14, Part 2. New York: Haffner Press, 661-1492.
Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. 2007. A multigene phylogeny of Clavicipitaceae (Ascomy-
cota, Fungi): identification of localised incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204-1223.
Terry RG, Brown GK, Olmstead RG. 1997a. Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus ndhF. American Journal of Botany 84: 664-670.
Terry RG, Brown GK, Olmstead RG. 1997b. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) using ndhF sequences. Systematic Botany 22: 333-345.
Whitten WM, Williams NH, Chase M. 2000. Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. American Journal of Botany 87: 1842-1856.
Yu Y, Harris AJ, Blair C, He XJ. 2015. RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87: 46-49.
Appendix 1
List of taxa, code, GenBank accession number, voucher and locality of the samples used for this study (NS, not sequenced).

Species	Code	matK-trnK 3^{\prime}	rps16 intron	rpl32-trnL	ETS	Voucher	Locality
Catopsis nutans (Sw.) Griseb. var. nutans	B0002	AY614392†	AY614148 \dagger	KU848418	KU848264	E. Trauner s.n. (WU)	Costa Rica
Racinaea fraseri (Baker) M.A.Spencer \& L.B.Sm.	GB2910	AF539977*§	AF537914§	NS	NS	G. Brown $2910 \text { (RM) }$	-
R. fraseri	FRP90	EU681906**	EF643192**	NS	NS	G. Zizka 1582 (FRP)	-
T. achyrostachys E.Morren ex Baker	DTA1	FM210787**	FM211650**	NS	NS	Dotterer TA1 (NAP)	Mexico
T. achyrostachys	LTA2	FM210788**	FM211653**	NS	NS	Larson TA2 (NAP)	Mexico
T. achyrostachys	ALF6532	NS	NS	NS	FJ666937*	A. Espejo et al. 6532 (UAMIZ)	-
T. adpressiflora Mez	B0597	KU848347	KU848508	KU848440	KU848284	W. Till 21158 (WU)	Ecuador: Napo
T. aeranthos (Loisel.) L.B.Sm.	B0111	AY614131†	AY614253 \dagger	NS	NS	Coll. M.H.J. Barfuss s.n. (WU)	-
T. albertiana Verv.	B0033	AY614117 \dagger	AY614239 \dagger	NS	NS	HBV B387/90 (WU)	Argentina: Salta
T. albida Mez \& Purpus	JP016	KU848380	KU848509	KU848458	KU848321	I. Ramírez \& S. Zamudio 1414 (CICY)	Mexico: Querétaro
T. andrieuxii (Mez) L.B.Sm.	B0063	AY614088 \dagger	AY614210 \dagger	NS	NS	HBV B 256/95 (WU)	Mexico
T. atroviridipetala Matuda	TC089	NS	NS	NS	FJ666932*	T. Chew 89 (XAL)	Mexico
T. argentea Griseb.	JP082	KU848359	KU848568	KU848431	KU848289	K. Willinger s.n. (SEL)	Cuba: Oriente
T. argentina C.H.Wright	B0087	AY614124 \dagger	AY614246 \dagger	NS	NS	H. Till 88-45 (WU)	Argentina: Catamarca
T. ariza-juliae L.B.Sm. \& J.Jiménez. Alm.	PKT504	NS	NS	NS	Fj666939*	Bird Rock Tropical Koide T504	-
T. balbisiana Schult.f.	TC167	NS	NS	NS	EU126833 \ddagger	T. Chew 167 (XAL)	-
T. baliophylla Harms	B0101	AY614114†	AY614236 \dagger	NS	NS	W. Till 17025 (WU)	Dominican Republic: La Vega
T. barclayana Baker	B0028	AY614079 \dagger	AY614201 \dagger	NS	NS	HBV B518/96 (WU)	Ecuador
T. barthlottii Rauh	B0035	AY614076 \dagger	AY614198 \dagger	NS	NS	H. \& L. Hromadnik 4078 (WU)	Ecuador: Loja
T. barthlotti	B0716	NS	NS	KU848427	NS	H. \& L. Hromadnik 4078 (WU)	Ecuador: Loja
T. bergeri Mez	B0097	AY614134 \dagger	AY614256 \dagger	NS	NS	W. Papsch \& G. Hold 89-060/074	Argentina: Buenos Aires
T. bergeri	B0110	AY614133 \dagger	AY614255 \dagger	NS	NS	Coll. M.H.J. Barfuss s.n. (WU)	-

Appendix 1. Continued

Species	Code	matK-trnK 3^{\prime}	rps16 intron	rpl32-trnL	ETS	Voucher	Locality
T. bermejoensis L. Hrom.	B0034	AY614123 \dagger	AY614245 \dagger	NS	NS	W. Till 144 (WU)	Bolivia: Santa Cruz
T. biflora Ruiz \& Pav.	B0090	AY614123 \dagger	AY614245 \dagger	NS	KU848281	F.-G. Gruber s.n.	Venezuela: Lara
T. brachyphylla Baker	B0082	AY614105 \dagger	AY614227 \dagger	NS	KU848280	HBV B99B16-1 (WU)	Brazil: Rio de Janeiro
T. brevilingua Mez ex Harms	B0056	AY614113 \dagger	AY614235 \dagger	NS	NS	W. \& S. Till 2097 (WU)	Peru: San Martin
T. bulbosa Hook.	TC126	NS	NS	NS	FJ666933*	T. Chew 126 (XAL)	-
T. cacticola L.B.Sm.	B0044	AY614070 \dagger	AY614192 \dagger	KU848426	NS	W. Till 2133 (WU)	Peru: Piura
T. calcicola L.B.Sm. \& Proctor	JP105	KU848367	KU848539	KU848445	KU848308	Rutschmann s.n. (WU)	Jamaica
T. califanii Rauh	WR36219	FM210789**	FM211651**	NS	NS	W.Rauh 36219 (HEID)	Mexico: Puebla
T. califanii	WTC5	FM210790**	FM211652**	NS	NS	Wrinkle TC5 (NAP)	Mexico
T. caput-medusae E. Morren	B0046	AY614098 \dagger	AY614220†	KU848500	KU848307	W. Till 7117 (WU)	Costa Rica: Puntarenas
T. caput-medusae	TC100	NS	NS	NS	FJ666934 ${ }_{\text {\% }}$	T. Chew 100 (XAL)	-
T. carlos-hankii Matuda	B0062	AY614089 \dagger	AY614211 \dagger	NS	KU848296	L. Hromadnik 15169 (WU)	Mexico: Oaxaca
T. carnosa L.B.Sm.	B0755	KU848356	KU848572	KU848430	KU848269	W. Till 2066 (WU)	Peru: Amazonas
T. caulescens Brong. ex Baker	B0071	AY614126 \dagger	AY614248†	NS	NS	E. Vitek 820812/72-1 (WU)	Peru: Apurimac
T. chlorophylla L.B. Sm.	JP139	NS	KU848564	KU848498	KU848299	J.P. Pinzón et al. 119 (CICY)	Mexico: Chiapas
T. coinaensis Ehlers	B0091	AY614102 \dagger	AY614224 \dagger	NS	NS	E. Zecher 21/76 (WU)	Peru: Cajamarca
T. comitanensis Ehlers	JP074	KU848387	KU848513	KU848467	KU848327	$\begin{aligned} & \text { J.P. Pinzón et al. } 97 \\ & \text { (CICY) } \end{aligned}$	Mexico: Chiapas
T. aff. comitanensis	JP075	KU848386	KU848514	KU848468	KU848317	J.P. Pinzón et al. 98 (CICY)	Mexico: Chiapas
T. cucaensis Wittm.	JP029	KU848388	KU848532	KU848471	KU848342	J.P. Pinzón et al. 1 (CICY)	Mexico: Oaxaca
T. cucaensis	JP030	KU848389	KU848530	KU848469	KU848341	J.P. Pinzón \& G. Carnevali 77 (CICY)	Mexico: Oaxaca
T. cucaensis	JP056	KU848390	KU848524	KU848470	NS	J.P. Pinzón et al. 67 (CICY)	Mexico: Chiapas
T. cucaensis	JP076	KU848392	KU848526	KU848472	KU848340	J.P. Pinzón et al. 99 (CICY)	Mexico: Chiapas
T. dasyliriifolia Baker	JP001	KU848405	KU848534	NS	NS	I. Ramírez et al. 785 (CICY)	Mexico: Yucatán
T. dasyliriifolia	JP003	KU848406	KU848503	KU848488	KU848331	G. Carnevali s.n. (CICY)	Mexico: Campeche

Appendix 1. Continued

Species	Code	matK-trnK 3^{\prime}	rps 16 intron	rpl32-trnL	ETS	Voucher	Locality
T. dasyliriifolia	JP083	KU848407	KU848521	KU848487	KU848332	W. Berg s.n. (SEL)	Belize
T. dasyliriifolia	JP084	KU848408	KU848517	KU848486	NS	Berg \& Cathcart s.n. (SEL)	Belize
T. dasyliriifolia	JP085	KU848409	KU848519	KU848489	KU848339	Carnevali et al. s.n. (SEL)	Mexico: Quintana Roo
T. demissa L.B.Sm.	B0075	AY614115 \dagger	AY614237 \dagger	NS	NS	K.-D. \& R. Ehlers EE84 s.n. (WU)	Ecuador: Loja
T. deppeana Steud.	TC051	NS	NS	NS	FJ666926 \ddagger	T. Chew 51 (XAL)	-
T. didisticha (E.Morren) Baker	B0038	AY614127†	AY614249 \dagger	NS	NS	W. Till 10130 (WU)	Argentina: Jujuy
T. diguetii Mez \& Rol.-Goss.	ALF2972	NS	NS	NS	FJ666923 \ddagger	Lopez-Ferrari et al. 2972 (UAMIZ)	-
T. disticha Kunth	B0048	AY614068 \dagger	AY614190†	NS	NS	K. Oppitz s.n. (WU)	Ecuador: Azuay
T. disticha	B0233	KU848346	NS	KU848422	KU848265	H. \& L. Hromadnik 17063 (WU)	Ecuador
T. dodsonii L.B.Sm.	B0016	AY614072 \dagger	AY614194 \dagger	NS	KU848273	W. Rauh 34183 (WU)	Ecuador
T. dodsonii	B0127	KU848344	NS	KU848505	KU848282	C. H. Doson 5225 (WU)	Ecuador: Pichincha
Tillandsia duratii Vis. var. duratii	B0088	AY614119 \dagger	AY614241 \dagger	NS	NS	W. Till 5072 (WU)	Argentina: La Rioja
T. eizii L.B.Sm.	JC1374	NS	NS	NS	EU126830 \ddagger	Ceja et al. 1374 (MEXU)	-
T. elusiva Pinzón, I.Ramírez \& Carnevali	JP111	KU848373	KU848540	KU848451	KU848310	J.P. Pinzón et al. 104 (CICY)	Mexico: Chiapas
T. elusiva	JP120	KU848374	KU848541	KU848452	KU848311	J.P. Pinzón et al. 105 (CICY)	Mexico: Chiapas
T. erubescens Schltdl.	TC84	NS	NS	NS	EU126831 \ddagger	T. Chew 84 (XAL)	-
T. espinosae L.B.Sm.	B0143	NS	NS	NS	KU848266	BGBM Berlin-Dahlem $021-03-74-8316926$ (B)	-
T. esseriana Rauh \& L.B.Sm.	B0069	AY614120 ${ }^{\dagger}$	AY614242†	NS	NS	HBV B342/90 (WU)	Paraguay: Amambay
T. exserta Fernald	LTE2	FM210791**	FM211654**	NS	NS	Larson TE2 (NAP)	Mexico
T. exserta	B0390	KU848414	KU848562	KU848497	KU848306	Schatzl 51/77 (WU)	Mexico: Nayarit
T. fasciculata Sw. var. fasciculata	$\begin{aligned} & \text { B0076 } \\ & \text { B0717 } \end{aligned}$	AY614100 \dagger	AY614222 \dagger	NS	KU848305	W. \& S. Till 7050 (WU)	Costa Rica: San José
T. fasciculata	WTF2	FM210792**	FM211655**	NS	NS	Wrinkle TF2 (NAP)	Mexico
T. fendleri Griseb. var. fendleri	B0009	AY614116 \dagger	AY614238 \dagger	NS	NS	H. \& L. Hromadnik 2082 (WU)	Peru: La Libertad
T. flabellata Baker	JP069N	KU848416	KU848559	NS	NS	J.P. Pinzón et al. 64 (CICY)	Mexico: Chiapas

Appendix 1. Continued

| Species | Code | matK-trnK 3^{\prime} | rps16 intron | rpl32-trnL | ETS | Voucher | Locality |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T. flabellata | ALF6419 | NS | NS | NS | FJ666928 \ddagger | A. Espejo et al. 6419
 (UAMIZ) | - |
| T. flexuosa Sw. | | | | | | | |

Appendix 1. Continued

Species	Code	matK-trnK 3'	rps16 intron	rpl32-trnL	ETS	Voucher	Locality
T. ionantha Planch. var. ionantha	B0084	AY614099†	AY614221 \dagger	NS	NS	H. \& L. Hromadnik s.n. (WU)	Mexico: Puebla
T. ionantha	TC038	NS	NS	NS	FJ666931*	T. Chew 38 (XAL)	-
T. ixioides Griseb.	B0043	AY614129†	AY614251 \dagger	NS	KU848275	G. Neuhuber $\text { GN 96-936 / } 3084 \text { (WU) }$	Argentina: Catamarca
T. izabalensis Pinzón, I.Ramírez \& Carnevali	JP080	KU848401	KU848515	KU848482	KU848328	R. Foster s.n. (SEL)	Honduras: Cayos
T. izabalensis	B0732	KU848402	KU848522	KU848481	NS	W. Rauh 70802 (HEID)	Guatemala: Izabal
T. juncea (Ruiz \& Pav.) Poir	B0073	AY614097†	AY614219 \dagger	NS	KU848304	W. \& S. Till 7033 (WU)	Costa Rica: Limon
T. juncea	TC057	NS	NS	NS	EU126832†	T. Chew 57 (XAL)	-
T. juruana Ule	JP112	KU848358	KU848567	KU848435	KU848288	Hromadnik 23176 (HBV)	Peru: Junin
T. karwinskyana Schult. \& Schult.f.	JP044	KU848382	KU848538	KU848459	KU848330	Schatzl 76/77 (WU)	Mexico: Hidalgo
T. cf. karwinsyana	B0734	KU848379	NS	NS	NS	R. Ehlers \& L. Köhres s.n. (HEID)	Mexico: Tamaulipas
T. kauffmannii Ehlers	B0074	AY614103 \dagger	AY614225 \dagger	NS	KU848279	E. Trauner s.n. (WU)	Peru: La Libertad
T. kegeliana Mez	JP064	KU848360	KU848570	KU848433	KU848287	M. Speckmaier s.n. (WU)	Panama
T. klausii Ehlers	B0085	AY614096 \dagger	AY614218 \dagger	KU848501	KU848298	K.-D. \& R. Ehlers EM851801	Mexico: Chiapas
T. latifolia Meyen var. divaricata (Benth.) Mez	B0068	AY614108 \dagger	AY614230†	NS	NS	W. Till 13069 (WU, QCA)	Ecuador: Chimborazo
T. leiboldiana Schltdl.	JP140	KU848411	KU848553	KU848492	KU848303	J.P. Pinzón et al. 120 (CICY)	Mexico: Chiapas
T. lepidosepala L.B.Sm.	KHTL001	FM210793**	FM211656**	NS	NS	Kak.Haa TL001 (NAP)	Mexico
T. lepidosepala	B0219	NS	NS	KU848423	KU848293	L. Hromadnik 15195 (WU)	Mexico: Puebla
T. limbata Schltdl.	JP020	KU848403	KU848504	KU848483	KU848334	I. Ramírez et al. 1464 (CICY)	Mexico: Veracruz
T. limbata	JP055	KU848404	KU848528	KU848484	NS	J.P. Pinzón et al. 70 (CICY)	Mexico: Chiapas
T. \times duvalii L. Duval	B0023	AY614080 \dagger	AY614202†	KU848419	KU848274	HBV B91/80 (WU)	-
T. \times duvalii	B0746	NS	NS	NS	KU848283	Göttingen s.n. (WU)	-
T. macbrideana L.B.Sm. var. macbrideana	B0070	AY614109 \dagger	AY614231 \dagger	NS	NS	HBV B249/87 (WU)	Peru: Lima
T. macdougallii L.B.Sm.	HSSN	FM956440† \dagger	NS	NS	NS	S.H. Salas s.n. (MEXU)	Mexico: Oaxaca

Appendix 1. Continued

Species	Code	matK-trnK 3^{\prime}	rps16 intron	rpl32-trnL	ETS	Voucher	Locality
T. macdougallii	JP100	NS	KU848550	KU848496	NS	D. Mondragón 28 (CICY)	Mexico: Oaxaca
T. macropetala Wawra	B0742	NS	KU848573	KU848425	KU848272	J. Lautner 05/17	(GOET, WU)

Appendix 1. Continued

Species	Code	matK-trnK 3^{\prime}	rps16 intron	rpl32-trnL	ETS	Voucher	Locality
T. pinicola	JP070	KU848396	KU848525	KU848475	KU848326	J.P. Pinzón \& G. Carnevali 136 (CICY)	Mexico: Oaxaca
T. plumosa Baker	B0086	AY614075 \dagger	AY614197 \dagger	NS	NS	K.-D. \& R. Ehlers EM 881905 (WU)	Mexico: Oaxaca
T. pohliana Mez	B0080	AY614128 ${ }^{+}$	AY614250 \dagger	NS	NS	W. Till 11004 (WU)	Brazil: São Paulo
T. pringlei S.Watson	JP004	KU848375	KU848548	KU848457	KU848324	I. Ramírez \& S. Zamudio 1435 (CICY)	Mexico: Querétaro
T. pringlei	JP096	NS	KU848543	KU848455	KU848335	G. Newhouse s.n. (SEL)	Mexico: Tamaulipas
T. pringlei	B0733	KU848376	KU848545	KU848456	NS	W. Rauh 21345 (HEID)	Mexico: San Luis Potosí
T. pringlei	B0735	KU848377	KU848542	KU848454	KU848336	A. Lau s.n. (HEID)	Mexico: Querétaro
T. pringlei	B0736	KU848378	KU848544	KU848453	NS	W. Rauh 21340 (HEID)	Mexico: San Luis Potosí
T. prodigiosa (Lem.) Baker	CG320	FM956437† \dagger	NS	NS	NS	C. Granados 320 (MEXU)	Mexico: Oaxaca
T. prodigiosa	JP098	NS	KU848552	KU848495	NS	A.R. López-Ferrari et al. 3069 (CICY)	Mexico: Oaxaca
T. propagulifera Rauh	JP043	KU848350	KU848575	KU848443	KU848268	H. \& L. Hromadnik 2139 (WU)	Peru: Amazonas
T. pseudomacbrideana Rauh	B0036	AY614110†	AY614232†	NS	NS	W. Rauh 53774 (WU)	Peru: Cajamarca
T. pueblensis L.B.Sm.	JP049	KU848417	KU848560	KU848502	NS	Zecher s.n. (WU)	Mexico
T. punctulata Schltdl. \& Cham.	B0061	AY614087†	AY614209†	KU848493	KU848297	H.-H. Deissl s.n. (WU)	Costa Rica
T. punctulata	TC049	NS	NS	NS	FJ666930*	T. Chew 49 (XAL)	-
T. rauhii L.B.Sm. var. rauhii	B0092	AY614101†	AY614223 \dagger	NS	NS	W. Rauh 69417 (WU)	Peru: Cajamarca
T. remota Wittm.	B0072	AY614095 \dagger	AY614217 \dagger	NS	NS	H. \& I. Seethaler s.n. (WU)	Honduras: Copán
T. secunda Kunth	JP063	KU848348	KU848577	KU848441	KU848318	W. Till 21022 (WU)	Ecuador: Imbabura
T. seleriana Mez	TC121	NS	NS	NS	FJ666929*	T. Chew 121 (XAL)	-
T. singularis Mez \& Wercklé	B0064	AY614039 \dagger	AY614161 \dagger	NS	NS	W. Till 15023 (WU)	Costa Rica: Alajuela
T. socialis L.B.Sm.	JP062	KU848365	KU848557	KU848462	KU848290	HBV B271/96 (WU)	Mexico
T. socialis	JP094	KU848364	KU848558	KU848463	KU848291	D. Cathcart s.n. (SEL)	Mexico: Chiapas
T. spiraliflora Rauh	JP104	KU848349	KU848576	KU848439	NS	L. Hromadnik 2114 (WU)	Peru: Amazonas
T. stricta Sol. ex Sims var. stricta	B0081	AY614130 \dagger	AY614252 \dagger	NS	NS	E. Markus s.n. (WU)	Brazil: Minas Gerais

Appendix 1. Continued

Species	Code	matK-trnK 3^{\prime}	rps 16 intron	rpl32-trnL	ETS	Voucher	Locality
T. rupicola Baker	B0039	AY614073†	AY614195 \dagger	NS	NS	W. Till 13081 (WU, QCA)	Ecuador: Azuay
T. tehuacana I.Ramírez \& Carnevali	JP050	KU848383	KU848555	KU848464	KU848322	J.P. Pinzón et al. 47 (CICY)	Mexico: Puebla
T. tenuifolia L. var. tenuifolia	B0026	AY614132 \dagger	AY614254 \dagger	NS	NS	W. Till 131 (WU)	Bolivia: Santa Cruz
T. tomasellii De Luca, Sabato \& Balduzzi	PA3777	FM210795**	FM211658**	NS	NS	P. de Luca et al. 3777 (PAV)	Mexico: Oaxaca
T. tortilis Klotzsch ex Baker ssp. tortilis	B0049	AY614074 \dagger	AY614196†	NS	NS	HBV B218A/88 (WU)	Mexico: Oaxaca
T. triglochinioides C.Presl	B0725	KU848345	KU848506	KU848420	NS	W. Rauh 34378 (HEID)	Ecuador: Manabi
T. usneoides (L.) L.	B0083	AY614122 \dagger	AY614244 \dagger	NS	NS	G. Palim s.n. (WU)	Venezuela
T. usneoides	B0109	AY614121†	AY614243 \dagger	NS	NS	Coll. M.H.J. Barfuss s.n. (WU)	-
T. usneoides	TC050	NS	NS	NS	FJ666938	T. Chew 50 (XAL)	-
T. utriculata L .	JP006	KU848370	KU848547	KU848450	NS	J.P. Pinzón et al. 233 (CICY)	Mexico: Yucatán
T. utriculata	JP060	KU848372	KU848549	KU848449	KU848314	J.P. Pinzón et al. 56 (CICY)	Mexico: Tabasco
T. utriculata	JP061	NS	KU848507	KU848448	KU848313	J.P. Pinzón et al. 206 (CICY)	Mexico: Chiapas
T. utriculata	JP095	NS	NS	KU848447	KU848309	H.B. Rinker s.n. (SEL)	USA: Puerto Rico
T. utriculata	B0027	AY614091 \dagger	AY614213 \dagger	NS	NS	G. Neuhuber 98-982/3296 (WU)	USA: Florida
T. utriculata	B0100	AY614090†	AY614212†	NS	KU848315	W. Till 17007 (WU)	Dominican Republic: Espaillat
T. utriculata	B0807	KU848368	KU848546	KU848446	KU848316	W. Janetzky 22 (WU)	Jamaica: Middlesex
T. cf. utriculata	TC143	NS	NS	NS	FJ666940 \ddagger	T. Chew 143 (XAL)	-
T. venusta Mez \& Wercklé	B0007	AY614081†	AY614203 \dagger	NS	NS	HBV B98B136-1 (WU)	-
T. viridiflora (Beer) Baker	B0006	AY614066 \dagger	AY614188 \dagger	NS	NS	HBV B87/80 (WU)	-
T. wagneriana L.B.Sm.	B0058	AY614067 \dagger	AY614189 \dagger	KU848421	NS	HBV B222/93 (WU)	Peru: Amazonas
T. wagneriana L.B.Sm.	B0217	KU848343	KU848579	NS	KU848270	H. Prinsler s.n., 1990-09 (WU)	Peru: Amazonas
T. werneriana J.R.Grant	B0067	AY614078 \dagger	AY614200 \dagger	NS	NS	H. \& L. Hromadnik 2142 (WU)	Peru: Amazonas

Appendix 1. Continued

| Species | Code | matK-trnK 3^{\prime} | rps16 intron | rpl32-trnL | ETS | Voucher | Locality |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T. xerographica
 Rohweder | LOSN | FM210797** | FM211660** | NS | NS | Lozada s.n. (NAP) | Mexico |
| T. xiphioides
 Ker Gawl.
 var. xiphioides | B0040 | AY614125 \dagger | AY614247† | NS | NS | F. Strigl FO 275 (WU) | Argentina: Santiago del Estero |
| Vriesea malzinei
 E.Morren | B0145 | KU848353 | KU848510 | KU848437 | KU848267 | BGBM | |

[^1]
[^0]: *Corresponding author. E-mail: juan.pinzone@correo.uady.mx

[^1]: *Partial matK sequence, without non-coding part of 3^{\prime} end of trnK intron. \dagger Barfuss et al. (2005).
 \ddagger Chew et al. (2010).
 §rayn et al. (2004).
 **De Castro et al. (2009).
 $\dagger \dagger$ Granados (2008)
 $\ddagger+$ Rex et al. (2009).

