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We performed a phylogenetic analysis using maximum parsimony and Bayesian inference of three plastid DNA
markers and the external transcribed spacer (ETS) of nuclear ribosomal DNA to assess the species composition of
the Tillandsia utriculata complex and their phylogenetic relationships, and to reconstruct patterns of character
evolution and biogeography. The results showed that species of the T. utriculata complex are nested in a clade
composed mainly of Mexican and Central American species of T. subgenus Tillandsia (Mexican Clade), and are
organized in two lineages: the T. utriculata clade and the T. limbata clade. The ancestor of the core Mexican
Clade was probably a T. utriculata-like epiphyte (Group II-type remote flowers and flexuous rachises). The
T. utriculata clade is defined morphologically by the presence of acute petals. In this clade, there are two
lineages: one of high-elevation, saxicolous, grey-leaved plants from the Mexican Plateau; and one which is more
widespread and found from the Gulf of Mexico to Venezuela. The T. limbata clade probably arose in western
Mesoamerica and is defined by rounded petals. These species are found mainly in tropical dry forests, but one
species colonized wet environments of eastern Mesoamerica. Finally, analyses based on the ETS region allowed
us to distinguish between T. utriculata and T. pringlei. © 2016 The Linnean Society of London, Botanical
Journal of the Linnean Society, 2016, 181, 362—-390
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INTRODUCTION few floral characters, such as the exsertion of sta-
mens and shape of the sepals. Gardner (1986) chal-
lenged the classification of Tillandsia subgenus
Tillandsia of Smith & Downs through a detailed
study of floral characters, but that classification
remained provisional and has no molecular phyloge-
netic basis.

For this reason, the phylogenetics of the genus
Tillandsia need to be elucidated. To deal with such a
large and diverse group, two strategies can be fol-
lowed: (1) a top-down approach, sampling as many
*Corresponding author. E-mail: juan.pinzone@correo.uady.mx species as possible, trying to represent all the

Tillandsia L. is the most diverse genus of Bromeli-
aceae, with > 600 species (Luther, 2012), distributed
in tropical and subtropical America, and is one of the
most distinctive components of the epiphytic and epi-
lithic flora in that region (Benzing, 2000). The taxon-
omy of the genus is based mainly on the monograph
of subfamily Tillandsioideae (Smith & Downs, 1977)
and the subgeneric classification hinges on one or a
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morphological and ecological variation and the geo-
graphical distribution; or (2) a bottom—up approach,
sampling all species in a species complex, to deal
with a manageable number of taxa with a reduced
but representative sampling of the outgroup.

Here, we have chosen to follow the second
approach, to answer more fine-scale evolutionary and
taxonomic questions than those that could be made
for the entire genus. Because Tillandsia utriculata
L. is the type species of the genus, it is important to
correctly assess the relationships and species limits
in the species complex, which is composed of morpho-
logically similar taxa, which are difficult to diagnose.

The T. utriculata complex, as defined by Ramirez,
Carnevali & Chi (2004) (s.s.), is represented by a
group of species that share vegetative and floral
characteristics, including triangular leaves, spicate
or paniculate inflorescences with sessile flowers, a
flexuous rachis, and exserted stamens and style. The
names initially included by Ramirez et al. (2004) and
Ramirez & Carnevali (2007a,b), in addition to
T. utriculata, are T. aesii I.Ramirez & Carnevali,
T. calcicola L.B.Sm. & Proctor, T. cucaensis Wittm.,
T. dasyliriifolia Baker, T. geniculata E.Morren ex
Baker, T. limbata Schltdl., T. makoyana Baker,
T. pinicola I.Ramirez & Carnevali, T. pringlei S.Wat-
son, T. pulvinata E.Morren ex Baker, T. simplexa
Matuda, T. swartzii Baker and 7. tehuacana
I.Ramirez & Carnevali. Although not mentioned in
the cited references, these species also feature
remote floral bracts, which makes the rachis visible,
and the flowers are appressed to it.

In addition to the aforementioned taxa, there are
two groups of species that, despite sharing the char-
acteristics of the T. utriculata complex s.s., were
omitted by Ramirez & Carnevali (2007a,b) and
Ramirez et al. (2004). The first group includes the
lithophytic Mexican species 7. albida Mez & Purpus,
T. fresnilloensis W.Weber & Ehlers, T. karwinskyana
Schult. & Schult.f. and T. socialis L.B.Sm. The sec-
ond group comprises 7. extensa Mez, T. hildae Rauh,
T. mima L.B.Sm., T. propagulifera Rauh and T. se-
cunda Kunth, which are also lithophytic, but are dis-
tributed in north-western South America and are
generally larger than the Mexican species. Further-
more, after the publication of the study by Ramirez
et al. (2004), subsequent studies described additional
species that possess characters similar to those in
the complex, namely T. comitanensis Ehlers,
T. huamelulaensis Ehlers, T. nicolasensis Ehlers
(Ehlers, 2006a,b,c), T. elusiva Pinzén, I.Ramirez &
Carnevali and T. izabalensis Pinzén, I.Ramirez &
Carnevali (Pinzon, Ramirez-Morillo & Carnevali
Fernandez-Concha, 2011, 2012).

All of these species (T. utriculata complex s.l.) pos-
sess characteristics that agree with Gardner’s (1986)

Group II of the classification of Tillandsia subgenus
Tillandsia. That is, they present stamens of unequal
length based on cross-sections, erect or recurved
petal apices and flowers with an open corolla throat.
The only exception is 7. swartzii, which is a syn-
onym of Vriesea swartzii (Baker) Mez, and is charac-
terized by the presence of appendages at the base of
the petals and secund spreading flowers (Mez, 1935).

It is important to note that the T. utriculata com-
plex s.l. is not exactly equivalent to Group II of
Gardner (1986), because not all of the species in
Group II agree with the characteristics of the
T. utriculata complex s.l. Specifically, T. andreana
E.Morren ex André and T. funckiana Baker have
solitary flowers per rosette, T. argentea Griseb. and
T. fuchsii W.Till have filiform leaves and spreading
flowers and T. flagellata L.B.Sm. (= T. lehmannii
Rauh), T. kegeliana Mez and T. paraensis Mez have
imbricate floral bracts and the rachis is not regularly
flexuous.

Although there are a number of molecular phyloge-
netic studies that have included Tillandsia spp.,
these were aimed at either addressing taxonomic
problems at the family or subfamily levels (Ranker
et al., 1990; Terry, Brown & Olmstead, 1997a,b; Hor-
res et al., 2000; Crayn, Winter & Smith, 2004; Givn-
ish et al., 2004, 2011; Barfuss et al., 2005) or focused
on understanding the evolution of different species
complexes in Tillandsia (Granados, 2008; Chew, De
Luna & Gonzalez, 2010). Therefore, such studies
include a limited sampling of species belonging to
the T. utriculata complex. Barfuss et al. (2005) pro-
vided the most exhaustive sampling of Tillandsia
conducted to date, including 58 species, but only
included one species (T. utriculata) from the T. utric-
ulata complex.

One of the goals of this study is to assess the phy-
logenetic relationships of the species that share char-
acteristics of the T. utriculata complex. The
questions we seek to address are as follows. Do spe-
cies of the T. utriculata complex constitute a mono-
phyletic group? If so, are the Mexican lithophytic
species and the South American taxa related to
T. mima part of the T. utriculata complex? Are the
South American species with similar characteristics
part of this group? Based on these analyses, we also
provide a test of monophyly of Group II proposed by
Gardner (1986).

By assessing the species composition of the
T. utriculata complex, of Group II, and the phyloge-
netic relationships among their constituent species,
we are also able to propose probable scenarios of evo-
lution, biogeography and diversification of this group.
In addition, the inclusion of specimens from different
populations for some of the species analysed (e.g. Til-
landsia karwinskyana, T. pringlei and T. utriculata
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or T. makoyana and T. tehuacana) will contribute to
resolve taxonomic issues that have remained diffuse
and have hindered the delimitation of some of these
taxa.

METHODS
TAXON SELECTION

To determine the phylogenetic position of the
T. utriculata complex s.l. in the genus, we conducted
independent phylogenetic analyses using the matK
gene and a section of the 3’ end of the #nK intron
(matK-trnK) and the rpsi16 intron (rps16), and com-
bined analyses of the two regions (hereafter referred
to as ‘broad analyses’). We selected these markers as
they have been used for the largest number of Til-
landsia spp. available from public databases. For the
analyses of matK-trnK, we included 175 accessions
which represented 122 Tillandsia spp. (169 acces-
sions), two species of Racinaea M.A.Spencer &
L.B.Sm. (two accessions), one species of Vriesea
Lindl. (three accessions) and Catopsis nutans (Sw.)
Griseb. as a functional outgroup (one accession), as
the results reported by Barfuss et al. (2005) indicate
that Catopsis Griseb. and Glomeropitcairnia Mez
form the sister group of the rest of Tillandsioideae.
For the analyses using rps16, we included 168 acces-
sions representing 113 Tillandsia spp. (164 acces-
sions), one Racinaea sp. (one accession), one Vriesea
sp. (two accessions) and C. nutans (one accession).
The ‘broad analyses’ combining the two regions (i.e.
matK-trnK and rpsl16) were performed with 108 Til-
landsia spp. (145 accessions), one Racinaea sp. (one
accession), one Vriesea sp. (one accession) and C. nu-
tans (one accession). Sequences were generated dur-
ing this study or obtained from GenBank based on
studies by Crayn et al. (2004), Barfuss et al. (2005),
Granados (2008), De Castro et al. (2009) and Rex
et al. (2009) (accession numbers: Appendix 1).

A second set of analyses was also performed, here-
after called ‘restricted analyses’, with more charac-
ters, but fewer taxa. Here, we included all the
species that exhibited morphological characteristics
present in the T. utriculata complex s.l., most of the
species belonging to Group II (Gardner, 1986) and
belonging to the clades that were more closely
related to species of the T. utriculata complex based
on results from the broad analyses. For the ‘re-
stricted analyses’, we used matK-trnK, rps16 and the
rpl32-trnL region combined and the external tran-
scribed spacer (ETS) of the nuclear ribosomal (nr)
DNA region alone.

Of the names included in the 7. utriculata complex
s.l. (see Introduction) and Gardner’s Group II, we
excluded the following: T. simplexa which is a syn-

onym of T. makoyana, T. geniculata which is a syn-
onym of T. limbata, T. aesii which is a synonym of
T. cucaensis (Pinzon et al., 2012), T. pulvinata which
is a synonym of T. dasyliriifolia and T. lehmannii
which is a synonym of T. flagellata. Tillandsia
swartzii was also excluded, as we had no access to
the original material and it belongs to Vriesea (Smith
& Downs, 1977).

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

For the DNA extraction, we used dried (with silica
gel) or fresh plant material, obtained from the field
or from exchange with the Botanical Garden of the
University of Vienna (Austria) or the Marie Selby
Botanical Garden (Florida, USA). The herbarium
vouchers are listed in Appendix 1. DNA extraction
was performed following the cetyltrimethylammo-
nium bromide (CTAB) protocol (Doyle & Doyle,
1987). To amplify the plastid DNA regions, we used
the following reagents and final concentrations: buf-
fer (1x), MgCly (5 mm), deoxynucleoside triphos-
phates (dNTPs) (200 um), ‘forward’ and ‘reverse’
primers (0.4 um), Tag DNA polymerase (1 U), 1 uL
DNA dilution and the remaining volume of distilled
H50. For the amplification of rpl32-trnL, we modi-
fied the MgCl, concentration to 1.5 mm) and added
bovine serum albumin (BSA) (0.2 pg/pul) (Shaw
et al., 2007) and, for ETS, we used MgCl, at
2.25 mm and added dimethylsulphoxide (DMSO) at
2.7%.

The pairs of primers used to amplify the matK-
trnK region were matK-19F (Molvray, Kores &
Chase, 2000) with trnK2R (Johnson & Soltis, 1995)
and matK-19F with matK1520R (Whitten, Williams
& Chase, 2000), or the pairs matK-19F/matK966r-
BRO and matK808fBRO/trnK2R* (Barfuss, 2012).
For rpsi6, we used the primers rpsF and rpsR2
(Oxelman, Lidén & Berglund, 1997). For rpl32-trnL,
we used trnL(UAG) and rpl32-F (Shaw et al., 2007).
For ETS, we used the primers Till2 (Chew et al.,
2010) and 18S-IGS (Baldwin & Markos, 1998). The
PCR conditions for matK-trnK and rpsl6 were the
same as in Barfuss et al. (2005) and, for rpl32-trnL,
we followed Shaw et al. (2007). For ETS, we used the
following protocol: initial denaturation at 97 °C for
2 min, 15 cycles at 99 °C for 2 min, annealing at
68 °C for 30 s and extension at 72 °C for 1 min, fol-
lowed by 20 cycles under the same conditions, but
with an increment of 5 s/cycle during the extension
step; subsequently, a final extension at 72 °C for
7 min and hold at 4 °C.

To verify that DNA extraction and amplification
were successful, we performed electrophoresis on 1%
agarose gel stained with ethidium bromide. The
purification was performed with a QIAquick
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(QIAGEN) purification kit following the manufac-
turer’s instructions. Sequencing was performed using
the Sanger method with the same primers as used
for the amplification on an ABI3730XL (Applied
Biosystems) sequencer.

SEQUENCE ASSEMBLY AND ALIGNMENT AND CODING OF
INSERTIONS/DELETIONS

Sequences were assembled with Geneious 4.1.4 (Bio-
matters Ltd., Auckland, New Zealand) and aligned
using the algorithm MUSCLE 3.6 (Edgar, 2004) as
implemented in the platform eBioTools (www.ebioin-
formatics.org), through eBioX 1.5.1 (Lagercrantz,
2008), and checked visually. Insertion/deletions (in-
dels) were coded following the simple coding method
of Simmons & Ochoterena (2000).

PHYLOGENETIC ANALYSES

We conducted separate analyses with the matrices of
matK-trnK and rpsl6 and with the matrix of both
regions combined (broad analysis), including indels.
The restricted analyses included the combined analy-
sis of three regions of the plastid DNA (matK-trnK,
rps16 and rpl32-trnL) and indels, and also the analy-
sis with the ETS nrDNA.

All analyses were performed using the parsimony
algorithm of Fitch with equal weight for all charac-
ters. The most-parsimonious trees (MPTs) were
retrieved from heuristic searches with 10 000 repli-
cates, retaining ten trees per replicate and using tree
bisection-reconnection (TBR) as the branch swapping
algorithm. The maximum number of trees was fixed
at 100 000 (Max. trees). To assess branch support,
we performed a bootstrap (BS) analysis with 10 000
iterations employing heuristic searches with ten
replicates, and retained ten trees per replicate using
the support levels as in Sung et al. (2007) for the
interpretation of the results. Given that we obtained
multiple MPTs in all the analyses, we calculated
strict consensus trees. All of these analyses were per-
formed with the program TNT 1.1 (Goloboff, Farris
& Nixon, 2003). The consistency index (CI) and
retention index (RI) of the MPTs were calculated
with the WinClada 1.00.08 platform (Nixon, 2002).

We also conducted Bayesian analyses of all the
matrices explained above with MrBayes 3.1 (Ron-
quist & Huelsenbeck, 2003). The nucleotide substitu-
tion model for each DNA partition was selected
under the Akaike information criterion (AIC) with
three substitution schemes, in program jModelTest
0.1.1 (Posada, 2008). For all analyses, data partitions
were set corresponding to each DNA region and
indels. For the broad analysis, the nucleotide substi-
tution model used for partitions of matK and rpsi16

was GTR+I+T and the model for #rnK was
GTR + I'. For the restricted analysis with the three
plastid DNA regions combined and the indels, we
used the models GTR + I + T for the matK and rps16
partitions, GTR +T' for the ¢rnK partition and
HKY + I for the rpl32-trnL partition. Finally, the
model used for ETS was HKY + I +T'. In all cases,
the partitions of indels were treated under the bin-
ary model, using type of data as ‘restriction’ and
establishing the coding option as ‘variable’. For all
the analyses, we unlinked the estimation of the
parameters of each partition (except for topology and
branch length), and the global rate was allowed to
vary independently for each partition.

The broad analysis consisted of three simultaneous
but independent runs, each consisting of 5 000 000
generations produced by the Metropolis-coupled Mar-
kov chain Monte Carlo (MCMCMC), with a sampling
every 100 generations using one cold chain and four
hot chains with a temperature of 0.17, whereas, for
the remaining parameters, we used the default val-
ues given by the program MrBayes 3.1. The
restricted analyses of the four regions of the plastid
DNA plus indels and of the ETS region were per-
formed using the same parameters specified in the
previous analyses, but in this case with 10 000 000.
Convergence of parameters between runs was consid-
ered as reached when the ‘average standard devia-
tion of split frequencies’ was < 0.01, as recommended
by Ronquist, Huelsenbeck & Teslenko (2011), and
also by visual examination of the plot of generation
vs. log likelihood, considering the convergence
achieved when the dots that represented different
runs were mixed. For the estimation of parameters
and posterior probabilities (PPs), in all cases we dis-
carded 25% of the initial generations.

The clades of interest were labelled with letters in
the tree that resulted from the broad analysis with
matK-trnK, rsp16 and indels. For the trees produced
by the other analyses, we repeated letters for clades
that shared species and were congruent with the
clades from the first analysis (although tree internal
topologies and numbers of species were not necessar-
ily identical between these analyses). To assess the
suitability of analysing the plastid DNA and nrDNA
(ETS) data together, we performed the incongruence
length difference (ILD) test (Farris et al., 1994).

The infrageneric allocation of Tillandsia spp. to
the trees shown was performed following the circum-
scription of Smith & Downs (1977), with the excep-
tion of T. tortilis Klotzsch ex Baker and
T. lepidosepala L.B.Sm. Although the last two spe-
cies were considered as part of 7. subgenus Tilland-
sia by Smith & Downs (1977), subsequent studies
found that they belong to 7. subgenus Allardtia
(A.Dietrich) Baker (Gardner, 1982; Ehlers (2009).
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CHARACTER EVOLUTION AND BIOGEOGRAPHICAL ANALYSIS

To explain the evolution of the studied group, we
conducted a parsimony-based reconstruction with
unordered character states for several morphological
and ecological characters with Mesquite 2.75 (Mad-
dison & Maddison, 2011), using the strict consensus
tree generated from the parsimony analysis with the
three plastid DNA regions and indels.

We reconstructed five groups of morphological
characters: (1) the 7. utriculata complex syndrome,
i.e. the combination of characters that define the
complex, such as the inflorescence in a spike or pani-
cle, a flexuous rachis, flowers appressed to the
rachis, remote floral bracts and exserted stamens
and style; (2) the Group II syndrome, i.e. the combi-
nation of open corolla throat, filaments in series of
two lengths, round and of the same width through-
out their entire length; (3) the presence or absence of
vegetative reproduction and the position of propag-
ules when present: monocarpic genet, axillary
propagules, basal propagules, caespitose growth and
propagules originating from the inflorescence; (4)
inflorescence colour (including the peduncle), the
main axis of a compound inflorescence, the rachis
and the floral bracts; and (5) petal colour. The ecolog-
ical characters that have been reconstructed are the
type of substrate in which the species grows as an
epiphyte, lithophyte or terrestrial.

We also performed an analysis for the reconstruc-
tion of the ancestral distribution areas with maxi-
mum parsimony in the same way as for the
characters above and with the Bayesian binary
MCMC method (BBM) (Ronquist & Huelsenbeck,
2003), as implemented in RASP (Yu et al., 2015)
using the default configuration, on one of the 63
MPTs obtained from the restricted analysis of the
plastid DNA markers. Both analyses were based on
the phytogeographical regions proposed by Gentry
(1982): Mexico and Central America; West Indies;
northern Venezuela and Colombia; northern Andes;
southern Andes; and the Amazon Basin. The region
of Mexico and Central America was subdivided into
three areas, because most of the studied species are
distributed in this region and the use of a finer geo-
graphical subdivision was helpful to describe the bio-
geographical patterns appropriately. This subdivision
consisted of: (1) Gulf of Mexico and Caribbean coast;
(2) Pacific Ocean coast and mountainous region; and
(3) the Mexican Plateau. The subdivision of this phy-
togeographical region along an east-west (1 and 2)
axis, taking, as the division line, the Sierra Madre
Oriental and the mountains of northern Oaxaca and
Chiapas, was based on the cladistic biogeographical
study by Escalante et al. (2007), which recognized
biogeographical affinities between the combined pro-

vinces of the Gulf of Mexico and the Yucatan Penin-
sula and the combined Pacific coast and the
mountains of Oaxaca and Chiapas provinces. The
biogeographical province of eastern Central America
was included in the Gulf of Mexico coast and the
Caribbean. The mountainous zone of Central Amer-
ica (Guatemala, Honduras and Nicaragua) was
grouped with the Pacific coast, as both are found in
the same province as the mountains of Chiapas
(Morrone, 2001). The Mexican Plateau zone was con-
sidered as a third subdivision because it has been
classified as part of the Nearctic region (Morrone,
2001, 2005) and is limited to the east by the Sierra
Madre Oriental, to the west by the Sierra Madre
Occidental and to the south by the Trans-Mexican
Volcanic Belt. In addition, we included the peninsula
of Florida as part of the West Indies region. The
areas were assigned to the terminals in a presence/
absence scheme, in accordance with the observed dis-
tribution of specimens observed in the field, regis-
tered in herbaria CICY, WU, MEXU and XAL, or
cited in Smith & Downs (1977). When several acces-
sions of the same species were included, the distribu-
tion of the whole species was assigned to each
accession.

RESULTS
CHARACTERIZATION OF DNA REGIONS

Table 1 shows the characteristics of the DNA regions
used in the parsimony analyses, such as size and
percentage, and number of variable and potentially
informative sites. The most variable plastid DNA
region with the greatest percentage of potentially
parsimony-informative characters was trnK (partial)
in both the broad and restricted analyses, followed
by matK. The rps16 intron was the least informative
region. Although #rnK was the most variable and
informative region in terms of percentage of informa-
tive sites, matK provided a greater absolute number
of variable and informative characters. For the
restricted analysis of plastid DNA regions, the most
variable and informative region was again ¢trnkK, fol-
lowed by rpl32-trnL, matK and, lastly, rpsi16. The
level of variability in ETS was more than double that
observed for trnK, and the percentage of potentially
parsimony-informative characters was almost four
times greater relative to this region.

PHYLOGENETIC RELATIONSHIPS

Broad analyses (Fig. 1)

The parsimony analysis with the matK-trnK region
yielded 54 MPTs with CI =0.73 and RI = 0.93,
whereas that of the rps16 region and indels resulted
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Table 1. Size, variability and level of information for the parsimony of the DNA markers used for the phylogenetic

analyses
Parsimony-
informative Number of
Aligned Variable sites characters species/
Marker size (bp) (number, %) (number, %) Matrix specimens
matK 1438 222, 15.4% 119, 8.3% matK—trnK 126/175
matK 1438 205, 14.3% 103, 7.2% matK—trnK + rps16 + indels 111/148
matK 1438 146, 10.2% 53, 3.7% matK—trnK + rps16 + 62/88
rpl32—trnK + indels
trnK intron (partial) 137 38, 27.7% 20, 14.6% matK—trnK 126/175
trnK intron (partial) 137 36, 26.3% 19, 13.9% matK—trnK + rps16 + indels 111/148
trnK intron (partial) 137 30, 21.9% 9, 6.6% matK—trnK + rps16 + 62/88
rpl32—trnK + indels
rps16 intron 873 105, 12.0% 47, 5.4% rpsl6 + indels 116/168
rps16 intron 873 105, 12.0% 44, 5.0% matK—trnK + rps16 + indels 111/148
rps16 intron 858 82, 9.6% 25, 2.9% matK—trnK + rps16 + 62/88
rpl32—trnK + indels
rpl32-trnL 1003 135, 13.5% 52, 5.2% matK—trnK + rpsl6 + 62/88
intergenic spacer rpl32—trnK + indels
External 440 (423) 255, 58.0% 137, 31.1% ETS 72/100

transcribed spacer

(229, 54.1%)

(108, 25.5%)

(partial) (ETS)

in 13 360 MPTs with CI=0.73 and RI =0.92. In
addition, the parsimony analysis of the combined
matrices generated 2196 MPTs with CI = 0.73 and
RI = 0.92. The strict consensus tree based on these
trees and the majority rule consensus tree from the
Bayesian analysis (Fig. 1) did not exhibit incongru-
ence, although the latter had a higher resolution.

The individual analyses of matK-trnK and rpsl6
(not shown) and the combined analysis yielded a
clade composed mainly of taxa of Tillandsia sub-
genus Tillandsia (Fig 1, clade A) (BS =57, PP = 1),
which also included the T. utriculata complex s.l.
However, some species inserted in clade A belong to
T. subgenus Allardtia (e.g. T. guatemalensis
L.B.Sm.) or to T. subgenus Pseudalcantarea Mez
[e.g. T. paniculata (L.) L]. Clade A consists of a tri-
chotomy (clades B, C and D). Clade B received high
support (BS =93, PP = 1), whereas clade C had
weak support (BS =73, PP = 1). Within these two
clades, some species of the Tillandsia utriculata com-
plex s.l. were found, such as T. secunda, T. propag-
ulifera and T. mima (clade B) and T. hildae (clade
C). In clade B, we also found T. adpressiflora Mez
and  T. marnier-lapostollei Rauh  (Allardtia),
whereas, for clade C, we had Vriesea malzinei
E.Morren and T. paniculata (subgenus Pseudal-
cantarea).

Clade D (Mexican clade) was also strongly sup-
ported (BS = 98, PP = 1) and included a larger num-
ber of species (44). The species of the T. utriculata

complex s.s. were placed here and distributed mainly
in two clades: clade E, which we named the T. utric-
ulata clade, received moderate to high support
(BS = 80, PP = 1), and clade F, which we named the
T. limbata clade, also received moderate to high sup-
port (BS = 88, PP = 1). Tillandsia socialis also exhi-
bits a morphology similar to species of the
T. utriculata complex, but its relationship with the
clades of the complex remains unclear, as it is part
of a polytomy at the base of the clade containing
clades E, F, G and H. Tillandsia tehuacana and
T. nicolasensis were grouped with the T. limbata
clade in the majority rule consensus tree from the
Bayesian analysis, albeit without statistical support.
This relationship was not observed in the strict con-
sensus tree from the parsimony analysis (Fig. 4).

The internal relationships of the 7. utriculata
clade showed a dichotomy formed by the Mexican
Plateau clade (T. albida, T. fresnilloensis and T. kar-
winskyana) (BS = 62; PP = 1) and the Gulf-Antillean
clade (BS=174; PP=1), comprising T. calcicola,
T. elusiva, T. pringlei and T. utriculata. In the
T. limbata clade, two lineages can be observed, one
called here the western Mesoamerican clade
(T. comitanensis, T. cucaensis, T. huamelulaensis,
T. pinicola and T. makoyana) and the other named
here the eastern Mesoamerican clade (T izabalensis,
T. limbata, T. may-patii and T. dasyliriifolia).

In clade D, another lineage can be observed, which
is composed of species from subgenus Allardtia
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Figure 1. Majority rule consensus phylogram resulting from the Bayesian inference analysis of species of the Tilland-
sia utriculata complex s.l. and the outgroup, using the plastid DNA regions matK, irnK, rps16 and indels for the latter
(broad analysis). Above and below each branch, we indicate the bootstrap and posterior probability values, respectively.
For a description of the clades labelled with letters, see text.
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(clade G) and a clade in which none of the species
exhibits the morphology of the 7. utriculata complex
(clade H). Clade G received weak support (BS < 50,
PP =1), whereas clade H had strong support
(BS =93, PP =1).

Restricted analyses with plastid DNA (Fig. 2)
Parsimony analyses of matK-trnK, rps16 and indels,
and rpl32-trnL and indels, yielded 63 MPTs with
CI = 0.76 and RI = 0.88. Clades A-H (from the broad
analyses) were also recovered in strict consensus to
the MPTs and the majority rule consensus tree of
the Bayesian analysis. There were some incongru-
ences between the topologies of these two trees, but
these were only present outside clade A. This clade
also received weaker support (BS =49, PP=1) in
comparison with the same clade in the broad analy-
ses. In contrast, clades B and C received improved
support (BS = 97 and 88, respectively) and the latter
also showed better resolution. Clade D also received
improved support (BS =99, PP=1). In clade D,
clades G (subgenus Allardtia), H and F (T. limbata
clade) received stronger support with BS values of
71, 99 and 95, respectively (with PP = 0.98 and 1).
Tillandsia nicolasensis and T. tehuacana were not
found in sister group position to clade F, whereas
clade E (the T. utriculata clade) showed a slightly
lower support (BS =78, PP = 1). The internal rela-
tionships of clades E and F did not change. Based on
the Bayesian analysis, T. fuchsii and T. socialis were
grouped together in a clade (PP = 0.91), whereas, for
the parsimony analysis, their relationships in clade
D were not resolved.

Restricted analyses with ETS (Fig. 3)

The parsimony analysis produced 19 169 MPTs with
CI = 0.60 and RI = 0.77. The strict consensus of this
latter analysis (not shown) and the majority rule
consensus tree from the Bayesian analysis (Fig. 3)
exhibited a few incongruences in the earlier diver-
gent clades, but none of these was well supported
(BS < 50, PP < 0.85). For clades A-H resulting from
the plastid DNA analysis, only clade G was recov-
ered; all the rest exhibited incongruences. With
respect to the phylogenetic relationships of the
T. utriculata complex s.s., only two clades were
recovered: one with weak support (BS = 73, PP = 1),
which included T. calcicola, T. elusiva and T. utricu-
lata, and another with moderate support based on
the Bayesian analysis (PP = 0.98), which included
species of the T. limbata clade (according to the plas-
tid DNA data) and all specimens of T. pringlei. Til-
landsia fuchsii and T. socialis formed a group with
stronger support than in the analyses based on plas-
tid DNA regions (BS = 87, PP = 1).

Test of incongruence

The ILD test showed that the matrices of plastid
DNA and ETS are significantly incongruent
(P = 0.0909).

CHARACTER EVOLUTION AND BIOGEOGRAPHICAL
ANALYSES (F1G. 4)

Tillandsia utriculata syndrome

The reconstruction of ancestral states indicated that
this set of characters coincided together in clade A at
least three times independently. In clade B, they
were found together at least once, although it is not
clear whether there are two reversions or three
gains. All species of this clade have in common many
features of the T. utriculata complex, with the excep-
tion of T. adpressiflora and T. marnier-lapostollei
which have included stamens and 7. spiraliflora
which has polystichous flowers.

In the core Mexican clade (excluding the clade
formed by T. punctulata, T. gymnobotrya and
T. prodigiosa), these characters are again found
together. Most of the species have stamens and style
exserted, but clade H has lost the Group II floral
morphology and changed to Group I floral morphol-
ogy, whereas, in clade G, there is a reversion to
included stamens.

Floral morphology

The Group II-type floral morphology presumably
emerged at least four times: once in clade B, with one
reversion; one to three times in clade C; and one to
four times in clade D. The reconstruction placed this
morphology as ancestral for the clade formed by clades
E, F, Gand H and T. fuchsii, T. tehuacana and T. ni-
colasensis. The evolution of violet petal colour is
ambiguous for clade A, but ancestral for clades B and
D. The ancestral state of clade E is whitish, whereas
the ancestral state for clade F is ambiguous. For one
subclade of clade F, composed of T. izabalensis,
T. limbata, T. dasyliriifolia, T. comitanensis and
T. may-patii, the ancestral petal colour was whitish.
Red petal colour evolved independently twice, once in
clade C and another in clade D, with T. nicolasensis.

Vegetative reproduction

The ancestral form of vegetative reproduction in
clade A was the production of axillary propagules.
The change to monocarpic plants presumably
occurred independently at least seven times. The
ancestral state of clade E is ambiguous, although
monocarpy evolved at least once in this clade (in
T. utriculata and T. elusiva). In this clade, caespi-
tose growth emerged at least once, in 7. pringlei and
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Figure 2. Majority rule consensus phylogram from the Bayesian inference analysis of species of the Tillandsia utricu-
lata complex s.l. and the outgroup, using the plastid DNA regions matK, trnK, rps16, rpl32-trnL and indels from the last
two (restricted analysis). Above and below each branch, we indicate the bootstrap and posterior probability values,
respectively. For a description of the clades labelled with letters, see text.
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Figure 3. Majority rule consensus phylogram from the Bayesian inference analysis of species of the Tillandsia utricu-
lata complex s.l. and the outgroup, using the external transcribed spacer (ETS) region from the nuclear ribosomal DNA
(restricted analysis). Above and below each branch, we indicate the bootstrap and posterior probability values, respec-
tively. Green: species of the T. utriculata clade complex according to results using plastid DNA; dark green, Gulf-Antil-
lean Clade; light green, Mexican Plateau Clade; salmon pink, 7' limbata clade.
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Figure 4. Parsimony-based reconstruction of the ancestral states of five morphological characters, one ecological char-
acter and the areas of distribution of the Tillandsia utriculata complex and the outgroup. On the branches the series of
transformations are indicated by symbols: (1) the solid black rectangular tick indicates the emergence of the T. utricu-
lata morphological syndrome, the white rectangular tick indicates its loss; (2) the solid black arrow indicates the emer-
gence of the Group II floral morphology, the white arrow indicates its loss; (3) the ellipse represents the different
methods of vegetative reproduction (or absence) indicated by colours: monocarpic genet (white), axillary propagules
(green), basal propagules (blue), caespitose growth (red), propagules in the inflorescence (violet); (4) the inflorescence col-
our is indicated by the colour of the symbol ‘flower with stem’; (5) the petal colour is indicated by the colour of the sym-
bol ‘corolla’; (6) the growth substrate is represented by a tree and the states indicated by colour: epiphyte (green),
lithophyte (grey), terrestrial (orange). The areas of distribution are represented by the colour of the branches and the
regions are indicated in the map in the top left corner. These characters were mapped on the strict consensus of 63
most-parsimonious trees (MPTs) from the parsimony analysis of the 7. utriculata complex s.l. and the outgroup, using
the plastid DNA regions matK, trnK, rps16, rpl32-trnL and indels from the last two (restricted analysis). The pie dia-
grams show the probabilities of ancestral distribution areas for selected nodes from an analysis of the Bayesian binary
Markov chain Monte Carlo (MCMC) method obtained from one of the 63 MPT's from the analysis described above; colour

grey indicates an uncertain area or two or more areas. For a description of the clades labelled with letters, see text.

in the clade formed by T. albida, T. karwinskyana
and T. fresnilloensis. Propagation via basal propag-
ules, but without caespitose growth, arose at least
four times in clade A, once in clade B (7. mima),
once in clade C (7. hildae) and at least five times in
clade D. In the T. limbata clade (clade F), monocarpy
evolved at least three times, in T. comitanensis, T.
aff. comitanensis, T. izabalensis and T. huamelulaen-
sis. In contrast, the production of propagules in the
inflorescence arose independently at least three
times, once in clade B, once in clade C (T. flexuosa)
and once in clade F (T dasyliriifolia).

Epiphytism

Epiphytism is the ancestral state in clades A, C, D,
F, G and H. The ancestral states of clades B and E
are ambiguous. The invasion of the saxicolous habi-
tat occurred at least six times in clade A, once in
clade B, three times in clade C, at least once in clade
E and at least once in clade H. The invasion of ter-
restrial habitats occurred only once in clade A, with
T. dasyliriifolia (clade F).

Biogeographical analysis

The parsimony-based character state reconstruction
indicated that the northern zone of the Andean Region
was the ancestral distribution for clades A and B, and
this is congruent with the BBM ancestral state recon-
struction, which reports a probability of 86.1% and
76.0%, respectively, for the same area. In the latter
clade, there was one colonization to the Amazonian
region (T. adpressiflora). The ancestral distribution
area of clade C is ambiguous with parsimony, but
BBM analysis showed a probability of 63.9% for the
West Indies as the ancestral area for this node. This
clade exhibits a broad distribution and is represented
in the southern and northern Andes, in northern
Venezuela, in the West Indies, in the Amazonian

region and in the eastern Mesoamerican Zone. Con-
versely, the ancestral area of distribution of clade D,
according to both parsimony-based reconstruction and
BBM, was the western Mesoamerican Zone (97.6%).
From this point, there were two colonizations of the
Mexican Plateau, one with T. tehuacana and another
with clade E (the latter at 78.9%), at least two colo-
nizations of the eastern Mesoamerican Zone (one in
clade F and one in clade H), and at least one coloniza-
tion of the West Indies and Florida in clade E
(T. utriculata and T. calcicola).

DISCUSSION
GENERAL CONSIDERATIONS

To date, the broad analysis presented in our study
includes the largest number of Tillandsia spp. (108
species of > 620 species in this genus; Luther, 2012).
The number of species used in this analysis repre-
sented 17.4% of the species of this genus, in contrast
with the 58 species (9.3%) analysed by Barfuss et al.
(2005). It is important to note that the sampling of
taxa conducted in our study was designed to assess
the phylogenetic position of the species of the
T. utriculata complex and of species with similar
morphology in Tillandsia, and to determine the phy-
logenetic relationships among these species. As a
result of the bias in our sampling scheme, any con-
clusions about the results from phylogenetic analyses
at the generic or subgeneric level should be taken
with caution. Having said this, we proceed to make
observations for some of the most important results
from these analyses.

Clade A, or the clade of Tillandsia subgenus Til-
landsia s.s., is equivalent to clade K plus 7. panicu-
lata in the study of Barfuss et al. (2005). According
to our results, this clade presumably originated in
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H _=————ox— Tillandsia exserta B0390
[ - Tillandsia novakii JP092
- : Tillandsia caput-medusae B0046
Tillandsia klausii BO085
Tillandsia pueblensis JP049
Tillandsia leiboldiana JP140
Tillandsia guatemalensis B0104
Tillandsia guatemalensis JPO72
Tillandsia comitanensis JP074
Tillandsia cucaensis JP030
Tillandsia cucaensis JP029
Tillandsia cucaensis JPO76
Tillandsia huamelulaensis JP142
Tillandsia huamelulaensis JP143
Tillandsia pinicola JPO70
Tillandsia pinicola JP027
Tillandsia makoyana JP008
Tillandsia makoyana JP051
Tillandsia makoyana JP048
Tillandsia makoyana JP028
Tillandsia cucaensis JP056
Tillandsia izabalensis B0732
Tillandsia izabalensis JP080
Tillandsia limbata JP020
Tillandsia limbata JP055
Tillandsia may-patii JP054
Tillandsia dasyliriifolia JP084
Tillandsia dasyliriifolia JP083
Tillandsia dasyliriifolia JPO03
Tillandsia dasyliriifolia JP085
Tillandsia aff. comitanensis JPO75
Tillandsia nicolasensis JP010
Tillandsia nicolasensis JPO77
Tillandsia tehuacana JP050
Tillandsia socialis JP062
Tillandsia socialis JP094
Tillandsia fuchsii JP0O17
Tillandsia calcicola JP105
Tillandsia utriculata B0807
Tillandsia utriculata B0100
Tillandsia utriculata JP0O60
Tillandsia utriculata JPO06
Tillandsia elusiva JP111
Tillandsia elusiva JP120
Tillandsia pringlei BO733
Tillandsia pringlei JP0O04
Tillandsia pringlei BO736
Tillandsia pringlei BO735
Tillandsia albida JP016
Tillandsia cf. karwinskyana B0734
Tillandsia karwinskyana JP044
Tillandsia fresnilloensis JP018
Tillandsia punctulata BO061
Tillandsia gymnobotrya JP045
Tillandsia prodigiosa CG320-JP098
Tillandsia kegeliana JP064
Tillandsia flexuosa JP047
Tillandsia juruana JP112
Tillandsia argentea JP082
Tillandsia funckiana var. recurvifolia JP046 3
Tillandsia hildae JP040
Tillandsia carnosa B0755
Vriesea malzinei B0145
Tillandsia paniculata B0102
Tillandsia mima JP091
Tillandsia marnier-lapostollei JP113
Tillandsia spiraliflora JP104
Tillandsia propagulifera JP043
Tillandsia secunda JP063
Tillandsia adpressiflora B0597
Tillandsia brachyphylla B0082
Tillandsia heterophylla B0047-JP068R
Tillandsia duratii var. duratii BO088
Tillandsia ixioides B0043
Tillandsia biflora B00S0
Tillandsia kauffmannii BO074
Tillandsia rauhii var. rauhii BO092
Tillandsia lepidosepala KHTL001-B0219
Tillandsia cacticola B0044
Tillandsia dodsonii BO016-B0127
Tillandsia disticha BO048-B0233
Tillandsia wagneriana B0058

- Tillandsia macropetala B0742
U Tillandsia barthlottii BO035-B0716
[ Tillandsia * duvalii B0023

L Tillandsia triglochinioides BO725

1 Catopsis nutans B0002
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the northern Andes (at 86.1% probability; this and
all further probabilities are based on BBM analysis)
(Fig. 4) from an epiphytic ancestor with red inflores-
cences. All the species with the T. utriculata complex
syndrome are found in clade A, although the ances-
tor of this clade presumably did not exhibit this mor-
phology (Fig. 4). In clade A, the species with the
T. utriculata complex syndrome do not form a mono-
phyletic group; rather this combination of characters
arose in at least four independent events (Fig. 4).

THE TILLANDSIA UTRICULATA COMPLEX S.L.

Early-diverging clades

Clades B and C are composed mostly of South Ameri-
can species, some of which exhibit the morphology of
the T. utriculata complex, but were excluded by
Ramirez et al. (2004) based on their definition of the
complex, and have not been associated with these
species in any other study. In clade B (clade of T. se-
cunda), which originated in the northern Andes, the
species that share the T. utriculata syndrome are
T. secunda, T. propagulifera and T. mima (Fig. 4).
The rest of the species are similar, but differ in some
characters. For example, T. adpressiflora and
T. marnier-lapostollei differ from this syndrome only
in that they have stamens that are included in the
corolla (subgenus Allardtia), whereas the only char-
acter that separates T. spiraliflora is the polystic-
hous flowers. Conversely, species of clade C (clade of
T. paniculata) exhibit morphological variation and a
broader geographical distribution. In this clade, we
find Vriesea malzinei, which is morphologically strik-
ingly dissimilar (mesic species, imbricate floral
bracts, appendices in the petals) and a clade
that includes species with red petals (T. funckiana,
T. argentea, T. flexuosa, T. kegeliana and T. juru-
ana) (Figs 1, 2, 4). Only T. hildae and T. paniculata
exhibit the T. utriculata complex syndrome. Tilland-
sia paniculata is considered to be part of Tillandsia
subgenus Pseudalcantarea because of its stamen and
petal morphology (Smith & Downs, 1977), but Bea-
man & Judd (1996) concluded that this species is
more closely related to subgenus Tillandsia, and this
is consistent with our findings. The ancestral distri-
bution of this clade is uncertain, but the BBM shows
a slight preference for the West Indies geographical
zone.

Tillandsia socialis, which shows a morphology
coherent with the T. utriculata complex, is found in
the Mexican clade (D). However, it does not group
with the T. utriculata clade, but with T. fuchsii,
albeit with relatively low support. These two species
share the floral morphology of Group II as a symple-
siomorphy. Nonetheless, the presence of scales on
the floral bracts represents a synapomorphy of this

clade. Tillandsia fuchsii has lost some of the typical
characteristics of the T. utriculata complex, given
that the flowers of this species are spreading with
respect to the rachis (not appressed) and it has
undergone a reduction in size, growing as small, glo-
bose rosettes with filiform leaves.

THE TILLANDSIA UTRICULATA CLADE

This lineage is supported by three homoplasious mor-
phological characters, all of which are associated with
the petals, namely spathulate shape, acute apex and
the loss of violet pigment (petals in these species are
whitish or greenish) (Figs 4-6). As a result of the lack
of resolution in clade D, the interpretation of the evo-
lution of the ancestral characters is ambiguous in
many cases. However, it is possible to infer that the
ancestor of this clade already had a morphology simi-
lar to the T utriculata complex and exhibited an inflo-
rescence with red tinges and, as mentioned
previously, whitish petals. What remains uncertain,
however, is whether this ancestor was epiphytic, had
vegetative reproduction or was monocarpic. The dis-
tribution of this ancestor could have been restricted to
the western Mesoamerican Zone, from where some
species presumably invaded the eastern Mesoameri-
can Zone, the Antilles and Florida in one direction and
the Mexican Plateau in another direction (Fig. 4).

The Gulf-Antillean clade (T utriculata, T. calci-
cola, T. elusiva and T. pringlei) was named because
it has a distribution that is limited to the west by
the Sierra Madre Oriental and occupies the Gulf of
Mexico, the Continental Caribbean shore (except
Panama), the Antilles, Florida and northern Vene-
zuela. The Mexican Plateau clade (T. albida, T. kar-
winskyana and T. fresnilloensis) is restricted to this
dry and high area.

The Gulf-Antillean clade is formed by species dis-
tributed from eastern Mesoamerica and the Antilles,
which share several morphological characteristics:
paniculate inflorescences; a zygomorphic corolla with
a lateral opening; and warty wing cells of the foliar
scales, which have an entire or crenate margin
(Fig. 5). The ancestral area analysis indicated that
the most probable ancestral distribution area of this
clade was the western Mesoamerican Zone. This
ancestor presumably colonized warm montane and
humid lowland areas with xeric 7. calcicola in the
Antilles and with mesic T. utriculata, which has the
broadest distribution in this complex, as it is found
from arid zones of the Yucatan Peninsula (Mexico)
and the Antilles, to warm and humid zones in
Mesoamerica, the Gulf of Mexico and the Continen-
tal Caribbean slopes and subtropical areas in Flor-
ida. Tillandsia elusiva occupied a zone restricted to
intermediate elevations of warm and subhumid

© 2016 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 181, 362-390



PHYLOGENY IN TILLANDSIA UTRICULATA 375

Figure 5. Morphology of the species of the Tillandsia utriculata clade, Gulf-Antillean Clade. A, Inflorescence of T. elu-
siva. B, Petal of T. utriculata (note acute apex). C, Foliar trichome of T. utriculata (note entire margin). D, Flower of
T. pringlei (note the lateral opening of the corolla).

climatic conditions in western Chiapas, at the limit
of the Gulf of Mexico and Pacific provinces (Pinzon
et al., 2011). This species is the only one in the
T. utriculata clade that has a pink inflorescence
(Fig. 4).

The species of the Mexican Plateau clade (T. al-
bida, T. fresnilloensis and T. karwinskyana) share
simple inflorescences and foliar scales with a dentate
margin, in addition to having reddish inflorescences
with whitish petals and spreading petal tips (Fig. 6).
In this group, 7. albida (caulescent, with reticulate
ornamentation in the wing cells of foliar scales) is the
earliest diverging species and subtends the clade
formed by T. fresnilloensis and T. karwinskyana
(acaulescent, with smooth wing cells of foliar scales).
The ancestor of these three species was probably dis-
tributed in the Mexican Plateau, growing on rocks
and exhibiting caespitose growth (Fig. 4). The aspect
of this ancestor may have been similar to that of
T. albida but acaulescent, as it presumably had con-
spicuous foliar sheaths and a dense indumentum, but
with scales appressed to the leaf, without the tomen-
tose aspect found in T. fresnilloensis and T. karwin-
skyana, which lack conspicuous foliar sheaths. This
ancestor presumably was adapted to rocky environ-

ments in south-eastern areas of the Mexican Plateau,
in the states of Hidalgo, Querétaro and Guanajuato,
where it gave rise to T. albida, and to more northern
areas with gypsum-rich outcrops, where it gave rise
to T. karwinskyana. Towards the western side of the
plateau, this ancestor gave rise to T. fresnilloensis,
where it adapted to volcanic rocks present in the
Sierra de Organos and related systems in the states
of Zacatecas, Durango and Jalisco.

THE TILLANDSIA LIMBATA CLADE

The T. limbata clade (F) is composed almost exclu-
sively of species restricted to or including Mexico in
their distribution range, the only exception being
T. izabalensis which is distributed from Honduras to
Nicaragua (Pinzén et al., 2012). The inclusion of
T. nicolasensis and T. tehuacana in this complex is
weakly supported and only evident in the broad
analysis of matK-trnK and rps16 (Fig. 1). Nonethe-
less, all species of clade F can be differentiated from
the T. utriculata clade in that the apex of the petal
is rounded and they have a constriction of the corolla
at the height of the ovary apex (Fig. 7). In any case,
T. nicolasensis and T. tehuacana appear to have
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Figure 6. Morphology of the species of the Tillandsia utriculata clade, Mexican Plateau Clade. A, Inflorescence of
T. karwinskyana. B, Foliar trichome of 7. albida (note the dentate margin). C, Flower of T. fresnilloensis.

diverged earlier than the rest of the species belong-
ing to the complex. The ancestor of the T. limbata
clade, including T. nicolasensis and T. tehuacana,
was presumably distributed in the western
Mesoamerican Zone. From there, it migrated and
gave rise to 7. tehuacana in the high-elevation and
arid eastern zone of the Trans-Mexican Volcanic Belt
Province (Morrone, 2005) and adjacent areas, or in
the Valle de Tehuacan-Cuicatlan Province in the
phytogeographical scheme of Rzedowski (1978). Til-
landsia nicolasensis remained in the lowlands and
eventually occupied (as at present) coastal areas in
southern Mexico. An autapomorphic change that
appeared in this species is the red pigment in the
petals, which is a unique characteristic in this com-
plex and is rare in the Mexican clade and in Tilland-
sia as a whole (Smith & Downs, 1977) (Fig. 4).

The western Mesoamerican clade (T. comitanensis,
T. cucaensis, T. huamelulaensis, T. pinicola and
T. makoyana) is unresolved, except for the position of
one early-diverging specimen of T. cucaensis, which is
separated from the rest of the species, which them-
selves form a polytomy that includes the remaining
specimens of 7. cucaensis. This early-diverging speci-
men could represent a cryptic species, but phylogeo-
graphical analyses are needed to test this hypothesis.

Although the eastern Mesoamerican clade (7. iza-
balensis, T. limbata, T. may-patii and T. dasyliriifo-
lia) has moderate to low support, it exhibits
geographical, morphological and ecological congru-
ence. The inclusion of 7. may-patii in this clade is
remarkable because this taxon does not exhibit the
characteristics of the T. utriculata complex, instead
having a cylindrical and compact paniculate inflores-
cence and imbricate bracts. Tillandsia may-patii is
probably a natural hybrid for which 7. dasyliriifolia
is the maternal parent, as this species is the only
species in this clade that is sympatric with the for-
mer (Ramirez & Carnevali, 1999). The ancestor of
the T. limbata clade presumably colonized lowlands
with a warm subhumid climate present in the Gulf
of Mexico and Gulf of Honduras coming from the
west, from the other side of the mountains in Mexico
and Central America. The invasion of this biogeo-
graphical zone presumably occurred once in the
T. limbata clade, but it is not clear whether the
ancestral area of distribution was the actual eastern
Mesoamerican Zone (42.68%) or a broader area,
including both eastern and western Mesoamerican
Zones (42.93%). This ancestor had, according to the
parsimony-based reconstruction, reddish inflores-
cences, whitish petals, was an epiphyte and produced
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Figure 7. Morphology of the species of the Tillandsia limbata clade. A, Inflorescence of T. cucaensis. B, Petal of T. cu-
caensis (note the rounded apex). C, Foliar trichome of T dasyliriifolia. D, Corolla, androecium and gynoecium of 7' pini-
cola (note the constriction towards the base of the corolla).

axillary propagules (Fig. 4). The three species of the
eastern Mesoamerican clade invaded different envi-
ronments: 7. dasyliriifolia became established on the
Yucatan Peninsula, in warm subhumid environ-
ments, and in the arid north-western zone of this
region as an epiphytic or terrestrial species with the
capacity to produce propagules in the inflorescence
(Fig. 4); T. limbata occupies the warm and humid
region of the Gulf of Mexico and the temperate sub-
humid mountainous zone of the Sierra Madre Orien-
tal and northern Chiapas (this colonization to mid-
elevations was secondary); and T. izabalensis occu-
pies the warm humid zone of the Gulf of Honduras,
of southern Belize, Guatemala, Honduras and north-
ern Nicaragua. Based on this information, the ances-
tor of the Gulf-Caribbean clade could have been
similar in aspect to 7. izabalensis.

Tue ETS NekDNA

The most interesting finding of this analysis is that
the Mexican Plateau species of the T. utriculata clade
and T. pringlei are grouped in a lineage together with
species of the T. limbata clade and not with T utricu-
lata, T. calcicola and T. elusiva (Fig. 3). This incon-

gruence could have been caused by homoplasious
characters (which probably resulted in low support),
but could also be indicative of reticulate evolution for
which species of the Mexican Plateau clade and
T. pringlei would have shared a maternal parent of
the T. utriculata clade and a paternal parent of the
T. limbata clade. Nonetheless, further exploration
using more nuclear molecular markers is needed to
reach stronger conclusions in this regard. What is
clear is that T. pringlei is different from 7. utriculata,
as it is located outside the Gulf-Antillean clade, with
up to seven different positions in the alignment.

With regard to the remaining species of the Gulf-
Antillean clade, we observed a grouping that
included T. utriculata specimens from the humid
zone of the Gulf and continental Caribbean slopes
(Chiapas and Guatemala) and T. elusiva, which is
found in subhumid and semiarid environments of the
transition zone of the Gulf of Mexico Province and
the Pacific Province (sensu Morrone, 2005). From
these results, we did not find evidence that 7. elu-
siva is a hybrid between T. utriculata and any spe-
cies of the T. limbata clade, as suggested by Gardner
(1984). The specimens of T. utriculata from the
Antilles and T. calcicola formed a polytomy at the
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base of the Gulf-Antillean clade. Because of the low
resolution of the clade, it is not possible to determine
whether the populations of the continental tropical
area form a species that is different with respect to
Antillean populations, as there were insufficient mor-
phological differences to separate them. The only dif-
ference we detected was the inflorescence colour,
which is dark purple in the continental populations
from humid zones and red or green in the popula-
tions from the Antilles and the Yucatan Peninsula.

INCONGRUENCE OF PLASTID DNA anp ETS
PHYLOGENETIC TREES

It is important to mention that results based solely
on plastid DNA data, as used primarily in this study,
only allow the discussion of maternal-side phyloge-
netic relationships. In a group with no reticulate evo-
lution, the maternal and paternal phylogenetic
history should be identical, but we have evidence
that natural hybridization in Tillandsia is, if not
ubiquitous, at least possible, and there are several
reports of putative natural hybrids (Gardner, 1984).
Furthermore, there is evidence of reticulate evolution
and probably plastid capture in other genera of
Bromeliaceae, e.g. in Puya Molina, in which plastid
data strongly support a Chilean clade, whereas the
PHYC marker splits Chilean Puya into two clades,
one of them sister to the core Puya clade (Jabaily &
Sytsma, 2010). A similar pattern occurs in the Deute-
rocohnia Mez/Abromeitiella Mez alliance, which,
with nuclear DNA data, forms a monophyletic group,
but, with plastid DNA, forms a paraphyletic group,
with one of the clades sister to Dyckia Schult.f. and
Encholirium Mart. ex Schult.f. (Schiitz, 2012). The
author interprets this pattern as plastid capture
from a Dyckia/Encholirium ancestor through
hybridization and introgression of a Deuterocohnia
ancestor through pollination (Schiitz, 2012).
Although we found that the matrices with plastid
DNA and ETS are not congruent, as the ILD test
shows, there are not hard incongruences in the phy-
logenetic trees, i.e. the incongruent clades in the
analysis with ETS have low support. Hence, these
incongruences could be a result of plastid capture,
but also could be an effect of high homoplasy in the
ETS data. To assess this, it is necessary to explore
other nuclear DNA markers for comparison with the
phylogenetic trees obtained with plastid data.

COMPARISON WITH OTHER PHYLOGENETIC STUDIES

Previous phylogenetic studies included only a few spe-
cies of the T. limbata and T. utriculata clades
obtained here. One of the first phylogenetic studies of
Bromeliaceae (Terry et al., 1997b) only included

T. utriculata, which was located in a clade with 7. se-
cunda and Vriesea espinosae (L.B.Sm.) Gilmartin.
Excluding V. espinosae, this clade would be equiva-
lent to clade A in our study. It seems likely that there
was an error in assigning the sequence to
V. espinosae, as this species is located outside clade A,
with other grey-leaved xeric Vriesea spp. (Barfuss,
2012). The study of Barfuss et al. (2005) only included
two accessions of T. utriculata which were located in
a clade that is equivalent to clades D (clade K in Bar-
fuss et al., 2005) and A (equivalent to clade K plus
T. paniculata in Barfuss et al., 2005) in our study,
and therefore results are consistent. In addition, the
phylogenetic study of the T. macdougallii L.B.Sm.
complex by Granados (2008) included T. utriculata
and T. makoyana. These species formed a polytomy in
a clade equivalent to clade D in our study. Also, the
phylogenetic analysis with ETS by Chew et al. (2010)
for species of T. subgenus Tillandsia with pseudob-
ulbs did not resolve the relationships of 7. utriculata,
which formed a polytomy at the base of their clado-
gram (excluding T. deppeana Steud.); on the other
hand, T. dasyliriifolia and T. makoyana were
grouped in a clade with low support (BS = 62), which
is consistent with clade F in our study. In the com-
bined analysis of 5.8S, ITS2, ETS nrDNA and coded
indels as a fifth state, 7. makoyana was grouped with
T. filifolia Schltdl. & Cham., although this relation-
ship is unsupported. However, the coding of indels as
a fifth character state is controversial and has not
been used often, because it can be redundant in indel-
rich markers, giving excessive weight to indels during
the phylogenetic reconstruction. This relationship is
also not consistent with our analyses, even in the
topology obtained here with the ETS nrDNA (Fig. 3).

CONCLUSIONS

Based on our phylogenetic analyses, we conclude
that the species that share characteristics of the
T. utriculata complex do not constitute a mono-
phyletic group, and we instead suggest that this syn-
drome has been gained and lost repeatedly
throughout the evolution of 7. subgenus Tillandsia.
However, all the species with this morphology are
located in a clade dominated by species of 7. sub-
genus Tillandsia. The South American species with
this morphology are found in two lineages in a tri-
chotomy with the Mexican clade in 7. subgenus Til-
landsia and are not closely related to T. utriculata.
The species originally proposed as part of the com-
plex (T. utriculata s.l.) are found in a predominantly
Mexican clade, forming two lineages: the T. utricu-
lata clade and the T. limbata clade. Based on the
available information, it is not possible to determine
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whether these two complexes represent a mono-
phyletic group. The origin of both lineages appears
to be western and central Mesoamerica and the
T. utriculata complex is symplesiomorphic. In this
zone, there were several colonizations of different
habitats. The Mexican Plateau clade underwent a
diversification in this area and gave rise to litho-
phytic species with caespitose growth and simple
inflorescences; the Gulf-Antillean clade presumably
migrated to the Gulf of Mexico region and Antilles,
whereas monocarpy arose in 7. utriculata and
T. elusiva. Conversely, the western Mesoamerican
clade radiated in its ancestral distribution area,
where it originally occupied an epiphytic niche and
was distributed in tropical and subtropical zones,
and, lastly, the eastern Mesoamerican clade colo-
nized lower, warm and humid or subhumid areas in
the eastern Mesoamerican zone, adapting to mesic
conditions. The analysis with ETS resulted in low
resolution, but allowed us to distinguish T. utricu-
lata and T. pringlei, which were previously consid-
ered to be subspecies of the same species.
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