The Context of Megadrought: Multiproxy Paleoenvironmental Perspectives from the South San Juan Mountains, Colorado

Item Type	text; Electronic Dissertation
Authors	Routson, Cody Craig
Publisher	The University of Arizona.
Rights	Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Download date	13/05/2019 14:11:23
Link to Item	http://hdl.handle.net/10150/320004

THE CONTEXT OF MEGADROUGHT: MULTIPROXY PALEOENVIRONMENTAL PERSPECTIVES FROM THE SOUTH SAN JUAN MOUNTAINS, COLORADO

By
Cody Craig Routson

A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES
In Partial Fulfillment of the Requirements
For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA

THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Cody Routson entitled: The Context of Megadrought: Multiproxy Paleoenvironmental Perspectives from the South San Juan Mountains, Colorado and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy

Date: 11/25/13
Jonathan T. Overpeck
Date: 11/25/13
Connie A. Woodhouse

Date: 11/25/13
Andrew Cohen
Date: 11/25/13
David Meko
Date: 11/25/13
Julio Betancourt

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Date: 11/25/13
Dissertation Director: Jonathan T. Overpeck
Date: 11/25/13
Dissertation Co-Director: Connie A. Woodhouse

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: Cody Routson

ACKNOWLEDGEMENTS

I thank my advisors Jonathan Overpeck and Connie Woodhouse, and my committee members Andrew Cohen, David Meko, and Julio Betancourt for their time, insights, and discussions, all of which greatly improved this research. I thank Kanin Routson, Dick Yetman, Jock Favor and Clare Stielstra for their extensive help in the field. I thank Jesse Martinez and Chelsea Powers for laboratory assistance. I also thank the Geoscience staff with special thanks to Anne Chase for her support. Conversations and feedback from colleagues, and current and former graduate students including Nick McKay, Jessica Conroy, Toby Ault, Sarah Truebe, Sarah Leroy, Jason Addison, Sarah Hayes, Dan Griffin, Brewster Malevitch, Kyle Miller, Greg Pederson, Jeremy Weise, Scott St. George, and Diane Thompson also substantially improved this research. I also thank my family for their ongoing support.

The NOAA climate program office, a National Science Foundation Graduate Research Fellowship, an Arizona Science Foundation Graduate Fellowship, the Colorado Scientific Society Memorial Research Fund, the Climate Assessment for the Southwest, the Bert S. Buttler Scholarship Fund, the Wilson Thompson Scholarship Fund, the Keith Katzer Scholarship Fund, the Global Change Dissertation Improvement Grant, the Bristlecone Award, the Galileo Circle Scholar Award, and the Department of Geoscience have all supported this research.

TABLE OF CONTENTS

LIST OF FIGURES 6
LIST OF TABLES 8
ABSTRACT. 9
INTRODUCTION 11
PRESENT STUDY 17
REFERENCES 22
APPENDIX A 29
SECOND CENTURY MEGADROUGHT IN THE RIO GRANDE HEADWATERS, COLORADO: HOW UNUSUAL WAS MEDIEVAL DROUGHT? 29
A. 1 Abstract 29
A. 2 Introduction 30
A. 3 Tree-Ring and Climate Analysis 32
A. 4 Second Century Droughts 34
A. 5 Conclusions and Implications 39
A. 6 References 41
A. 7 Tables and Figures 45
A. 8 Supporting Information 49
A. 9 Supporting References 53
A. 10 Summitville Chronology 54
APPENDIX B 71
1100 YEARS OF OCEANIC FINGERPRINTS ON WESTERN NORTH AMERICAN DROUGHTS AND PLUVIALS 71
B. 1 Abstract 71
B. 2 Introduction 72
B. 3 Methods 75
B. 4 Results 78
B. 5 Discussion 82
B. 6 Conclusion 87
B. 7 References 88
B. 8 Figures 93
B. 9 Supplemental Figures 102
B. 10 Supplemental Circulation Reconstruction Analysis 105
B. 11 Supplemental Circulation References: 106
B. 12 Supplemental Circulation Figure 107
B. 13 Supplemental Tables 108
APPENDIX C 111
THREE MILLENNIA OF SOUTHWEST NORTH AMERICAN DUSTINESS ANDFUTURE IMPLICATIONS111
C. 1 Abstract 111
C. 2 Introduction 112
C. 3 Reconstructing Dustiness 113
C. 4 Conclusion 118
C. 5 Methods 119
C. 6 References 124
C. 7 Figures 131
C. 8 Supplemental Figures 134
C. 9 Supplemental Tables 142
APPENDIX D 144
THE MEGADROUGHT ENVIRONMENT 144
D. 1 Abstract: 144
D. 2 Body 144
D. 3 Methods 152
D. 4 References 155
D. 5 Figures 160
D. 6 Supplemental Text 164
D. 7 Supplemental Figures 166
D. 8 Supplemental Tables 176
D. 9 Supplemental Comparison of Calibrations 185
APPENDIX E: PERMISSIONS 187
LIST OF FIGURES
Figure A. 1 45
Figure A. 2 46
Figure A. 3 47
Figure A.S1 51
Figure A.S2 52
Figure B. 1 93
Figure B. 2 94
Figure B. 3 95
Figure B. 4 96
Figure B. 5 97
Figure B. 6 98
Figure B. 7 99
Figure B. 8 100
Figure B.S1 102
Figure B.S2 103
Figure B.S3 104
Figure B.S4 107
Figure C. 1 131
Figure C. 2 132
Figure C. 3 133
Figure C.S1 134
Figure C.S2 135
Figure C.S3 136
Figure C.S4 137
Figure C.S5 138
Figure C.S6 139
Figure C.S7 140
Figure C.S8 141
Figure D. 1 160
Figure D. 2 161
Figure D. 3 162
Figure D. 4 163
Figure D.S1 166
Figure D.S2 167
Figure D.S3 168
Figure D.S4 169
Figure D.S5 170
Figure D.S6 171
Figure D.S7 172
Figure D.S8 173
Figure D.S9 174
Figure D.S10 175
Figure D.S11 186

LIST OF TABLES

Table A.1 48
Table B. 1 101
Table B.S1 108
Table B.S2 109
Table B.S3 110
Table C.S1 142
Table C.S2 143
Table D.S1 176
Table D.S2 177
Table D.S3 178
Table D.S4 179
Table D.S5 180
Table D.S6 181

Abstract

The context of megadrought, drought more severe than any we have experienced over the past 100 years, is assessed in this dissertation. A set of new climate reconstructions including drought, dustiness, and temperature from the south San Juan Mountains in southern Colorado is presented here and provides unforeseen insights into these unusual events. The global context of megadroughts is also analyzed using a network of reconstructions. The new drought record is from bristlecone tree-rings, spans the last 2000 years, and shows two periods with anomalous aridity and drought in the south San Juan Mountains. The later period corresponds with well-characterized medieval climate anomaly (MCA; 900-1400 AD) aridity in southwestern North America (henceforth the Southwest). The earlier interval coincides with the Roman Period (1-400 AD). A severe drought with, almost 50 consecutive years of below average tree-growth, occurs in the middle of the Roman Period during the $2^{\text {nd }}$ century AD. Assessment of Roman and MCA droughts in the context of global climate reconstructions reveals that similar hemisphere scale circulation patterns during both intervals might have contributed to severe aridity in the Southwest. Next relationships between droughts and pluvials in western North America (henceforth the West) and global sea surface temperature (SST) patterns over the last 1100 years are examined. Several methods are used including teleconnection patterns imbedded in tree-ring reconstructed drought maps, and a global network of SST reconstructions. Teleconnection patterns during droughts and pluvials suggest that megadroughts and pluvials were likely forced in part by

sequences of anomalous years in the Pacific and Atlantic Ocean, but the analyses also reveals contradictory results that may require new ways of understanding the relationship between SSTs and drought on long timescales. Next, returning to the south San Juan Mountains, we developed a new dust reconstruction from a lake sediment core. The reconstruction illustrates that dustiness has been an important component of Southwestern climate over the past 2941 years. The record shows high dust deposition in the past especially around 900 BC and during the MCA. High dust deposition before recent land use changes suggests that megadroughts or associated periods of aridity were widespread and severe enough to mobilize dust, perhaps resulting in further reductions to mountain snowpack and stream flow. Finally, a new biomarker based temperature reconstruction is presented. The reconstruction spans the last 2000 years and shows that the warmest temperatures during that interval occurred during the Roman Period and the MCA. The record suggests these periods were warmer than today, indicating the San Juan Mountains are a sensitive region to temperature change. Both past warm periods coincide with anomalous drought and dustiness, suggesting that temperature and dust may have acted as megadrought enhancing feedbacks. In summary, this dissertation helps characterize the timing and causes of southwest North American Megadroughts over the past 2000 years; separately addressing changes in moisture balance, dustiness, temperature, hemispheric circulation, and sea surface temperature forcing patterns during these unusual events.

INTRODUCTION

Droughts have widespread impacts on environmental and natural resources. Since the 1980's, droughts and heat waves have caused over 200 billion dollars worth of damage, and rank second only to tropical cyclones as the most costly natural disasters in the United States (Smith and Katz 2013). In summer of 2011, recordbreaking drought exacerbated by unusually warm temperatures had devastating impacts on rangeland and agriculture across much of northern Mexico, the Southwest, and Texas (Seager et al., 2013; Weiss et al., 2012). In 2012, North America experienced the most extensive drought since the 1930's; over half of the continental United States was in moderate to severe drought (Cook et al., 2013a; Hoerling et al., 2013), and estimated economic impacts reached 30 billion dollars (NCDC 2013). Recent drought-induced bark beetle and spruce budworm attacks have caused widespread forest mortality across the West (Breshears et al., 2008; Van Mantgem et al., 2009), and warming temperatures and droughts are linked with increased occurrence and severity of wildfires (Westerling et al., 2006). Over 9.2 million acres and hundreds of homes burned in 2012 alone (NCDC 2013). Droughts, warming, and forest mortality in mountain regions have been linked to reduced snowpack, faster ablation, and shorter snow covered seasons, all of which result in reduced runoff and stream flow in the mountain headwaters of major river systems like the Colorado River and the Rio Grande (Barnett et al., 2005; Harpold et al., 2012a; 2012b; Biederman et al., 2012). In the Southwest over 33 million people depend on the Colorado River for drinking water (CRWUA 2013), and over-allocation of Colorado River water highlights this key vulnerability to drought (Woodhouse et al., 2005).

With current climate models predicting even warmer and drier conditions in the future, these feedbacks foreshadow a grim outlook for Southwestern climate (Overpeck and Udall 2010; Seager et al., 2007, 2012).

Whereas recent droughts have had devastating impacts, they pale in comparison to droughts that occurred in past 2000 years (Woodhouse and Overpeck 1998). Natural archives including tree-rings and sediments indicate the Southwest has been prone to a wide range of hydroclimatic variability, and multidecadal length droughts unprecedented in the last 100 years (Megadroughts) have occurred several times over the past two millennia (Cook et al., 2007; 2010; Meko et al., 2007; Routson et al., 2011; Stine 1994; Woodhouse and Overpeck 1998; Woodhouse 2004). The medieval climate anomaly (MCA; ~900-1400 AD) is noted for several megadroughts in the West (Cook et al., 2007; 2010; Meko et al., 2007). MCA droughts are recorded by tree-growth, lake sediments, loess deposition, and dune mobilization (Cook et al., 2007, 2010; Halfen and Johnson 2013; Laird et al., 1996; Miao et al., 2007; Routson et al., 2011; Woodhouse and Overpeck 1998; Woodhouse 2004), and are associated with dramatic decreases in Colorado River flows (Meko et al., 2007), and the reorganization and eventual collapse of the Ancient Pueblo culture on the Colorado Plateau (Douglas 1929).

The causes of droughts are diverse. Climate variability and droughts in the West are closely linked with sea surface temperature (SST) patterns. The El Niño Southern Oscillation (ENSO) in the tropical Pacific has a strong influence on temperature and precipitation in the West (e.g., Cayan et al. 1999; Dettenger et al., 1998; Redmond and Koch 1991; Schubert et al. 2009). La Niña events are an
intensification of easterly trade winds that cause increased upwelling water off the South American coastline and cool eastern tropical pacific SST (Horel and Wallace 1981). La Niña is associated with a general northward displacement of storm tracks over the West and warm, dry conditions in the Southwest. El Niño events are roughly the opposite of La Niña, whereby weakening of the easterly trade winds causes reduced upwelling and anomalously warm SSTs in the eastern equatorial Pacific (Cayan et al. 1999; Dettenger et al., 1998; Redmond and Koch 1991). El Niño is associated with more southward-displaced storm tracks in the West and cooler and wetter than average conditions in the Southwest.

SSTs in the North Pacific and North Atlantic Oceans have also been linked with Western climate and drought. The leading mode of SST in north Pacific is known as the Pacific Decadal Oscillation (PDO; Mantua et al. 1997). The PDO has a similar teleconnection pattern to ENSO (Cook et al., 2013b), and it is unclear if the PDO is a unique oscillation, or a lower frequency resonance of ENSO (Newman et al., 2003). Nonetheless, the PDO tends to modulate Western climate on decadal timescales (McCabe et al 2004). North Atlantic SST, when detrended and smoothed, varies on multidecadal length timescales and is known as the Atlantic Multidecadal Oscillation (AMO; Enfield 2001). The AMO has a broad teleconnection pattern whereby the positive phase (warm SST) is correlated with drier than average conditions across the United States (Cook et al., 2013b), and is related to the timing and extent of droughts (McCabe et al., 2004).

Many studies have linked megadroughts to SSTs. A common notion is that persistent "La Niña-like" conditions forced MCA aridity and megadroughts in the

West (e.g., Conroy et al. 2009b; Graham et al. 2007; Herweijer et al. 2007; Seager et al. 2007; Stahle et al. 2000). Long records from the tropical Pacific are scarce, but SST reconstructions generally support the La Niña Like MCA hypothesis (Cobb et al., 2003; Conroy et al., 2009; Kennett and Kennett 2000; Oppo et al., 2009). Precipitation-based reconstructions of ENSO, however, suggest the opposite and indicate the MCA was El Niño-like (Conroy et al., 2008; Oppo et al., 2009; Tierney et al., 2010a; Yan et al., 2011). Together the records suggest a tropical Pacific with no modern analogue whereby SSTs are decoupled from local precipitation (e.g., Tierney et al., 2010a), or stronger El Niño events were imposed on a La Niña like background (Conroy et al., 2009a; Routson et al., 2011).

Warm North Atlantic SSTs have also been linked to past Western megadroughts (Conroy et al., 2009b; Feng et al. 2008, 2011; Gray et al., 2004; Hidalgo 2004; McCabe et al., 2008; Oglesby et al. 2012). Warm intervals in a treering reconstruction of the AMO (Gray et al., 2004) have been associated with periods of drought in the West (Conroy et al., 2009b; Nowak et al., 2012; McCabe et al., 2008). Low-resolution SST reconstructions also indicate there may be a long-term relationship between warm North Atlantic SST and increased Western aridity (Conroy et al., 2009b; Feng et al. 2008, 2011; Oglesby et al. 2012).

Windblown dust is a more regional scale drought feedback than SSTs. Much of the Southwest is characterized by arid landscapes, and dust is entrained by spring winds and southwesterly storm systems (Painter et al., 2007). Large quantities of dust are often deposited on Rocky Mountain snowpack (Lawrence et al 2010; Painter et al., 2007, 2012; Skyles et al., 2012). Dust darkens the snow surface, reducing albedo
and causing the snow to absorb more heat. Warmer snow increases ablation rates, shortens the snow-covered season, and reduces runoff (Painter et al., 2007, 2010, 2012; Skyles et al., 2012). Dust clouds can also reduce rainfall by shading the earth's surface and reducing convective storm formation (Miller and Tegan 1998). Persistent dust clouds during the 1930's Dust Bowl likely enhanced the drought severity and shifted the drought epicenter from the Southwest into the Great Plains (Cook et al., 2008).

Land use has caused substantial increases in Southwestern dustiness (Neff et al., 2008), but dustiness is also enhanced by drought (Munson et al., 2011). Aeolian sediment deposits from the mid-Holocene suggest intervals of widespread loess deposits and dune migration (Halfen and Johnson 2013; Miao et al., 2007). Dune activation has also occurred in many regions of the Southwest (Forman et al., 2006; Reheis et al., 2005; Stokes and Breed 1994; Wells et al., 1990). Recent work suggests windblown dust clouds enhanced the length of megadroughts in the Great Plains by increasing atmospheric stratification and inhibiting convective storm formation, (Cook et al., 2013b); however, much uncertainty still remains regarding the influence of dust on exacerbating megadroughts.

Warm temperatures also enhance severe droughts. In the intermountain West, recent warming has been linked to declines in the ratio of snowfall to rainfall, faster snowpack ablation, and a reduced snow-covered season, leading to less available water for runoff and stream flow (Barnett et al., 2005; Bales et al., 2006; Harpold et al., 2012). Warming also exacerbates drought severity by enhancing evaporation and transpiration rates (Breshears et al., 2005; Weiss et al., 2009; Williams et al., 2012).

The influence of warm temperature on droughts is clearly illustrated by differences between the 1950's and 2000's droughts in the Southwest (Weiss et al., 2009). The two droughts had similar precipitation deficits, but the warmer 2000's drought caused widespread forest mortality. On the Colorado Plateau recent work shows warm temperatures are related to increased moisture stress, increased vegetation mortality (Munson et al., 2011a), and increased dustiness (Munson et al., 2011b).

The temperature history of the West is less well characterized than moisture over the past two millennia. Limited evidence suggests some iconic megadroughts may have occurred under elevated regional temperatures (Woodhouse et al., 2010). The MCA is characterized by warmer than average Northern Hemisphere temperatures (e.g., Ljungqvist 2010; Mann et al., 2008, 2009). North American temperatures, as constrained by three pollen records, were warm during the MCA (Trouet et al., 2013). Western grid points from a temperature field reconstruction also indicate the MCA was warm (Mann et al., 2009). A new temperature reconstruction from the Great Basin using bristlecone pine ring width and changes in the position of treeline shows a long-term cooling trend over the past five millennia (Salzer et al., 2013). The record, however, doesn't show pronounced anomalies coincident with changes in aridity and drought. A bristlecone pine ring-width temperature reconstruction from the San Francisco Peaks in Northern Arizona shows some megadroughts coincide with warm temperatures, but has little centennial scale change (Salzer and Kipfmueller 2005). Together these reconstructions highlight the need for more regional temperature reconstructions in the Southwest to assess links between temperature and past droughts.

Much uncertainty still surrounds the ultimate causes of megadroughts. The combined research suggests multiple factors likely worked in concert to sustain multidecadal length droughts in the Southwest. Limited numbers of records are available with which to assess the environmental context of megadroughts, and many have poor age control and sample resolution. Numerous key questions surrounding megadroughts persist. Did anomalous SSTs force megadroughts? Were megadroughts severe enough to mobilize dust? Could dust have acted as a megadrought feedback? Did anomalous temperatures exacerbate megadroughts? This study helps address these and other questions by contributing a new set of climate records including drought, dustiness, and temperature, in addition to providing new perspectives and analyses of existing regional and global records.

PRESENT STUDY

Given the potential impacts if a megadrought were to occur in the Southwest today, it is important we understand the local and global conditions that lead to droughts that persist for decades. This research dissertation assesses the environmental context of megadroughts using a series of climate reconstructions from the south San Juan Mountains in southern Colorado. The south San Juan Mountains are a narrow mountain chain forming the northeastern boundary of the high desert Colorado Plateau. Centrally located in the southwest, the south San Juan Mountains host the headwaters to the San Juan and Rio Grande Rivers and were at the epicenter of several Megadroughts (Cook et al., 2008). During summer field seasons of 2008,

2009, 2010, and 2011 sediment cores and surface sediments were collected from a series of alpine and subalpine lakes and tree cores were collected from several five bristlecone pine stands. Using a subset of these samples, a set of high-resolution climate records were developed including moisture balance, dustiness, and temperature. By analyzing these new records along with proxy climate records from around the globe this research provides new insights into the nature of megadroughts. We base our assessments in the context of modern climate relationships, and analyze the evidence linking local, regional, and global scale climate forces to the most extreme droughts in the Southwest over the past two millennia.

This dissertation is divided into four chapters, each of which contributes to characterizing different aspects of Megadroughts. Each chapter is published or intended for publication as an independent, peer-reviewed journal article. In this dissertation, each of these articles is included in an appendix (Appendices A, B, C, and D). The region characterized in this study in Appendices A, C, and D includes the San Juan Mountains and the greater Southwest. In Appendix B we expand our geographic window to assess megadroughts across western North America.

In Appendix A, drought in the south San Juan Mountains is characterized using a bristlecone pine chronology. The chronology was developed from small stand growing near the abandoned mining town of Summitville. Living and remnant wood were combined to create a record over 2000 years long. A series of analyses were conducted to understand the record. Seasonal correlations (using the program seascorr: Meko et al., 2011) between the bristlecone record and instrumental gridded PRISM data (Daly et al., 2002) show the bristlecone growth at this site is most
strongly limited by spring moisture balance. Moving correlations between the chronology and tree-ring reconstructed PDSI (Cook et al., 2008) shows the moisture signal is consistent through time. The new record highlights two periods of anomalous aridity and drought. The first period corresponds with well-characterized medieval aridity in the Southwest. Earlier in time the bristlecone show a second interval corresponding with the Roman period, which contains the most severe drought in our record. This drought occurs during the second century AD when our record shows almost 50 consecutive years of below average tree-growth, interrupted only once by a slightly above average year. Furthermore, this drought occurs within a much broader interval of unusual aridity. Other regional tree-ring records from Utah (Knight et al., 2010), New Mexico (Grissino-Mayor 1998), and tree-ring reconstructed PDSI (Cook et al., 2008) corroborate the occurrence of severe drought during the $2^{\text {nd }}$ century. Assessing global climate records during these two intervals, similar hemispheric scale patterns occur during the Roman and medieval periods in the Southwest. These patterns include increased solar irradiance (Steinhilber et al., 2009), warm Northern Hemisphere temperature (Ljungqvist et al., 2010), a warm North Atlantic (Sicre et al., 2010), and an unusual pattern in the tropical Pacific, which we infer to reflect increased El Niño frequency or intensity imposed on a strong La Niña like temperature gradient (Conroy et al., 2008; Oppo et al., 2009). This chapter was published in Geophysical Research Letters in the fall of 2011.

In appendix B relationships between global SST patterns and Western megadroughts and pluvials are assessed. In this chapter we focus on the last 1100 years, helping to characterized changes during the MCA that resulted in frequent
droughts in the Southwest. The analysis encompasses both the driest most persistent megadroughts and the wettest most persistent pluvials. Two primary methods are used: first teleconnection patterns of instrumental circulation indexes including ENSO, PDO, and AMO imbedded in tree-ring reconstructed PDSI (Cook et al., 2008) are assessed, and second a network of SST reconstructions is assessed. We find little change in tropical Pacific teleconnection patterns between the MCA and post MCA, whereas SST reconstructions show a pronounced shift toward a La Niña like background state during the MCA. Precipitation-based reconstructions of ENSO however, indicate that the MCA was El Niño like, in direct contrast to the SST reconstructions. There are increases in the strength of a widespread teleconnection pattern we link to the AMO during the MCA. Teleconnection patterns indicate that many severe droughts and pluvials were forced by multiple consecutive or nearly consecutive La Niña and El Niño events, respectively. Poor resolution of SST reconstructions limits our ability to assess relatively short drought and pluvial time scales, but droughts tend to have a La Niña like pattern in the Pacific and a warm North Atlantic, consistent with the inferences drawn from teleconnection pattern maps. This manuscript is intended for publication in Journal of Climate.

In appendix C a new 2941-year-long dust reconstruction from Fish Lake in the south San Juan Mountains is presented. Two methods are used to reconstruct dust deposition: grain size analysis and μ Xray-fluorescence ($\mu \mathrm{XRF}$). The grain size distribution of dust deposited on local San Juan Mountains snowpack was used to characterize changes in the fraction of dust in the sediment through time. μ XRF was also used to characterize the geochemistry of dust on snow, local, bedrock and
sediment. Dust was reconstructed using a geochemical end-member mixing model. Elemental abundance ratios of dust off snow and local bedrock represent the two endmembers of which the sediment is a mixture. Applying the mixing model to $\mu \mathrm{XRF}$ measurements taken down the core calculates the fraction of dust deposited in the lake through time. The grain size and geochemical records were combined to reduce method dependent variance and to reconstruct total dust deposition in our lake for the past 2941 years. The dust record shows an anomalously dusty period before 900 BC , after which dustiness declines slowly. The record shows a small increase in dustiness associated with Roman Period aridity, and persistent high dustiness during the MCA. Finally the record also shows a large increase in dustiness associated with the introduction of livestock and increased human land use starting in the mid to late 1800's. The dust record shows that dust is an important component of southwestern climate and that medieval and earlier droughts were severe enough to mobilize dust, which may have subsequently altered snowmelt and reduced runoff and stream flow during periods of extreme aridity in the past.

In appendix D 2000 years of temperature variability from Blue Lake in the south San Juan Mountains is reconstructed. A new biomarker proxy is used, which links the relative abundance of gycerol dialkyl glycerol tetraether (GDGT) membrane lipids to mean annual temperature (e.g., Loomis et al., 2012; Tierney et al., 2010b). The reconstructed temperature record closely matches local snow telemetry station temperatures, capturing recent rapid warming in the region. The GDGT record shows that temperatures in the San Juan Mountains were warmer in the past than today and that anomalously warm temperatures coincided with periods of extreme drought and
aridity and in the Southwest. The warmest period in the record coincides with Roman Period aridity identified in the Summitville tree-rings. The medieval period was also anomalously warm. Together the temperature and dust records suggest that temperature and dust may have been important feedbacks during the most severe droughts in the Southwest. The rate of recent warming in the San Juan Mountains, combined with rapid rates of change in the GDGT record, indicate that the San Juan Mountains are highly sensitive to temperature change, and will likely respond in kind to future warming.

REFERENCES

Ault, T. R., et al., 2013: The continuum of hydroclimate variability in western North America during the last millennium. Journal of Climate,

Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J Dozier, 2006: Mountain hydrology of the western United States. Water Resources Research, 42(8).

Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. nature, 438(17), 303-309, doi:10.1038/nature04141

Breshears, D. D., et al. 2005: Regional vegetation die- off in response to global-change- type drought, Proc. Natl. Acad. Sci. U. S. A., 102(42), 15,144-148, doi:10.1073/pnas. 0505734102.

Breshears, D. D., et al., 2008: Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 7(4), 185-189.

Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and Hydrologic Extremes in the Western United States. Journal of Climate, 12 (9), 28812893. doi: http://dx.doi.org/10.1175/15200442(1999)012<2881:EAHEIT>2.0.CO;2

Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern

Oscillation and tropical Pacific climate during the last millennium. Nature, 424 (6946), 271-276, doi:doi:10.1038/nature01779.

Conroy, J. L., J. T. Overpeck, J. E. Cole, T. M. Shanahan, and M. Steinitz- Kannan, 2008: Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record, Quaternary Science Reviews, 27, 11661180, doi:10.1016/j.quascirev.2008.02.015.

Conroy, J. L., A. Restrepo, J. T. Overpeck, M. Steinitz-Kannan, J. E. Cole, M. B. Bush, and P. A. Colinvaux, 2009a; Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nature Geoscience, 2, 4650, doi:10.1038/ngeo390.

Conroy, J. L., J. T. Overpeck, J. E. Cole, and M. Steinitz-Kannan, 2009b: Variable oceanic influences on western North American drought over the last 1200 years. Geophysical Research Letters, 36 (17), doi:10.1029/2009GL039558.

Conroy, J. L., J. T. Overpeck, and J. E. Cole, 2010: El Niño/Southern Oscillation and changes in the zonal gradient of tropical Pacific sea surface temperature over the last 1.2 ka . PAGES news, 18 (1), 32-34.

Cook, B. I., J. E. Smerdon, R. Seager, and E. R. Cook, 2013a: Pan-continental droughts in North America over the last millennium. Journal of Climate

Cook, B. I., R. Seager, R. L. Miller, and J. A. Mason, 2013b: Intensification of North American megadroughts through surface and dust aerosol forcing. Journal of Climate

Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle, 2004: Long- Term Aridity Changes in the Western United States. Science, 306 (5698), 1015-1018, doi:10.1126/science. 1102586.

Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Science Reviews, 81 (1-2), 93-134, doi: http://dx.doi.org/10.1016/j.earscirev.2006.12.002.

Cook, E. R., R. Seager, R. R. Heim Jr, R. S. Vose, C. Herweijer, and C. Woodhouse, 2010: Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. Journal of Quaternary Science, 25 (1), 48-61, doi: 10.1002/jqs.1303.

Cook, E.R., et al. 2008: North American summer PDSI reconstructions, version 2a, IGBP PAGES World Data Cent. Paleoclimatology Data Contributions Service 2008-046, Paleoclimatology Program, NGDC, NOAA, Boulder, Colorado.

CRWUA 2013: Colorado River Water Users Association: http://www.crwua.org

Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge- based approach to the statistical mapping of climate, Clim. Res., 22, 99-113, doi:10.3354/cr022099.

Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North-south precipitation patterns in western North America on interannual-to-decadal timescales. Journal of Climate, 11(12), 3095-3111.

Douglass, A. E., 1929: The Secret of the Southwest Solved With Talkative Tree Rings, pp. 736-770, Judd and Detweiler, Washington, D. C.

Feng, S., R. J. Oglesby, C. M. Rowe, D. B. Loope, and Q. Hu, 2008: Atlantic and Pacific SST influences on Medieval drought in North America simulated by the Community Atmospheric Model. Journal of Geophysical Research: Atmospheres, 113 (D11), doi: 10.1029/2007JD009347.

Feng, S., Q. Hu, and R. J. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate dynamics, 37 (3-4), 569-586 doi:10.1007/s00382-010-0835-x.

Forman, S. L., M. Spaeth, L. Marín, J. Pierson, J. Gómez, F. Bunch, and A. Valdez, 2006: Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA. Quaternary Research, 66 (1), 97-108.

Graham, N. E., et al., 2007: Tropical Pacific-mid-latitude teleconnections in medieval times, Climatic Change, 83, 241-285, doi:10.1007/s 10584- 007-9239-2.

Graham, N. E., C. M. Ammann, D. Fleitmann, K. M. Cobb, and J. Luterbacher, 2011: Support for global climate reorganization during the "Medieval Climate Anomaly". Climate Dynamics, 37, 1217-1245, doi:http://dx.doi.org/10.1007/s00382-010-0914-z.

Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Pederson, 2004: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31 (12), doi:10.1029/2004GL019932.

Grissino- Mayor, H. 1996: A 2129- year reconstruction of precipitation for northwestern New Mexico, USA, in Tree Rings, Environment, and Humanity, edited by J. S. Dean, D. M. Meko, and T. W. Swetnam, pp. 191-204, Radiocarbon, Tucson, Ariz.

Halfen, A. F., and W. C. Johnson, 2013: A review of Great Plains dune field chronologies. Aeolian Research.

Harpold, A. A., P. Brooks, S. Rajagopal, J. Heidbuchel, A. Jardine, and C. Stielstra, 2012a: Changes in snowpack accumulation and ablation in the intermountain west. Water Resources Research, 48(11).

Harpold, A. A., et al., 2013: Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology.

Herweijer, C., R. Seager, E. R. Cook, and J. Emile-Geay, 2007: North American Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data. Journal of Climate, 20(7), 1353-1376, doi:http://dx.doi.org/10.1175/JCLI4042.1.

Hidalgo, H. G., 2004: Climate precursors of multidecadal drought variability in the western United States. Water Resources Research, 40(12), W12504 doi:10.1029/2004WR003350.

Hoerling, et al., 2013: Causes and Predictability of the 2012 Great Plains Drought. Bulletin of the American Meteorological Society.

Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109(4), 813-829.

Kennett, D. J., and J. P. Kennett, 2000: Competitive and cooperative responses to climatic instability in coastal southern California. American Antiquity, 379395.

Knight, T. A., D. M. Meko, and C. H. Baisan, 2010: A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, north-eastern Utah, Quat. Res., 73, 107-117, doi:10.1016/j.yqres.2009.08.002.

Ljungqvist, F. C. 2010: A new reconstruction of temperature variability in the extratropical Northern Hemisphere during the last two millennia, Geogr. Ann., 92, 339-351, doi:10.1111/j.1468-0459.2010.00399.x.

Loomis, S. E., J. M. Russell, B. Ladd, F. A. Street-Perrott, and J. S. Sinninghe Damsté, 2012: Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth and Planetary Science Letters, 357, 277-288.

Mann, M. E., et al., 2009: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326 (5957), 1256-1260, doi:10.1126/science. 1177303 .

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production.

Bulletin of the American Meteorological Society， 78 （6），1069－1079， doi：http：／／dx．doi．org／10．1175／1520－0477（1997）078〈1069：APICOW〉2．0．CO；2．

McCabe，G．J．，M．A．Palecki，and J．L．Betancourt，2004：Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States． Proceedings of the National Academy of Sciences， 101 （12），4136－4141， doi：10．1073／pnas． 0306738101.

Meko，D．M．，C．A．Woodhouse，C．A．Baisan，T．Knight，J．J．Lukas，M．K．Hughes， and M．W．Salzer，2007：Medieval drought in the upper Colorado River Basin． Geophysical Research Letters， 34 （10）， 10 705－10 709， doi：10．1029／2007GL029988．

Meko，D．M．，R．Touchan，and K．J．Anchukaitis，2011：Seascorr：A MATLAB program for identifying the seasonal climate signal in an annual tree－ring time series，Comput．Geosci．，37，1234－1241， doi：10．1016／j．cageo．2011．01．013．

Munson，S．M．，J．Belnap，and G．S．Okin，2011：Responses of wind erosion to climate－induced vegetation changes on the Colorado Plateau．Proceedings of the National Academy of Sciences，108（10），3854－3859．

NCDC 2013：Billion－Dollar Weather／Climate Events．Available online： http：／／www．ncdc．noaa．gov／billions

Newman，M．，G．P．Compo，and M．A．Alexander，2003：ENSO－Forced Variability of the Pacific Decadal Oscillation．Journal of Climate， 16 （23），3853－3857， doi：10．1175／1520－0442（2003）016〈3853：EVOTPD〉2．0．CO；2．

Nowak，K．，M．Hoerling，B．Rajagopalan，and E．Zagona，2012：Colorado River Basin Hydroclimatic Variability．Journal of Climate 25（12），4389－4403 doi： http：／／dx．doi．org／10．1175／JCLI－D－11－00406．1．

Oglesby，R．，S．Feng，Q．Hu，and C．Rowe，2012：The role of the Atlantic Multidecadal Oscillation on medieval drought in North America：Synthesizing results from proxy data and climate models．Global and Planetary Change， 84 － 85 （0）， 56 －65，doi：10．1016／j．gloplacha．2011．07．005．

Oppo，D．W．，Y．Rosenthal，and B．K．Linsley，2009：2，000－year－long temperature and hydrology reconstructions from the Indo－Pacific warm pool，Nature，460， 1113－1116，doi：10．1038／nature08233．

Painter，T．H．，et al．，2007：Impact of disturbed desert soils on duration of mountain snow cover．Geophysical Research Letters，34（12），L12502．

Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall, 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proceedings of the National Academy of Sciences, 107(40), 17125-17130.

Painter, T. H., S. M. Skiles, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6-year record of energy balance, radiation, and dust concentrations. Water Resources Research, 48(7).

Redmond, K. T., and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resources Research, 27 (9), 2381-2399.

Routson, C. C., C. A. Woodhouse, and J. T. Overpeck, 2011: Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought? Geophysical Research Letters, 38 (22), L22 703, doi:10.1029/2011GL050015.

Salzer, M. W., and K. F. Kipfmueller 2005: Reconstructed temperature and precipitation on a millennial timescale from tree- rings in the southern Colorado Plateau, Clim. Change, 70, 465-487, doi:10.1007/s10584-005-5922-3.

Salzer, M. W., A. G. Bunn, N. E. Graham, and M. K. Hughes, 2013: Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Climate Dynamics, 1-10.

Schubert, S., et al., 2009: A US CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results. Journal of Climate, 22 (19), 5251-5272, doi:http://dx.doi.org/10.1175/2009JCLI3060.1.

Seager, R., R. Burgman, Y. Kushnir, A. Clement, E. Cook, N. Naik, and J. Miller, 2008: Tropical Pacific forcing of North American Medieval Megadroughts: Testing the Concept with an Atmosphere Model Forced by CoralReconstructed SSTs. Journal of Climate, 21 (23), 6175-6190, doi:http://dx.doi.org/10.1175/2008JCLI2170.1.

Seager, R., N. Graham, C. Herweijer, A. L. Gordon, Y. Kushnir, and E. Cook, 2007: Blueprints for Medieval hydroclimate. Quaternary Science Reviews, 26 (1921), 2322-2336, doi:http://dx.doi.org/10.1016/j.quascirev.2007.04.020.

Seager, R., M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, and H. Liu, 2012: Projections of declining surface-water availability for the southwestern United States. Nature Climate Change.

Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2013: Dynamical causes of the 2010/11 Texas-northern-Mexico drought. Journal of Hydrometeorology, (2013).

Stine, S., 1994: Extreme and persistent drought in California and Patagonia during mediaeval time. Nature, 369 (6481), 546-549, URL http://dx.doi.org/10.1038/369546a0.

Steinhilber, F., J. Beer, and C. Fröhlich 2009: Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, doi:10.1029/ 2009 GL040142.

Tierney, J. E., D. W. Oppo, Y. Rosenthal, J. M. Russell, and B. K. Linsley, 2010a: Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography, 25(1), doi:10.1029/2009PA001871.

Tierney, J. E., J. M. Russell, H. Eggermont, E. C., Hopmans, D. Verschuren, and J. S. Sinninghe Damsté, 2010b: Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochimica et Cosmochimica Acta, 74(17), 4902-4918.

Van Mantgem, et al., 2009: Widespread increase of tree mortality rates in the western United States. Science, 323(5913), 521-524.

Weiss, J. L., C. L. Castro, and J. T. Overpeck, 2009: Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures, Journal of Climate, 22, 5918-5932, doi:10.1175/ 2009JCLI2905.1.

Weiss, J. L., J. T. Overpeck, J. E. Cole, 2012: Warmer Led to Drier: Dissecting the 2011 Drought in the Southern U.S. Southwest Climate Outlook, http://climas.arizona.edu/feature-articles

Williams, et al., 2012: Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change

Woodhouse, C. A. and J. T. Overpeck, 1998: 2000 Years of Drought Variability in the Central United States. Bulletin of the American Meteorological Society, 79 (12), 2693-2714, doi:http://dx.doi.org/10.1175/15200477(1998)079〈2693:YODVIT〉2.0.CO;2.

Yan, H., L. Sun, Y. Wang, W. Huang, S. Qiu, and C. Yang, 2011: A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nature Geoscience, 4(9), 611-614.

APPENDIX A SECOND CENTURY MEGADROUGHT IN THE RIO GRANDE HEADWATERS, COLORADO: HOW UNUSUAL WAS MEDIEVAL DROUGHT?

Cody C. Routson, ${ }^{1}$ Connie A. Woodhouse, ${ }^{2}$ and Jonathan T. Overpeck ${ }^{1,3,4}$
${ }^{1}$ Department of Geosciences, University of Arizona, Tucson, Arizona, USA
${ }^{2}$ School of Geography and Development, University of Arizona, Tucson, Arizona, USA
${ }^{3}$ Institute of the Environment, University of Arizona, Tucson, Arizona, USA
${ }^{4}$ Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA

This appendix has been published in Geophysical Research Letters, and reproduced with written permission from John Wiley and Sons. See APPENDIX E.

CITATION: Routson, C. C., C. A. Woodhouse, and J. T. Overpeck, 2011: Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought? Geophysical Research Letters, 38 (22), L22 703, doi:10.1029/2011GL050015.
A. 1 Abstract
[1] A new tree-ring record from living and remnant bristlecone pine (Pinus aristata) wood from the headwaters region of the Rio Grande River, Colorado is used in conjunction with other regional records to evaluate periods of unusually severe drought over the past two millennia (B.C. 268 to A.D. 2009). Our new record contains a multi-century period of unusual dryness between 1 and 400 A.D., including an extreme drought during the 2 nd century. Characterized by almost five
decades of drought (below average ring width), we hypothesize this megadrought is equally, if not more severe than medieval period megadroughts in this region. Published paleoclimate time series help define the spatial extent, severity, and potential causes of the 2 nd century megadrought. Furthermore, this early period of unusual dryness has intriguing similarities to later medieval period aridity. Our findings suggest we should anticipate similar severe drought conditions in an even warmer and drier future.

A. 2 Introduction

[2] A better understanding of the range of long-term moisture variability is critical for anticipation of, and adaptation to, projected increases in aridity and drought frequency in the southwestern US (henceforth referred to as the Southwest) [Overpeck and Udall, 2010]. Many Southwestern high-resolution proxy records show numerous droughts over the past millennium, including droughts far more severe than we have experienced during the historical period [e.g., Woodhouse and Overpeck, 1998; Cook et al., 2004, 2010; Meko et al., 2007]. The medieval interval (ca. A.D. 900 to 1400), a period with relatively warm Northern Hemisphere temperatures [e.g., Mann et al., 2008], has been highlighted as a period in western North America with increased drought severity, duration, and extent [e.g., Stine, 1994; Cook et al., 2004, 2010; Meko et al., 2007; Woodhouse et al., 2010]. Iconic decades-long "megadroughts," including Mono Lake low-stands [Stine, 1994], the mid-12th century drought associated with dramatic decreases in Colorado River flow [Meko et al., 2007], and the "Great Drought" associated with the abandonment of Ancient

Pueblo civilization in the Colorado Plateau region [Douglass, 1929], all occur during the medieval period.
[3] Were medieval drought magnitude, severity, frequency, and extent unique? New longer paleoclimate records indicate that medieval droughts were not entirely matchless in prior centuries [i.e., Knight et al., 2010]. Medieval drought was likely influenced by numerous factors including warmer Northern Hemisphere temperatures, warmer regional temperatures, cold eastern equatorial Pacific sea surface temperatures (SSTs), and warm North Atlantic SSTs [Seager et al., 2007; Conroy et al., 2009a; Graham et al., 2010; Cook et al., 2010]. Did these same factors influence extreme drought before medieval time? In this paper we compare a new 2200 year long moisture sensitive bristlecone (Pinus aristata) tree-ring chronology from the southern San Juan Mountains, Colorado, with existing records in the broader Four-Corners region (Colorado, Utah, Arizona, and New Mexico). We selected this region because it serves as a key headwaters region for the Southwest (e.g., Colorado and Rio Grande Rivers) and because it was located in the epicenter of known medieval megadroughts [Cook et al., 2008]. We find evidence that indicates centuries-long periods of aridity and Southwestern megadrought were not just a medieval phenomenon. Comparing the possible drivers of medieval drought with potential drivers during the 2 nd century suggests that similar factors could have influenced drought during the two periods, helping us understand fundamental causes of severe and persistent drought.

A. 3 Tree-Ring and Climate Analysis

[4] Our new chronology was developed from living and remnant samples of moisture sensitive Rocky Mountain bristlecone pine (Pinus aristata) growing near Summitville in the southern San Juan Mountains, Colorado (Figure A.1). Increment cores were taken from living trees and cross-sections were obtained from dead remnant wood within the stand. Cores and cross-sections were dated to the calendar year using skeleton plots and crossdating [Stokes and Smiley, 1968]. Individual growth rings were measured to the nearest 0.01 mm , and crossdating accuracy was checked statistically [Holmes, 1983]. Negative exponential detrending was employed to preserve the most low frequency variance while removing biological growth trends and generating standardized tree-ring indices [Cook, 1985]. To further preserve low frequency climate related variability, only tree-ring series longer than 470 years were included in the final chronology [Cook et al., 1995]. The final composite chronology (Figure A.2) includes 28 trees and extends from B.C. 268 to A.D. 2009. Sample depth drops steadily before A.D. 700 to one tree prior to B.C. 200. Six trees span the 2nd century drought. Subsample signal, a measure of common variance between trees, is 0.85 or greater after 10 B.C. (0.85 is a general threshold used to indicate good signal strength [Wigley et al., 1984]).
[5] Bristlecone pine grows on high elevation mountain slopes and growth has a notoriously complex relationship between temperature and moisture [e.g., Fritts, 1969; LaMarche and Stockton, 1974]. Here, we have used a set of methods designed to define the tree growth/climate response of this site and its consistency over time
(details in the auxiliary material). Correlation analysis with instrumental gridded PRISM data (monthly precipitation and temperature) [Daly et al., 2002] spanning A.D. 1895-2009 from the Rio Grande headwaters hydrologic unit (WestMap, 2010, accessed 31 August 2010, available at http://www.cefa. dri.edu/Westmap/) was used to evaluate the climate sensitivity of our new bristlecone chronology during the period covered by instrumental records. The Rio Grande headwaters hydrologic unit (Figure A.1) was used because it encompasses Summitville and the San Luis Valley, through which the Rio Grande flows. Seasonal correlation analysis and partial correlation analysis [Meko et al., 2011] with the PRISM data show tree growth has a significant positive relationship with March through July precipitation ($\mathrm{r}=0.47, \mathrm{p}<$ 0.01) and has a statistically independent significant negative relationship, based on partial correlations, with March through July temperature ($\mathrm{r}=-0.37, \mathrm{p}<0.01$). A positive relationship with late winter through early summer precipitation suggests snowpack influences on soil moisture at the beginning of the growing season, as well as early growing season precipitation both promote tree growth. A negative relationship with March through July temperature suggests that warm spring and early summer months hasten the timing of snowmelt in addition to driving increased evaporation contributing to moisture stress in the trees. The inset in Figure A. 2 shows the relationship of March through July precipitation and ring-width from 1895 to the present. We also evaluated potential relationships between growth and late summer temperatures, which are sometimes important to high elevation tree growth, using PRISM data. We found that tree growth responded positively to warm August temperature during years with wet spring months, but August temperatures had no
influence on spring moisture sensitivity (see auxiliary material). Moving correlation analysis between our bristlecone chronology and regional PDSI and temperature reconstructions [Salzer and Kipfmueller, 2005; Cook et al., 2008] indicates our chronology has a consistent moisture balance signal over the past 2000 years (see auxiliary material). Although the climate signal is not as strong as that found in lower elevation species, bristlecone pine allows us to develop a much longer record than possible using lower elevation species.

A. 4 Second Century Droughts

[6] Our new record smoothed with a 25 -year running mean shows how moisture balance in the southern San Juan Mountains has varied on decadal time scales over the past 2200 years (Figure A.2). The smoothed chronology reveals two periods of enhanced drought frequency and severity relative to the rest of the record. The later period, A.D. $\sim 1050-1350$, corresponds with medieval aridity well documented in other records [Woodhouse and Overpeck, 1998; Cook et al., 2004; Meko et al., 2007]. The earlier period is more persistent (A.D. $\sim 1-400$), and includes the most pronounced event in the Summitville chronology: a multidecadal-length drought during the 2 nd century. This drought includes the unsmoothed record's driest 25-year interval (A.D. 148 to A.D. 173) as well as a longer 51-year period, A.D. 122172, that has only two years with ring width slightly above the long-term mean. The smoothed chronology shows the periods A.D. 77-282 and A.D. 301-400 are the longest (206 and 100 years, respectively, below the long-term average) droughts of
the entire 2276-yr record.
[7] Because the climate response of bristlecone pine is not as robust as lower elevation species, and because the new Summitville chronology only includes six trees during the 2 nd century drought interval, we assessed the reliability of our record using other moisture-sensitive reconstructions from the region. Comparing the Summitville chronology with reconstructed Colorado Plateau PDSI [Cook et al., 2008], annual precipitation from El Malpais, New Mexico (included in PDSI, so not strictly an independent record) [Grissino-Mayor, 1996] and Tavaputs, Utah [Knight et al., 2010] (Figure A.3, top) highlights the regional significance of the 2nd century drought. Consistent severity of the 2 nd century drought among the records, across elevation (1630 m - 3500 m), space (Figure A.1), and tree species (Pinus aristata, Pseudotsuga menziesii) gives us more confidence in the timing and severity of this drought. Medieval megadroughts, including the 1150's and late 1200's droughts are not as pronounced in the high-elevation Summitville chronology. The 2nd century drought, however, appears to have been equal to, or more extreme, than the iconic medieval mega- droughts in these other proxy records. Sample size and climate response of the Summitville chronology limits the conclusions we can make. However, with limitations in mind and the support of the other records, we hypothesize the 2 nd century drought may be one of the most severe and persistent droughts the Colorado Plateau region has experienced during the last 2000 years (Table A.1). Assessing the spatial extent of the drought with composite maps of gridded PDSI reconstructions for the years A.D. 148-173 (Figure A.S1 in the auxiliary material) [Cook et al., 2008] indicates that the 2nd century drought impacted
a region that extends from southern New Mexico north and west into Idaho. The drought was less severe in Nevada and California, and no PDSI data are available for the 2 nd century in the central and eastern United States. The spatial pattern of the 2 nd century mega- drought appears similar to the mid-12th century megadrought highlighted in PDSI and Colorado River flow reconstructions [Meko et al., 2007; Cook et al., 2008].
[8] We investigated potential broad-scale climatic influences on Four Corners hydroclimate by comparing our new drought record with published records from regions hypothesized to have influenced Southwestern drought. Due to a limited number of available records during the 2nd century which all contain uncertainties, the following analyses should be viewed as exploratory.
[9] Warm regional temperatures exacerbated recent drought severity [e.g., Breshears et al., 2005; Weiss et al., 2009; Woodhouse et al., 2010], and a Colorado Plateau temperature reconstruction [Salzer and Kipfmueller, 2005] indicates that medieval period droughts during the mid 12th and late 13 th centuries were potentially influenced by warmer than average temperatures as well. A small positive temperature anomaly on the Colorado Plateau also occurs during the 2nd century, indicating that local temperature anomalies may be a common influence on megadrought in the region. Warm global or hemispheric temperatures can also influence Southwest drought through changes in circulation [Cook et al., 2010]. Few hemispheric temperature reconstructions extend back to the 2 nd century, making a comparison between medieval and 2nd century temperature difficult. A multiproxy Northern Hemisphere temperature reconstruction [Moberg et al., 2005] shows no
anomalous warming during the 2 nd century (Figure A.3). A more recent multiproxy Northern Hemisphere temperature reconstruction however, shows a "Roman Warm Period" spanning 1-300 A.D. [Ljungqvist, 2010] that could be analogous to warmth associated with Southwestern megadroughts during medieval times. Both Moberg et al. [2005] and Ljungqvist [2010] show warm Northern Hemisphere temperatures during the medieval period. In addition, both megadrought periods may have occurred under somewhat elevated levels of solar irradiance that were above the past 2200 year average (Figure A.3).
[10] Although elevated temperatures may have accompanied this drought, other factors were likely important as well. Sea surface temperature (SST) can have a significant impact on Southwestern hydroclimate through changes in oceanic and atmospheric circulation. Tropical Pacific SST, modulated by the El Niño/Southern Oscillation (ENSO), has an important influence on Southwestern precipitation. The tropical Pacific warm phase (El Niño) is typically associated with increased regional precipitation, whereas the cool phase (La Niña) is typically associated with decreased regional precipitation and drought [e.g., Hoerling and Kumar, 2003; Seager et al., 2005]. Atlantic SST's have a less well understood, but important correspondence with Southwestern hydroclimate, whereby warm North Atlantic SST's are thought to influence the rainfall and drought severity, most strongly in summer [Hoerling and Kumar, 2003; McCabe et al., 2004; Kushnir et al., 2010]. Medieval megadroughts were likely associated with persistent "La Niña like" conditions, and warm North Atlantic SST [Seager et al., 2007; Conroy et al., 2009a; Graham et al., 2010].
[11] Again limited records are available to evaluate potential SST influences
on 2 nd century megadrought. An ocean sediment record reflecting western equatorial Pacific SST shows positive anomalies during both the medieval period and the 2nd century [Oppo et al., 2009], suggesting that persistent or stronger La Niña-like conditions may have forced both 2 nd century and medieval drought. The 2nd century and late medieval period aridity also coincide with intervals of increased El Niño frequency in the eastern tropical Pacific inferred from changes in grain size in sediment cores from Lake El Junco in the Galapagos Islands [Conroy et al., 2008]. Changes in El Junco grain size are a function of precipitation, which is closely connected in the Galapagos with some types of strong El Niño events, suggesting that strong El Niño events may have punctuated the persistent La Niña-like conditions. An SST record also from Lake El Junco shows La Niña-like background conditions spanning the medieval period, supporting our interpretation [Conroy et al., 2009b]. The coincidence of heightened El Niño frequency within a La Niña-like background state corresponds closely to one mode of ENSO variance characterized by Fedorov and Philander [2000]. On the other hand, the extended period of increased El Niño frequency, as inferred from El Junco, contains two abrupt decreases that correspond fairly well to the two droughts in the early part of the Summitville record (Figure A.3) supportive of strong La Niña conditions. Dating uncertainty and limited other records make these assessments less than robust, and it is clear that more work is needed to understand the equatorial Pacific conditions that may promote megadrought. The influence of North Atlantic SST on the 2nd century is even more uncertain due to the scarcity of high-resolution paleodata available. Northern Iceland SSTs [Sicre et al., 2008] have a positive anomaly during the medieval period, but are equivocal with
respect to the 2 nd century period, although modest warmth spans most of the period characterized by drought. The equatorial North Atlantic appears however to be more important for influencing Southwestern drought, at least during the instrumental period [Kushnir et al., 2010], and unfortunately, no proxy records that could resolve this period of drought are currently available.

A. 5 Conclusions and Implications

[12] A new millennial-length moisture-sensitive bristlecone pine chronology from the San Juan River (a major tributary of the Colorado River) and Rio Grande headwaters region of southern Colorado provides insight on droughts and changes in aridity over the past two millennia in the Southwest. Our new record extends back 2200 years and shows a broader range of drought variability, including a drought that persisted from A.D. 122 to A.D. 172. Based on our findings, we hypothesize that megadroughts are not unique to the medieval period. Available regional moisture records indicate the 2nd century drought likely extended from southern New Mexico to Idaho, possibly comparable in extent to the mid 12th century drought. More highresolution moisture records are needed to evaluate both the severity and full extent of the 2 nd century drought. Additional bristlecone pine chronologies in the southern Colorado region would allow a calibrated reconstruction of moisture variability.
[13] Attributing potential causes of megadrought is challenging due to scarcity of millennial-length records. Reconstructed Colorado Plateau temperature suggests warmer than average temperature could have influenced both 2 nd century and
medieval drought severity. Available data also suggest that the Northern Hemisphere may have been warm during both intervals. Tropical Pacific SST and El Niño frequency reconstructions indicate similar conditions could have prevailed during the medieval and 2 nd century periods, potentially contributing to drought severity and duration. Warm North Atlantic SST likely prevailed during the medieval period, but possible connections with the Atlantic remain ambiguous with respect to the 2 nd century.
[14] Given the effects of recent drought on water resources and ecosystems in the Southwest [Breshears et al., 2005; Overpeck and Udall, 2010], it will be important to test our hypothesis that 2 nd century drought severity rivaled medieval megadroughts and more closely examine potential relationships with hemispheric climate patterns. Testing our hypothesis will require a better network of millennial length moisture proxy records that retain both short and long time-scale climate variability in addition to more high-resolution reconstructions of global climate patterns. Until the climate dynamics of megadrought are thoroughly understood, managers of water and natural resources in the Four Corners, Rio Grande, and Colorado regions should take note that megadroughts as long, or longer, than 50 years could reoccur with the caveat that future droughts will likely be even warmer than those in the past [Karl et al., 2009; Weiss et al., 2009; Overpeck and Udall, 2010].
[15] Acknowledgments. We thank the NOAA Climate Program Office-funded Climate Assessment for the Southwest Project and NSF Graduate Research Fellowship program, and the SFAZ Graduate Research Fellowship for support of this project. We also thank David Meko, Julio Betancourt, Troy Knight, Jessica Conroy
and Nick McKay for data, discussion and insights. We value the reviews from David
Stahle and Richard Seager, which helped us strengthen the paper.
[16] The Editor thanks David Stahle and Richard Seager for their assistance in evaluating this paper.

A. 6 References

Breshears, D. D., et al. (2005), Regional vegetation die-off in response to global change type drought, Proc. Natl. Acad. Sci. U. S. A., 102(42), 15,144-15,148, doi:10.1073/pnas. 0505734102 .

Conroy, J. L., J. T. Overpeck, J. E. Cole, T. M. Shanahan, and M. Steinitz-Kannan (2008), Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record, Quat. Sci. Rev., 27, 1166-1180, doi:10.1016/j.quascirev.2008.02.015.

Conroy, J. L., J. T. Overpeck, J. E. Cole, and M. Steinitz-Kannan (2009a), Variable oceanic influences on western North American drought over the last 1200 years, Geophys. Res. Lett., 36, L17703, doi:10.1029/ 2009GL039558.

Conroy, J. L., et al. (2009b), Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean, Nat. Geosci., 2, 46-50, doi:10.1038/ngeo390.

Cook, E. R. (1985) A time series analysis approach to tree-ring standardization, Ph.D. dissertation, Univ. of Ariz., Tucson.

Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill, and G. Funkhouser (1995), The "segment length curse" in long tree-ring chronology development for palaeolclimatic studies, Holocene, 5(2), 229-237, doi:10.1177/ 095968369500500211.

Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle (2004), Long-term aridity changes in the western United States, Science, 306(5698), 1015-1018, doi:10.1126/science. 1102586.

Cook, E. R., et al. (2008), North American summer PDSI reconstructions, version 2a, IGBP PAGES World Data Cent. Paleoclimatol. Data Contrib. Ser. 2008-046, Paleoclimatol. Program, NGDC, NOAA, Boulder, Colo.

Cook, E. R., et al. (2010), Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context, J. Quat. Sci.,

25, 48-61, doi:10.1002/jqs. 1303.
Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris (2002), A knowledge-based approach to the statistical mapping of climate, Clim. Res., 22 , 99-113, doi: $10.3354 / \mathrm{cr} 022099$.

Douglass, A. E. (1929), The Secret of the Southwest Solved With Talkative Tree Rings, pp. 736-770, Judd and Detweiler, Washington, D. C.

Fedorov, A. V., and S. G. Philander (2000), Is El Niño changing?, Science, 288, 1997-2002, doi:10.1126/science.288.5473.1997.

Fritts, H. C. (1969), Bristlecone pine in the White Mountains of California. Growth and ring-width characteristics, Pap. Lab. Tree Ring Res., 4, 1-44.

Graham, N. E., C. M. Ammann, D. Fleitmann, K. M. Cobb, and J. Luterbacher (2010), Support for global climate reorganization during the Medieval Climate Anomaly, Clim. Dyn., doi:10.1007/s00382-010-0914-z.

Grissino-Mayor, H. (1996), A 2129-year reconstruction of precipitation for northwestern New Mexico, USA, in Tree Rings, Environment, and Humanity, edited by J. S. Dean, D. M. Meko, and T. W. Swetnam, pp. 191-204, Radiocarbon, Tucson, Ariz.

Hoerling, M., and A. Kumar (2003), The perfect ocean for drought, Science, 299, 691-694, doi:10.1126/science. 1079053.

Holmes, R. L. (1983), Computer-assisted quality control in tree-ring dating and measurement, Tree Ring Bull., 43, 69-78.

Karl, T. R., J. M. Melillo, and T. C. Peterson (Eds.) (2009), Global Climate Change Impacts in the United States, Cambridge Univ. Press, Cambridge, U. K.

Knight, T. A., D. M. Meko, and C. H. Baisan (2010), A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, north-eastern Utah, Quat. Res., 73, 107-117, doi:10.1016/j.yqres.2009.08.002.

Kushnir, Y., et al. (2010), Mechanisms of tropical Atlantic SST influence on North American hydroclimate variability, J. Clim., 23, 56105628,doi:10.1175/2010JCLI3172.1.

LaMarche, V. C., and C. W. Stockton (1974), Chronologies from temperaturesensitive bristlecone pines at upper treeline in western United States, Tree Ring Bull., 34, 21-45.

Ljungqvist, F. C. (2010), A new reconstruction of temperature variability in the extra-
tropical Northern Hemisphere during the last two millennia, Geogr. Ann., 92, 339-351, doi:10.1111/j.1468-0459.2010.00399.x.

Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Ruthford, and F. Ni (2008), Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, Proc. Natl. Acad. Sci. U. S. A., 105(36), 13,252-13,257, doi:10.1073/pnas.0805721105.

McCabe, G. J., M. A. Palecki, and J. L. Betancourt (2004), Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States, Proc. Natl. Acad. Sci. U. S. A., 101(12), 4136-4141, doi:10.1073/pnas. 0306738101.

Meko, D. M., C. A. Woodhouse, C. H. Baisan, T. Knight, J. J. Lukas, M. K. Hughes, and W. Salzer (2007), Medieval drought in the Upper Colorado River Basin, Geophys. Res. Lett., 34, L10705, doi:10.1029/ 2007GL029988.

Meko, D. M., R. Touchan, and K. J. Anchukaitis (2011), Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series, Comput. Geosci., 37, 1234-1241, doi:10.1016/j.cageo. 2011.01.013.

Moberg, A., et al. (2005), Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data, Nature, 433, 613-617, doi:10.1038/nature03265.

Oppo, D. W., Y. Rosenthal, and B. K. Linsley (2009), 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool, Nature, 460, 1113-1116, doi:10.1038/nature08233.

Overpeck, J. T., and B. Udall (2010), Dry times ahead, Science, 328, 1642-1643, doi:10.1126/science. 1186591.

Salzer, M. W., and K. F. Kipfmueller (2005), Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, Clim. Change, 70, 465-487, doi:10.1007/s 10584-005-5922-3.

Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez (2005), Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856-2000, J. Clim., 18(19), 4065-4088, doi:10.1175/ JCLI3522.1.

Seager, R., et al. (2007), Blueprints for Medieval hydroclimate, Quat. Sci. Rev., 26, 2322-2336, doi:10.1016/j.quascirev.2007.04.020.

Sicre, M. A., et al. (2008), Decadal variability of sea surface temperatures off North Iceland over the last 2000 yrs, Earth Planet. Sci. Lett., 268, 137-142,
doi:10.1016/j.epsl.2008.01.011.
Steinhilber, F., J. Beer, and C. Fröhlich (2009), Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, doi:10.1029/ 2009GL040142.

Stine, S. (1994), Extreme and persistent drought in California and Patagonia during medieval time, Nature, 369(6481), 546-549, doi:10.1038/ 369546a0.

Stokes, M. A., and T. L. Smiley (1968), An Introduction to Tree-Ring Dating, 73 pp., Univ. of Chicago Press, Chicago, Ill.

Weiss, J. L., C. L. Castro, and J. T. Overpeck (2009), Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures, J. Clim., 22, 5918-5932, doi:10.1175/ 2009JCLI2905.1.

Wigley, T. M. L., K. R. Briffa, and P. D. Jones (1984), On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Clim. Appl. Meteorol., 23, 201-213, doi:10.1175/15200450(1984)023<0201:OTAVOC>2.0.CO;2.

Woodhouse, C. A., and J. T. Overpeck (1998), 2000 years of drought variability in the central United States, Bull. Am. Meteorol. Soc., 79, 2693-2714, doi:10.1175/1520-0477(1998)079<2693:YODVIT>2.0. CO;2.

Woodhouse, C. A., D. M. Meko, G. M. MacDonald, D. W. Stahle, and E. R. Cook (2010), A 1,200-year perspective of 21st century drought in the southwestern North America, Proc. Natl. Acad. Sci. U. S. A., 107(50), 21,283-21,288, doi:10.1073/pnas. 0911197107.
A. 7 Tables and Figures

Figure A.1: Regional map showing locations and elevations of moisture records employed. PDSI points 132 and 133 only extend back to A.D. 210 and do not cover the 2nd century drought. The upper Colorado River basin is outlined in grey. The Rio Grande headwaters hydrologic unit is outlined in dashed black.

Figure A.2: Summitville bristlecone chronology standard index (grey) smoothed with a $25-\mathrm{yr}$ moving average (black) and number of trees (bottom). Narrow shaded bars are the 10 driest $25-\mathrm{yr}$ periods defined by the Summitville chronology. Wide shaded bars highlight multicentury periods of increased aridity and drought frequency. Upper right inset: ring width (black) with March-July PRISM precipitation data from Rio Grande headwaters hydrologic unit (grey)

Figure A.3: (top) Colorado Plateau region moisture records including Summitville CO, Tavaputs UT [Knight et al., 2010], El Malpais NM [Grissino-Mayor, 1996], PDSI [Cook et al., 2008] showing the timing and severity of the 2nd century megadrought. (bottom) Records of variables that may influence drought in the Four Corners region: inferred total solar irradiance (smoothed with a 50 yr MA) [Steinhilber et al., 2009], Northern Hemisphere temperature (smoothed with a 50 yr MA) [Moberg et al., 2005] (black) and [Ljunqvist, 2010] (grey), west Pacific warmpool sea surface temperature [Oppo et al., 2009], El Niño frequency [Conroy et al., 2008], and Northern Iceland SST [Sicre et al., 2008]. Shaded bars are the same as in Figure 2.

Table A.1: Drought persistence (years A.D.) assessed using a $25-\mathrm{yr}$ running mean ${ }^{\text {a }}$

Summitville	PDSI $^{\mathrm{b}}$	El Malpais	Tavaputs
$119-229$	$97-181$	$979-1039$	$938-1006$
$297-399$	$426-481$	$1441-1500$	$1762-1830$
$1072-1160$	$347-399$	$-8-46$	$782-842$
$1193-1264$	$979-1017$	$349-395$	$132-184$
$62-109$	$222-257$	$895-936$	$23-27$
$1876-1914$	$1438-1473$	$443-483$	$633-676$
$632-672$	$1130-1163$	$-99-60$	$1254-1297$
$1327-1364$	$505-537$	$1335-1373$	$-243-202$
$1662-1696$	$1261-1292$	$1567-1604$	$507-545$
$1561-1591$	$1568-1596$	$138-174$	$1130-1168$

[^0]
A. 8 Supporting Information

We applied 30 year moving correlations between the Summitville chronology and tree-ring reconstructed PDSI [i.e., Woodhouse et al., 2011] to evaluate the consistency of the moisture sensitivity back in time before the instrumental record and account for potential changes in climate sensitivity caused by changes in the position of tree-line [e.g., Salzer et al., 2009]. We averaged PDSI grid points 103, 104, 118, 119, 132 and 133 [Cook et al., 2008] to roughly represent the Colorado Plateau region. PDSI points 132 and 133 only extend back to A.D. 210, so the PDSI is an average of the four other points before AD 210. Moving correlations from A.D. 1-2009 indicate a relatively consistent moisture balance signal through the length of the PDSI record. Correlations decrease toward the earlier part of the records (pre ~A.D. 300) possibly caused by decreases in sample depth. Moving correlations were also conducted between the Summitville chronology and Colorado Plateau maximum annual temperature reconstruction [Salzer and Kipfinueller, 2005], revealing no clear or consistent relationship, in support of our analysis of instrumental data.

Because some high elevation bristlecone pine stands are limited in growth by summer temperatures [e.g., Salzer and Kipfmueller, 2005], we investigated possible intermittent relationships between Summitville ring-width and growing season temperature, particularly in extreme temperature years. Instrumental August temperature and ring-width series were both ranked by year, according to dry to wet
spring (March-June) precipitation, and then the series were correlated, using a 20 year moving window. Bootstrap significance testing shows that ring width has no significant relationship with late summer temperature during years with dry to normal spring conditions [Biondi and Waikul, 2004]. During years with the wettest springs however, August temperature has a significant positive relationship with ring width (Figure A.S2). This relationship between tree growth and August temperature suggests that wet spring conditions prime growth to take advantage of growing season temperatures. To evaluate if high growing season temperature influences the moisture sensitivity, ring-width and spring precipitation were ranked by August temperature and correlated, again using a 20-year moving window. Correlations show no consistent change in the moisture sensitivity during years with warm or cool August temperatures. This shows that periods with warm late summer temperatures do not change the moisture sensitivity of tree growth. The relationship between ring width and late summer temperature only occurs during years with the wettest spring months. These results give us confidence that ring width is primarily a function of spring moisture balance. During the wettest years or periods, ring width can be influenced by temperature causing us to have more confidence in the ability of this chronology to track changes in drought rather than wet extremes (pluvials).

Figure A.S1: Drought area plots using reconstructed PDSI of the $2{ }^{\text {nd }}$ century drought (left) and mid 1100's drought (right). Sparse data coverage for the $2{ }^{\text {nd }}$ century drought makes difficult to assess the drought's full extent.

Figure A.S2: Ranked Summitville ring width correlated with August temperature. Data were ranked by years with the wettest to driest spring months (March-June). Ring width was then correlated with August temperature using a 25 yr moving window. Bootstrap correlation significance testing was applied; correlations significant at the 95% level are plotted in red.

A. 9 Supporting References

Biondi, F. and K. Waikul (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences, 30, 3, 303-311.

Salzer, M. W., and K. F. Kipfmueller (2005), Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau. Climate Change, 70, 465-487

Salzer, M. W., M. K. Hughes, A. G. Bunn, K. F. Kipfmueller (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. P. Natl. Acad. Sci. 106, 48, 20348-20353 doi:10.1073/pnas. 0903029106

Woodhouse, C. A., G. Pederson, S. Gray (2011) Using Bristlcone Pine to Investigate Long-Term Hydroclimatic Variability of the Arkansas River. Quaternary Research

Cook, E. R. et al. (2008) North American Summer PDSI Reconstructions, Version 2a. IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series \# 2008-046. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

A. 10 Summitville Chronology

```
SMV.rwl -- no data title --
SMV.rwl -- no data title --
SMV.rwl -- no data title --
```

1st itrdb line missing raw
2nd itrdb line missing raw
3rd itrdb line missing raw

```
SMV.rw-2689990 099900139528992872294129972854226625522 raw SMV.rw-260 741251827872979265321405211282125921190214122 raw SMV.rw-250 591 2847259025132655267422952635261425272 raw SMV.rw-240 680297129522811286621243247127222106529052 raw SMV.rw-230 6842774273427322108621235292828162856211862 raw SMV.rw-2201383 210422117021194211552411210002887266327622 raw SMV.rw-210 6762932294027122675285629912529217726832 raw SMV.rw-200 77334043602369938153101335603575351234313 raw SMV.rw-190547 361936423106138653787398131043344436863 raw SMV.rw-180 4473804388637613698367435253521348932793 raw SMV.rw-170522 363636083733389936533723393431476314853 raw SMV.rw-160 6013337385932333417328532883527347734303 raw SMV.rw-150 62738983116834653766382137953798347737153 raw SMV.rw-140712 3825317434523566349738463726362134553 raw SMV.rw-130 6493259343036143346356639493933367737543 raw SMV.rw-120 8083674366737663977379736303792385237483 raw SMV.rw-110 90035403372395039033454311263893352434093 raw SMV.rw-100 392361344435843419345437123367446142484 raw SMV.rw -90 2334360433444694486435446554558461245734 raw SMV.rw - 803404750461846974453522352965596540552375 raw SMV.rw - 701855349551953325687555854095434576852385 raw SMV.rw -60 4085659561953015367525953435480540052225 raw SMV.rw - 504755418560055665430528855125483535453545 raw SMV.rw - 404505359521652185357519153045242552953735 raw SMV.rw - 305515335522954825590551353315240545552175 raw SMV.rw - 204265553571257235363558254635283538854535 raw SMV.rw -10 7125680578652785366532153205963525255265 raw SMV.rw 05855459538255485199511852865488563752285 raw SMV.rw 101605150521152555295534751455263526055955 raw SMV.rw 202825269566456365301550456565633563256355 raw SMV.rw 308655578560953175260529253195256538152315 raw SMV.rw 4095578530553625303545653355352548956525 raw SMV.rw 503345337526954825380549152825158517551915 raw SMV.rw 601205529557952685480559152575439522752375 raw SMV.rw 702545341537553865319519354585524550354435 raw SMV.rw 803075287526853605236519753625241562454635 raw SMV.rw 906205146531952605296517452375309521352565 raw SMV.rw 1002296113616771647264726373677292738573927 raw SMV.rw 1104097458734273847447728271487179719371997 raw SMV.rw 1204807484727472417229712271257250720071937 raw SMV.rw 13016775873017153717172177207758715972427 raw SMV.rw 140180780713272857168725872377195713872517 raw SMV.rw 1505171267967192755732872997182711771127 raw SMV.rw 160158757715272217567367161723477472747 raw SMV.rw 1702737161713174537262734073047364721371287 raw SMV.rw 180326725073877258717978271417315729172237 raw SMV.rw 1901887261724971537240711172417493725772347 raw SMV.rw 2002477140731373707293719372527233719171557 raw SMV.rw 210111720372617273757724071927312725671557 raw SMV.rw 220261811589983968382820682798468820582759 raw
```

SMV.rw 2302179191955694639328929093629466926995339 raw SMV.rw 240397933694119562950692259317942892231042710 raw SMV.rw 25048310412104611016910440103251038310269102061030910 raw SMV.rw 2603731020210801043410389101941020210274103671029610 raw SMV.rw 27015410301101631023110151101461037010344102011016810 raw SMV.rw 28041110403104981041310391104931031310297104601037510 raw SMV.rw 29032210155104401022510238104301042710208101171035110 raw SMV.rw 30046810402101871036010409102911020710190103241014310 raw SMV.rw 31037410360103901014910374101271040210399102041027010 raw SMV.rw 32046010179101301029310273102171020410200101471036910 raw SMV.rw 33027310176102301041510422102311027310233102821024510 raw SMV.rw 34027210153101871024710245102381032710271101571037510 raw SMV.rw 35023010228102491026510281102471028210163102611010110 raw SMV.rw 36028910318103071022210237103041029310388103131112611 raw SMV.rw 37012111311113481118511250113621128610198102411018410 raw SMV.rw 38022210353102241029310292102501026910145101901025210 raw SMV.rw 39016510128102001015910287104121029910328104031029510 raw SMV.rw 40029410456102071031710341103561046810443104881024310 raw SMV.rw 41040010215103871044610438105171027210173102241022110 raw SMV.rw 42023210273103041012210202103991056210328105081027410 raw SMV.rw 43039210288102441037610271102631038710314104061034810 raw SMV.rw 4401731035510267104501029892479729239936994229 raw SMV.rw 4504189356935693739314926892699396936692769 raw SMV.rw 4601149299950992519303940492549315935591349 raw SMV.rw 4702319228925496310165103411039010324102431029210 raw SMV.rw 48038910247102641033010316103451033010401103591039710 raw SMV.rw 49049910423103961028110511104441043310325103891032510 raw SMV.rw 50030410280104241031010400103611035710249102231015710 raw SMV.rw 51021910272101811030511368113961131911375114931117511 raw SMV.rw 52034311286113921153111481114441127011516114141146511 raw SMV.rw 53063311227113781146711421112471127911343113131124811 raw SMV.rw 54028111278111921120711314112881137711319113631144911 raw SMV.rw 55042911516115111150111330113051138411408113191142911 raw SMV.rw 56032311275113991151611247112711142211505112921147011 raw SMV.rw 57035111558115341151011486116771137911312112571140711 raw SMV.rw 58034311522114321137411297113711141511448122781249312 raw SMV.rw 59041812266124051237212306121921241412435123591220512 raw SMV.rw 60042112492124331216612331123271237512434124551237812 raw SMV.rw 61024012160122221230512311121461230512313124001231412 raw SMV.rw 62018412497124051237912440122321219012326124201252612 raw SMV.rw 6301661227212171123701233912326124401239712262128912 raw SMV.rw 6401391229312332122231321313851327313100132371328813 raw SMV.rw 65029313166133611321613338133511332813328132391327813 raw SMV.rw 66014613394135481328213390134001337813420133561320313 raw SMV.rw 67024313306133311330213438132971327713188131771331613 raw SMV.rw 68028613220133591340713360134391318913267133281337713 raw SMV.rw 69021313218132201323913307131911332013334131961338813 raw SMV.rw 70027013244134561341713278132131320413294133981342013 raw SMV.rw 71052413525134241345313583134191336113305133251333513 raw SMV.rw 72027813189132371315113259133651331613330135441333713 raw SMV.rw 73044613391135221352213469132271314413364132171319413 raw SMV.rw 74053013514133151340613505132401345013289133981329113 raw SMV.rw 75033413239134371329113298133631350413496135831341413 raw SMV.rw 76034813273135171343813450134481354713357133931343413 raw SMV.rw 77013413196133471345913226133371335313252133341324713 raw SMV.rw 78033313374132351322413347134681321813342133911338513 raw

SMV.rw 79034213328133971337013458134471344713376133131330213 raw SMV.rw 8005251359913505134141341213440133091325313370139813 raw SMV.rw 81034013325132581335513423133771319013337132451315913 raw SMV.rw 82045613529134131328313264132051336513562136301337013 raw SMV.rw 8301551335313337134241336413270132181386132141319813 raw SMV.rw 84022713348134651354213427133931318513237133721349213 raw SMV.rw 8505541328713368133221340613392132791367132481319113 raw SMV.rw 86017713245132351334713311132411325013266132161329513 raw SMV.rw 87043213440133311331713254131981341913418132291329113 raw SMV.rw 88039713366132441327313176132171339213318134061319113 raw SMV.rw 89046613402132931337213471134521346213222132751331513 raw SMV.rw 90025113233132031316913347133541320713182133831343713 raw SMV.rw 91036913389134111315713249131901332313378134241436914 raw SMV.rw 9203071430914721439714240152661541515243153331530315 raw SMV.rw 93041315436153871554315372154911560315441155201556615 raw SMV.rw 94053115606154551555215366154291549215358153571536915 raw SMV.rw 95043915522153341544815312153571545215385152551543115 raw SMV.rw 96055015416153951542015469155101564815656156661539414 raw SMV.rw 97050714403142361457314527141851428314369143721441214 raw SMV.rw 98017014114143311434514399145601449714517144211447514 raw SMV.rw 99028014475143821443114428145601434714506141651410314 raw SMV.rw1000 3231319013273132071330513901336113515133971344513 raw SMV.rw1010 39813362133481332213105132491333313279133571340113 raw SMV.rw1020 51214309143601420514435144401439914486144341451013 raw SMV.rw1030 45313282134061344913355142611419814170141401426014 raw SMV.rw1040 28314275142711427614180142401431114407144101430614 raw SMV.rw1050 30014387144921442214364144281444414262143111437114 raw SMV.rw1060 46914612143931431214336134531342913248133251329013 raw SMV.rw1070 39913285133391331813300132241335113305131851339213 raw SMV.rw1080 32613389133681325813243132701329013269134261333313 raw SMV.rw1090 6013106132801326312281122911231012102121871217212 raw SMV.rw1 10023012385123101230312267121901227012175122151211912 raw SMV.rw1110 29612266133541329313311133181336413420133531323613 raw SMV.rw1120 29113170133631325813282134141330813218132921337613 raw SMV.rw1130 23413122131231323213253133111331513400133581328913 raw SMV.rw1140 7413323133711317113165133031322013360121771222912 raw SMV.rw1150 5712313125111246412215122791227612357122701229712 raw SMV.rw1 16030012227114241140511176112201124111235112211122311 raw SMV.rw1170 3071145211458114511120611196112941188113541133211 raw SMV.rw1180 35611282113031145011487113421118111297112141128311 raw SMV.rw1190 29311440113271127611292102721019010261102131017010 raw SMV.rw1200 1981026510234102639112916491139163920691559 raw SMV.rw1210 1589364921181598171829282148130822081318 raw SMV.rw1220 3518208832982668275834582508274830682318 raw SMV.rw1230 2598329821081748122826082408236831382418 raw SMV.rw1240 1658314831482518226919291229201914492779 raw SMV.rw1250 1529759170936591779296924093029092389 raw SMV.rw1260 38410299101841028110295101881019810332103081032710 raw SMV.rw1270 2791035510361102281020410434103141040110316103219 raw SMV.rw1280 1969230935493249362924193519337917791419 raw SMV.rw1290 2669111927492399171924592449129929893369 raw SMV.rw13002199379935192289129924092629257926593229 raw SMV.rw1310 3659364920493299402934191529227920792809 raw SMV.rw1320 36210317103651020810283103961034510333103271047610 raw SMV.rw1330 2981034710311102431030810241102201024310791016711 raw SMV.rw1340 25911196112271130011131111361125111241112621117511 raw

SMV.rw1350 26011310111411127811240111271029910210102181034210 raw SMV.rw1360 15410228103791015810183113391138111211113211225412 raw SMV.rw1370 50512554125201245212486122081220712478123891253012 raw SMV.rw1380 65712512123911244512458126121261712385125601253712 raw SMV.rw1390 3141246512533122721232112531125151236412358128312 raw SMV.rw1400 17812241123151229412333123761243212248122681246812 raw SMV.rw1410 36413366132951325913238131921325113240133041325413 raw SMV.rw1420 2351324913272139613238133281345713470135621328413 raw SMV.rw1430 45413447133641340813532124131241312229121801230912 raw SMV.rw1440 3261237812203123111230612611230512374123161217912 raw SMV.rw1450 30712516123301228012335122191222112203121971218912 raw SMV.rw1460 33312246122401229012318122671223012234122281216312 raw SMV.rw1470 25912134123271238812275121051215712203123351239912 raw SMV.rw1480 24512365122501218112269123541236312253122231232512 raw SMV.rw1490 47212439122811223312328121111219612303123291222012 raw SMV.rw1500 1211227912448123111240112267125111453113751126111 raw SMV.rw1510 27811300113391121011288113031116311251112571144211 raw SMV.rw1520 29811426111431134711129113531134211278111441137211 raw SMV.rw1530 41211319113991125211223113411139911301111701131611 raw SMV.rw1540 39312353123031231812455122151216712207123001231512 raw SMV.rw1550 3621222312234122961234412366124001225912941221812 raw SMV.rw1560 15812232122501235212386122561230812190122961238912 raw SMV.rw1570 27012284122681214312146122571226512246122181217212 raw SMV.rw1580 184129312328122441294121411222212270123771232212 raw SMV.rw1590 24212239122941228112284124491231612391122651236012 raw SMV.rw1600 36312230122681240312388122571219012250123811222312 raw SMV.rw1610 30312344121371234712299122131220012257122421228012 raw SMV.rw1620 25112319122001214212172121661222012291122481232812 raw SMV.rw1630 35112188122851226412450122441234112487124071242012 raw SMV.rw1640 4421224212385123511224812941229212337123141218612 raw SMV.rw1650 19812342122491215012238124301232412314121461224412 raw SMV.rw1660 31512447123571240812294123481214212227122181227312 raw SMV.rw1670 30212360121901213512213121521222612183122881218612 raw SMV.rw1680 2171221012234122291218012511216612232122741239212 raw SMV.rw1690 32012331123981248312135122221219012311123331233012 raw SMV.rw1700 29312368121931223512157121011229112183122041228412 raw SMV.rw1710 31912258122331230012218122411218412214123271235712 raw SMV.rw1720 36912478124121228212302122711246212278123171225312 raw SMV.rw1730 30812401122191226812417121821226912138123611244812 raw SMV.rw1740 2441225712221123261226212166122871232812901226712 raw SMV.rw1750 29912246121091225312351122481233212424123641230912 raw SMV.rw1760 24812364123341230012314123191227112281122221217612 raw SMV.rw1770 15412254121261219412250121201220513312132321318913 raw SMV.rw1780 23713293133351341513457132801332113408135411325313 raw SMV.rw1790 44513408134661334913308134521334213336132571329713 raw SMV.rw1800 34013252133301340313338133041321513290132611321413 raw SMV.rw1810 31813365133341329313434134121340613320131851318613 raw SMV.rw1820 22813201132211326513179131981311313358133091322313 raw SMV.rw1830 15913398133151332013263132671320813269132801321613 raw SMV.rw1840 15013170131061320313203131821320713191131881319913 raw SMV.rw1850 2751371132551323113259132221320113177132931331713 raw SMV.rw1860 35013263133201339113324133281346113354131301328613 raw SMV.rw1870 34813209132661321713137131961326513259133381315613 raw SMV.rw1880 16113228133081326513265133501323113305132301324213 raw SMV.rw1890 1511324513250136913171133241320913260133491319413 raw SMV.rw1900 13913148131011322813217131861313512400123951220312 raw

SMV.rw1910 11312269123291231512270122141214612300122381236512 raw SMV.rw1920 2321228812262127512208122921228212350122931222912 raw SMV.rw1930 20212293123711235812138122941218512252124031216512 raw SMV.rw1940 21512446122851226012254122301218912257122591226612 raw SMV.rw1950 18212105121251222912164121941211712199111731120311 raw SMV.rw1960 28411197112641124911147112781127311285112841138111 raw SMV.rw1970 36211187111681127211161113961132211261112601123411 raw SMV.rw1980 1021134311244113141130611277112911117611197116411 raw SMV.rw1990 23611226112111122011342113101123711271113851130511 raw SMV.rw2000 16111182115111161111821126511217112561117661626 raw SMV.rw20109990 0999009990099900999009990099900999009990099900 raw SMV.rwl -- no data title --
SMV.rwl -- no data title -1 st itrdb line missing std

SMV.rwl -- no data title -2nd itrdb line missing std SMV. 3rd itrdb line missing std SMV.rw-2689990 09990014792959293221008210752923228625992 std SMV.rw-260 8032567286221074271821545212502140021330215792 std SMV.rw-250 6602950266625772741276323352727269926062 std SMV.rw-240 779211152109329332995214372544283921247210682 std SMV.rw-230 806291728732871213002148521114298521041214412 std SMV.rw-2201681 2127321427214582141125032123021095281929462 std SMV.rw-210 84021168211822897285521088212632677222528752 std SMV.rw-200 9893644387239383113231268310533999384036863 std SMV.rw-190 748385538973135631108311053144331346362138903 std SMV.rw-180581 31372315313997313323115539823967391434363 std SMV.rw-170 996311523102831653313103954312503137132172320383 std SMV.rw-160 82235003118133473576339534003734391336733 std SMV.rw-150 87931306317213657310853116631181311393782310253 std SMV.rw-1401206 3118933063655392938213125931147391838093 std SMV.rw-1301325 3640382231316389331099315313150831097313833 std SMV.rw-1201325 31145312833125631490312193966313263131231155 3 std SMV.rw-1101393 3929362231481315413816317683151031073311163 std SMV.rw-100 622316737593116337853884313023633491044594 std SMV.rw -90 39246094612496049504671412314118341182411904 std SMV.rw -80 559414304111941422410445544555051074591556795 std SMV.rw -70 7005731510085735515495138851053510995157655305 std SMV.rw -60 96351345515705582590356655745514035108554765 std SMV.rw-501085 59775154651505587455205144551066580958705 std SMV.rw -4011515847553754995755564456575518511835909 5 std SMV.rw -30146757415430514905189351960571957205109656465 std SMV.rw -2012475143151442 5157551058517145101355865763510385 std SMV.rw-101475 51379515975882593257835979520035682510815 std SMV.rw 017055947578951134544852865667510975142656205 std SMV.rw 1040354345434553656215732532155865569513055 std SMV.rw 2060757105146551757570151125520215149751429517635 std SMV.rw 302018514205153459755700583456925789596855535 std SMV.rw 40246517157575111857655125551000589351513520155 std SMV.rw 50123751141566151286512625163157935490541356055 std SMV.rw 6033651322517975832514905172657555998570556405 std SMV.rw 70666510605912590757495602512015160251456511035 std SMV.rw 8073257485115559845648556151063561651513511255 std SMV.rw 9016935409583456435924554356305764559756375 std SMV.rw 1005076358643474887867786871275794971292713037 std SMV.rw 110116071459710817119371433789774567547760276247 std SMV.rw 120148171517788277597648736673577756762675507 std SMV.rw 1304807182797874787510775377557175753278287 std SMV.rw 1406017234746578797597780677077590743878027 std

SMV.rw 150169740674657867716271037711467624737773927 std SMV.rw 1605027177747077057204717875327865726478837 std SMV.rw 17083875527405714827922711077102971208768274027 std SMV.rw 18010507899713547891776972917508710627143978537 std SMV.rw 19060479017763751877737361711087206071186710727 std SMV.rw 200828750379837135471082764378057801767575977 std SMV.rw 2103517630778378267190772375357954778975257 std SMV.rw 2206808311833081113810758584870781357879389389 std SMV.rw 23061794599139891199986697749949911369645912949 std SMV.rw 24089798349100291277911829564973691043954510114910 std SMV.rw 250125110107410119610546101177108701082210575105031092510 std SMV.rw 260102910673104711012991011191073210777109801011881085410 std SMV.rw 270442108971055810738104791041410111910932105731048710 std SMV.rw 28012841011801014621012181011821016161094710100910140610113210 std SMV.rw 2901013104581013211077410794101318101488107291042610122710 std SMV.rw 300157410126110569101163101346109291071810574109991047010 std SMV.rw 3101134101101101231104911011491039810124710995106031085410 std SMV.rw 32015281060610452101022107891074310705107491053310124310 std SMV.rw 3309011064010775101255101387107121085510736108691090510 std SMV.rw 340940104551064510815108181086710935107811054310116310 std SMV.rw 350694106651081110963101038108861093910461108171035910 std SMV.rw 3601050101021101032107231080710109710103810968108941151711 std SMV.rw 3705061195911111111630117821111681190610671108031061710 std SMV.rw 380721101093106991092810966108531094910540106821088310 std SMV.rw 390634104451072710528109591012191010161010841012391088810 std SMV.rw 40092910133110699109861010101010831013571013871014791071710 std SMV.rw 4101086106571011491012251014111014531086010542107141069610 std SMV.rw 420727108821095110435106601012321016991010491014891092110 std SMV.rw 4301223109291079210121210881107811010931097110130410120510 std SMV.rw 440706101177108681014371099898509202976791225914319 std SMV.rw 4501319911239114491212991998329843912569116498829 std SMV.rw 46032199459164697899962912469805910029112494429 std SMV.rw 4707389728979491721054310107910118510978107291091410 std SMV.rw 48011861074710815101037109791010331094410122210111410119410 std SMV.rw 490150810130310123310895101492101209101321109681011981096410 std SMV.rw 50090010832101159109441011571010751091310675106431049310 std SMV.rw 510631108011052310907111071111136119571111041114201154011 std SMV.rw 5201038118621111381115951114401112711181111154111122011141111 std SMV.rw 5301838116891110991113611112431177511845111018119101169011 std SMV.rw 54082511805115641162511863118761111531195311108811139411 std SMV.rw 550130911157911159511163711994119091111471112251197611124711 std SMV.rw 5609591184411110111152411668118011112881115291177211125111 std SMV.rw 570907111619111479111539111514112037111104119441175711120011 std SMV.rw 5801001111552111347111161119031110521114651113921286212151912 std SMV.rw 59013061280712126512122512945125591212491213421211321264612 std SMV.rw 60013101215371214101253812106312103012119212139512144612116012 std SMV.rw 61077612518127101296712982124661295512100312128612101912 std SMV.rw 620582121563121375121268121547128101269212104312132712165312 std SMV.rw 6305151286712551121165121092121036121470121303128271228512 std SMV.rw 640423128981210471271613684132861386713302137341389713 std SMV.rw 6509081349013105213572131027139771398013987137071386413 std SMV.rw 660406131208131753138771312501312471312461313621310971359713 std SMV.rw 6707321394713100413944131325139011386513616135341394713 std SMV.rw 68086813666131084131236131074131320136201379513103713113413 std SMV.rw 6906141368713708137041389313571139691310391360413124413 std SMV.rw 700844137761314531313061386813666136301395313122213127213 std

SMV.rw 710159513157413132513140613192513141213125113102013119513115713 std SMV.rw 7209261361713834134981390013116913108813106113165313110413 std SMV.rw 73014671312551316611317661314591369613415131103137161357213 std SMV.rw 74015901315331392813117313153713699131426138581313021386013 std SMV.rw 7501000137331312941381213107513110213151413149213176113128613 std SMV.rw 76010991394213165413138313131213147013167613108613111113129713 std SMV.rw 7703951358213106513136013683131019131064137521310031377713 std SMV.rw 780104213114813709137071310001313971369913104513113313118613 std SMV.rw 7901065131006131262131208131307131420131372131214139041398713 std SMV.rw 800166213187213157413127213124313133113942137571311081329313 std SMV.rw 8109981395213759139671311381311051348713994138091356913 std SMV.rw 820144413166613135113867137591362913113513169813189413107413 std SMV.rw 830488131051131136131322131151138431363513274136171358213 std SMV.rw 840706131082131361131586131247131187136141380813116713155113 std SMV.rw 8501588138461311811310351312451310841375613238138371362313 std SMV.rw 86053213744137391398813889137511381613847136871394113 std SMV.rw 87013201313241310541310601386713662131229131184136421376613 std SMV.rw 8801233131104137111386413640137071312501310951313291362913 std SMV.rw 89013631311561388313113513141013134613136813704138361394613 std SMV.rw 900760137071362513491131019131040136011350113112313129313 std SMV.rw 91011161311541312451345813753135661395613102813114414101914 std SMV.rw 9208931487014188141106146941574015109815640159921578315 std SMV.rw 9301008151186159801513691595315126315150615106915130915135115 std SMV.rw 94013971514651511641514291598415112715126915891159321596015 std SMV.rw 95011421513261587315116715877159201512131510051567215115915 std SMV.rw 960147615111715108215124715126615137915175615169715173115104514 std SMV.rw 97013221410411467114147114146614608147161498714107214113014 std SMV.rw 98043714340149641492214103214150714130514130614112914131714 std SMV.rw 99076814127514107014115614118014149414954141293143981429914 std SMV.rw1000 930135481379313609139171324413104713151213108613120713 std SMV.rw10101141131054131015139181326413744139101385513100113118013 std SMV.rw10201496149171410561456414124614131014123714141914126114140613 std SMV.rw10301316 1372913112813119613971147841458314470143881476014 std SMV.rw1040 7521483614792147921452614681148621411511412201488414 std SMV.rw1050 837141013141304141171141056141243141239148241488314105014 std SMV.rw10601319 141734141074149071497813127713117513607138771381313 std SMV.rw10701064 137401384713839137851361813940138541353713100013 std SMV.rw1080 8811310961398113718136961378013859138311312511394013 std SMV.rw1090 17913295138151375612815128081285412290126091250012 std SMV.rw1100 588121042128791284812738126381277012505126171233912 std SMV.rw1110 891127901311651385913916139891310881313151310981370913 std SMV.rw1120 89313560131090137971383413123713926136621389113111813 std SMV.rw1130 6491343513435137391388213998139711312341311301391413 std SMV.rw1140 2251394613113413535135691394913697131078125911271212 std SMV.rw1150 178129431216581215301267612100512838121157128671291912 std SMV.rw1160 9321274711140911124311597117491176011779117631170311 std SMV.rw1170 9311115141113831115351168311640119421130511116311109411 std SMV.rw11801126 119731197211169211159811106811566111004117151186911 std SMV.rw1190 9611114881111051195111999109131068910866108121059210 std SMV.rw1200 6691092710810109489570953993939570977195269 std SMV.rw1210 63891278974185668594893287598389874785078 std SMV.rw12201210 87128108289628101081270893789688106588328 std SMV.rw1230 895811338744862184098938884988618110587988 std SMV.rw1240523 8103781097884988259709942697789548910189 std SMV.rw1250 60893379614913079617910829862911229099199 std SMV.rw12601415 10108510722101087101103107121070210141810118810119810 std

SMV.rw12701019 1012721011551086310729101492101104101423101133109889 std SMV.rw1280 56996659109599869117297089110591034956294969 std SMV.rw1290943 959199559662960599049748942891022911299 std SMV.rw1300 72591172911869737944798509936994191303911389 std SMV.rw13101324 91273972491179915009116595019884965499519 std SMV.rw13201128 101006101171106751087610139310106510106610113810152910 std SMV.rw1330 939101216109811082910967106561072110853102591054111 std SMV.rw1340 86511647117201187011438114321189711750118491160911 std SMV.rw1350 868118371145411822118191145310975107171069910116310 std SMV.rw1360537108571011471052610643111088111271116351110411278812 std SMV.rw13701480 121591121507121414121532126771261712154712123112162812 std SMV.rw13802157 12169012128912139812151612208312217712120612182912169912 std SMV.rw1390 99612136312170212844129761216101215101211561211641226412 std SMV.rw1400 557127101295812906121127121311121359127981283412147812 std SMV.rw14101139131114139151378513764136061378613778139181382213 std SMV.rw1420 752137781386813310137691310521315121315171317651399613 std SMV.rw14301554 131474131237131340131816121397121352127161256512102212 std SMV.rw14401086 1212891267412106112932122271210771212821210861260112 std SMV.rw14501029 12172112109112936121160127401278712769127031269312 std SMV.rw146010531287212818 12969121155128251279212755127811255012 std SMV.rw14701022 125361211231213291293712389125261272512117812140012 std SMV.rw1480 8901212741289312644121017121304121231129021280612118612 std SMV.rw14901708 121527129781285812118012383126741211331211931283312 std SMV.rw1500 41112993121564121130121402121150121901116451112141194911 std SMV.rw1510 817111148111203117321199911109311589119081190411159211 std SMV.rw15201091 1113131153111122611468111237111201119621150911131011 std SMV.rw1530148611110111148711917118111112281114341110621162411120011 std SMV.rw15401361 12120612113112108012153112780126141271312110812110312 std SMV.rw15501234 127871282912103612119312125612133412928123341274112 std SMV.rw1560540 128171284412125612136812891129851267412103812135012 std SMV.rw1570 92312983129531252112501129181293312863127811262712 std SMV.rw1580 66712340121112128671235312361127491296712130712119912 std SMV.rw1590 89312799121080121054129661215591210991212381293712127712 std SMV.rw16001310 12846129731213551213531293012785129451215161281012 std SMV.rw16101108 121217126041212371211081276412724129431286012101812 std SMV.rw1620 91412121312751125321266412599128871210601285312120012 std SMV.rw16301279 12666121040129711216221291912124012178312147212150712 std SMV.rw16401575 1267012136112127512851123401210421211921211131268512 std SMV.rw1650 755121208128721253912919121545121152121135125151284412 std SMV.rw16601104 1216151213741215341210131212861251512852127591298112 std SMV.rw16701071 1213071267712494127811254212834126691210301266112 std SMV.rw1680 7951267212824128391265512179126541284312101112142412 std SMV.rw16901155 12118312141612171312500127941268912114812129312119412 std SMV.rw17001105 12137212704128851254912367121027126671273112100412 std SMV.rw17101063 12902127981210531277312856126711279112117712126112 std SMV.rw17201367121735 121588121007121240129531216771210321211391292212 std SMV.rw17301113 121429126981284012148612674129531251912130412160812 std SMV.rw1740 88712940127921213121295612651121025121179123131297212 std SMV.rw17501070 1291712406129001212491295712121012150712131312114012 std SMV.rw1760 87612138312126912111512105312110312977121009128281257212 std SMV.rw1770563129541247012722128801242212802131164138441366613 std SMV.rw1780 852131038131146131411131537139681311961314641318371380413 std SMV.rw17901651 1315091316871313041311131314281312181310501392213106913 std SMV.rw18001226 1399813121813136613121413105513830131097139721374913 std SMV.rw18101169 131374131258131063131436131549131564131229137411372113 std SMV.rw1820 8821378213836139351365113782134451311941311931382413 std

SMV.rw1830 56513136013118713122813107913105913700131072139441379813 std SMV.rw184056613653133851370313710136231372813591136841378113 std SMV.rw1850 95113282139641389913100913908138051365313108613118413 std SMV.rw18601158 139731311611314171311951310981315321312221353113116413 std SMV.rw18701260 1379313930137531354713679139741310081311681359313 std SMV.rw1880 5661385213104513102313102413128413922131061137631391113 std SMV.rw1890 53713914139351328513714131114137951310041312621372413 std SMV.rw1900 5711360613417138381384413773135411213271214401289112 std SMV.rw1910 55012109212138212125612103212912125911210371292112124612 std SMV.rw1920 85012121612975122931288012118912121912140212127912100612 std SMV.rw1930 94512115312126812135612596121265128451210801215351272212 std SMV.rw1940 9631215691211731210381210551210171282112109212115212104912 std SMV.rw1950 72112458125121294012668128341248712793117331181711 std SMV.rw19601063 1185011947119931179711123211115611107511105811151511 std SMV.rw19701383 11784117511194511593111350111108111034118651171911 std SMV.rw1980 459111215119481110901111451196611103411858117441124711 std SMV.rw1990 91711950119431110171113171111731189511112111136211107011 std SMV.rw2000 6561171111222116041164711997118861111051183667296 std SMV.rw20109990 0999009990099900999009990099900999009990099900 std SMV.rwl -- no data title -SMV.rwl -- no data title -SMV.rwl -- no data title -1 st itrdb line missing res
2nd itrdb line missing res 3rd itrdb line missing res SMV.rw-2689990 0999001379277829552952210392887231528252 res SMV.rw-260 88126762107521152276321711210652141621177214692 res SMV.rw- 25041821055255026772838285424512999279727872 res SMV.rw-240 9712123621116298221055214362403210432121229972 res SMV.rw-230 829298228732923213482139521002297221004213882 res SMV.rw- 2201508210632134321238212162312213472869281329842 res SMV.rw-210 829212222112428782899211132122326102360210832 res SMV.rw-200 9813615310193971311833132439693930377737143 res SMV.rw-190 9093958395831413310333113331420312103435310143 res SMV.rw-180 649317183158431090313983101737883894377334163 res SMV.rw- 1701127310953117631525314593771313553120232057315173 res SMV.rw-160520 348331108324237843473369339583103738543 res SMV.rw-1501139 31400317093607313013102631330311113649311373 res SMV.rw-1401212 3121132673947398239003141631103388138103 res SMV.rw-1301363 350939393130838113113731600313563957313643 res SMV.rw-1201141 3975311513108331359399538823128431170310423 res SMV.rw-1101338 377436033153031180375131839311523900310193 res SMV.rw-100 409329331053311453772310303141436084109744854 res SMV.rw -90 65248254791410944104747354139849074118949814 res SMV.rw -80554 4155849274137448605535574251147581257295 res SMV.rw -70 80758945118757625160151221597559815155652425 res SMV.rw -60 803515205121757115124156915981514845101057915 res SMV.rw -5012345925515335135259735279513925946577058105 res SMV.rw -401062 577756485692594156285893573251363511655 res SMV.rw -301688 56875666512345130251382554857075112555075 res SMV.rw -201324 514205151551324576551315587454775955510145 res SMV.rw -101388 51231516055675598455495915517805280513775 res SMV.rw 012835817537851062541054365926512315152556095 res SMV.rw 1061255185742568558935896562359005789515575 res SMV.rw 2064858395155351482557251261517495128651312514235 res SMV.rw 301576585851042549555185869570056645119356895 res SMV.rw 40462557559805135259165149958645103751330517745 res SMV.rw 508115103555775128659805154255545556535757435 res SMV.rw 60562516495163356235149751471542651078556556725 res

SMV.rw 7069351216511755110557935783514115145051311510725 res SMV.rw 806245779511165981571257095122154975172359505 res SMV.rw 901625519559965794510845558510235975578959515 res SMV.rw 100753657968007748711567106071353798971407712497 res SMV.rw 11012697128478667107871216776674257660770077987 res SMV.rw 1201702714027815780977667420765871006786178227 res SMV.rw 130877745371360758578837977790374077916710747 res SMV.rw 1408407535783671134777771101785778217717710717 res SMV.rw 1503947812775871195736171532712397740756075607 res SMV.rw 1607277431786871033741176447934711987474713207 res SMV.rw 17010267731769771762780771255798571160762175037 res SMV.rw 18012737845714447855788974097722712877149678337 res SMV.rw 19081771049786676087991759671383720857960711407 res SMV.rw 200724752971186712547926767179467854773977657 res SMV.rw 2105637945710167953753871100777371047792578587 res SMV.rw 22087685708732813058114386118960815258708811159 res SMV.rw 230828961391554912149780981791009911339618914589 res SMV.rw 24096598609108991252911409457986991091956910144610 res SMV.rw 25011901010171011531055310131310789101057107481070010110910 res SMV.rw 2601008107101061610151410101110771109701010301012331081710 res SMV.rw 27045710108810574109761063210703101386101065106721071710 res SMV.rw 280150510113110150310110710113910151310654109801012991092110 res SMV.rw 290927104351014951060510905101401101355105971057610136710 res SMV.rw 3001422101078104831012221011681084910789106601011841046110 res SMV.rw 3101407101150101227104531013901019510145110987105631097610 res SMV.rw 32015441042610653101199108151086510828109011068110148310 res SMV.rw 3307791079710102910122310127410627101030107151010441092810 res SMV.rw 340101510531109031010101095410999101133108881067410137910 res SMV.rw 3507771087410100210100710107710895101009105681010841040110 res SMV.rw 36013571010911010961081710869101163101022101242109521155811 res SMV.rw 3706621111641112211159211101411126211976108261010311072610 res SMV.rw 380894101256107361011011097610898101032106101089310101910 res SMV.rw 390755106661097410716101266101325109481011481012341084610 res SMV.rw 400961101379104911011361010621011201013931011551013641045710 res SMV.rw 4101289105001012751011701012851013201057310583107961075210 res SMV.rw 4208861010521010711054410936101406101606108971015131062310 res SMV.rw 4301167107551078710122810762108381012591087810129110111510 res SMV.rw 4406401012641086010140210805985192469105791318914069 res SMV.rw 4501198910909110391132980197469833912339104798759 res SMV.rw 4602919105091626953391080911409716910979112994189 res SMV.rw 47095998229957933410948101327101306101018108041099310 res SMV.rw 480121010712109491010841097610108110101010123210100510115710 res SMV.rw 490142610104910104210719101498101012101194108791011121082110 res SMV.rw 50090910763101306108661012091010391094810728108001059510 res SMV.rw 5108231095710709101165111199111175119361111461113091139511 res SMV.rw 520120611809111200111516111211111009116011115291190111123511 res SMV.rw 5301548112341111411111751110651167311823111052118801171111 res SMV.rw 540958118941169211850111142119511112681195911111511139711 res SMV.rw 550114711142711127411129311547117971110531110601184911125811 res SMV.rw 5608441178511111511141311530118901112601114181170611131411 res SMV.rw 57084111155711123211119211112111170811577117701158011109311 res SMV.rw 58082511148011104311951117661110521111941112421263112155812 res SMV.rw 5901050126601212921210581287212608121348121203129671260912 res SMV.rw 600141812135812119112391121189129181211521213471212551298312 res SMV.rw 6106441252312794121042121000125691211881210441213101295312 res SMV.rw 620606121680121086121066121296126191268512100612123312136212 res

SMV.rw 6302861210151250812128812993121042121476121109126911234912 res SMV.rw 6406491211031211061278713838134691311991344213110513107713 res SMV.rw 6501080136621313021371113111913106313101313987137251394713 res SMV.rw 66049813144713166713622131338131195131062131221138541348213 res SMV.rw 670824131006131052139581313781377713876136241368013111813 res SMV.rw 68093613787131292131242131038131316135011391013109713112013 res SMV.rw 690592138211383213881131067136471311911311041365013143613 res SMV.rw 7007651387913154513110613750136831370313102813123713124413 res SMV.rw 710150813133013107013119913159413904131005137841310211397213 res SMV.rw 720825135941393513546131216131185131062139981315471383513 res SMV.rw 73013581310141314311314091310971341613410131260136321371613 res SMV.rw 74017771313421377513126113142013488131484136271313231368313 res SMV.rw 750104913698131389137491311291310751314531312581315491386113 res SMV.rw 760916136911315771310521312111313021314091374713104713108213 res SMV.rw 7701771376913116913137113615131147131056137311311141378313 res SMV.rw 780108813116513678138501310881313781354813118913108013115413 res SMV.rw 7909891399013124013107713126413130213126113982137791388013 res SMV.rw 80015621315541312121399713100513109813693137051311231318513 res SMV.rw 8101263139641385613116213113113107613482131127137201373613 res SMV.rw 82016421314661311721370113832136001312141316101316191377713 res SMV.rw 83041713113913920131092131034137361365313348139301374513 res SMV.rw 840953131302131445131504131072131053134581386313117913149513 res SMV.rw 850135113608131174139091312111386213730132941311041375113 res SMV.rw 86075813101213869131148139481385013938139311379213111213 res SMV.rw 8701370131226139911310041374913636131387131103136841398613 res SMV.rw 880123513942137111310121366813855131402139791312951352913 res SMV.rw 8901496139641382013115813129813113413120413485138831395813 res SMV.rw 900741137971375413681131238131092136891373413136613129813 res SMV.rw 91010491311401311801337113950136341311471311901311701498614 res SMV.rw 92090714929142361413711467315947151225156641512071584715 res SMV.rw 930112915121515973151392158361512721513721588915126915118715 res SMV.rw 9401193151305158691512611569215100515115815753159131594015 res SMV.rw 9501155151311157161512201575315956151218159381568515129215 res SMV.rw 9601431158941510421511911511021512441515631514081513351577114 res SMV.rw 97010901478614515141447141185144331487214106214108014113114 res SMV.rw 98039614540141213149771411401415561412041412351496714123814 res SMV.rw 9905751412891484914107814106114139914714141298142521447614 res SMV.rw10001175 1360113104213744131117133581314361315581397413124013 res SMV.rw10101039 139581394813879133191310051310551393113110313129113 res SMV.rw10201481 147811410901459614137314119114114814130814107614126213 res SMV.rw1030112613520 131204131140139171475614620146441461214107114 res SMV.rw1040 94714982149821495614674149571410511412981412471486214 res SMV.rw1050 91814110014134014108914972141197141112146431495214107314 res SMV.rw10601321 14162314914147871482513118813108213557139911383113 res SMV.rw1070119613766131048139511393713709131075139341372513130813 res SMV.rw1080 9591311521399813783138281391113990139471313811390013 res SMV.rw1090 283135961310641390212102912103212107612418128671270712 res SMV.rw1100 8891213351297012101712882128471295312644128881256112 res SMV.rw11101217 12906131350138371310481310581311161313051310091366313 res SMV.rw1120 973135801312941375213952131341138801376913102413116413 res SMV.rw1130 6561361113678139971310481311321311021312971310631387313 res SMV.rw1140 285131241131185135511379413113413725131257126271292912 res SMV.rw1150 3741212981216691213621262312112812775121209128281296012 res SMV.rw1160 9421276811154911117411508118941190211862118531183811 res SMV.rw11701081 11145811128011132511500116801110051129211141911103911 res SMV.rw11801153118981110071116891113871196411408111021116001195911 res

SMV.rw11901008 111503119041189711995109041069510958108591072710 res SMV.rw1200 866101184109221010999652974696039831996197159 res SMV.rw1210938 914919701876288198117388178634899386578 res SMV.rw12201446 871181334893981006812808844810748103588178 res SMV.rw1230 9918122286488734854781165894689948124088518 res SMV.rw1240 71881305811548918892097589582910019658912549 res SMV.rw12506829576990791578961991337987291214979913119 res SMV.rw126013821098910740101184101041106441083910147710101510109010 res SMV.rw1270 90110123810117410695107461016281080710134910880109499 res SMV.rw1280 632985591168910029119797399119391056957496729 res SMV.rw12901050 96559114698729690910479913954391309911929 res SMV.rw1300 780913849115896659493994999619102891394910009 res SMV.rw13101288911539571912149135491009941099969661910659 res SMV.rw13201058 10977101195106221010011014331094810102310105810145410 res SMV.rw1330 764101233108641085110949107731081910948104281081511 res SMV.rw13401086 11758119801111591156711755111138111048119821170011 res SMV.rw13501071 111105115471112061184111630101240107561093610134210 res SMV.rw1360533101080 1013021050610823111321111266116011111881274812 res SMV.rw13701602 12148612141612115912131412379126291214981294412156512 res SMV.rw13801855 121187128841211721211491217321216441264412154312110612 res SMV.rw1390 556121228121381124551292912150212118112868129421219812 res SMV.rw1400 7421281612110312974121180121235121300127151289612148512 res SMV.rw1410 9601310751386513778138041365613923139051310581388013 res SMV.rw1420 8671386613962134011310501311611316391314551316541375713 res SMV.rw14301508 131204131005131157131535121104121180124471252812102212 res SMV.rw14401018 1212651259812114512881123521212881212871210551263012 res SMV.rw145011811216871290312926121109126291281812799127271280712 res SMV.rw14601215 1288012943121083121149129211283212893128521266012 res SMV.rw14701106 126481213751213301293412453127311286212131812145912 res SMV.rw1480 7701213571276712714121066121288121205128751276812121312 res SMV.rw14901635 121325126781274012111812255128681212371212041282012 res SMV.rw1500 6101211571216751292612144412105712172111777119831184611 res SMV.rw1510 93611100511112111646111080111060115951110791195311165511 res SMV.rw1520 9631114861128511130911357111364111099119081153811145211 res SMV.rw15301348 1110191114341172011729111214111308119461160111128811 res SMV.rw15401229 1210971210501298812144912553126281274812115012108812 res SMV.rw15501269 127791289012107412119612122612125912832123321292112 res SMV.rw1560 62012101412989121398121375128671211341262612115712131712 res SMV.rw1570 87712104812930124601263612106212999121033129021275312 res SMV.rw1580 864125271214261290912496127771299112111712130712124712 res SMV.rw1590 8571288112109212994121049121560129111213471278012123812 res SMV.rw16001095 126531210021213181212091290412775128801213521272012 res SMV.rw16101179 1211731252312138312103012786128351210461285412110312 res SMV.rw1620 948121294127311266312825127491211081211921296412131312 res SMV.rw16301260 12630121169128711216461273612132612163512119412131512 res SMV.rw16401301 1260212126212106012706123331211601211281210961271312 res SMV.rw1650 8761212901283212628121088121598121057121198124761294712 res SMV.rw16601120 121589121141121360128011211731228512947127591298312 res SMV.rw16701092 12130912620126141294512619121077127971212491275112 res SMV.rw16801004 12877129831296712771123541299812103212122912157412 res SMV.rw16901126 12119912133612148612270129301268212122112126712125412 res SMV.rw17001106 12133812592129801252212491121223126481297612119512 res SMV.rw1710117812937129371211541275412961127401293912129512122612 res SMV.rw17201307 1216441212431282712102812835121565127561210751281312 res SMV.rw17301058 12135012633121018121398125091210541248012146412151712 res SMV.rw1740 7611210071275212116112917126641211881211941227912121112 res

SMV.rw17501053 12936124851211341213491290112128512138012114512102412 res SMV.rw1760 802121364121106129781211021210751283512977127371268612 res SMV.rw1770 709121100125371296612108112569121043131274138691380113 res SMV.rw17801008 131097131208131364131391138331311111312891316081356013 res SMV.rw17901625 1311431313831310031389313130513841139091374913100913 res SMV.rw18001132 139111311941312501310661398513711131080138701375913 res SMV.rw18101256 1313221311661395713140713130113131713990135381372613 res SMV.rw1820 8571380313929139701372813891135551314541311591384413 res SMV.rw1830 6601314671310441312031310031398813638131131139271379213 res SMV.rw1840 64613806135121393413851138171394813838138521388813 res SMV.rw1850110913 3991312651394913113713955138721381613120213116113 res SMV.rw18601177 1396813116113132713115513939131441139661340413123513 res SMV.rw18701082 13703139421375213637138581310571311031312391358113 res SMV.rw1880 73313100213113713109313107013139313867131101137131395013 res SMV.rw1890 5761310901398413393131000131242138331311491313211362413 res SMV.rw1900 69613726135481311091397813928137161215581213111290212 res SMV.rw1910 6401212851213041211841296812883125611211401293112133312 res SMV.rw1920 81312117212966122911211041211981212421213981211591292612 res SMV.rw1930 90412110812116912125812536121339126771211421215171250012 res SMV.rw19401048 1214841292512994121000129381273812117512108412108612 res SMV.rw1950 6911251512703121074127731299112627121026118631197711 res SMV.rw1960119411888 111078111030118561113171110821194211100211148211 res SMV.rw197011721169411731119161160011144811958111001118061180811 res SMV.rw1980 54711132211938111238111085119651198811752117171130011 res SMV.rw19901123 11976111019111094111358111023118731110981112481191411 res SMV.rw2000 54711761112451191211834111236119851113231172467266 res SMV.rw20109990 0999009990099900999009990099900999009990099900 res SMV.rwl -- no data title --

1st itrdb line missing ars SMV.rwl -- no data title --

2nd itrdb line missing ars
SMV.rwl -- no data title --
3rd itrdb line missing ars SMV.rw-2689990 0999001437294929542986210652910228425702 ars SMV.rw-260 7262517282021040272621568212732150321398216832 ars SMV.rw-250 73721030265125792673271322942689264325842 ars SMV.rw-240 7512110021101297721044214742589289921223210852 ars SMV.rw-230 8312937287828772129321496211742105821093214762 ars SMV.rw-2201707 2134221521215272149225662127121052283629232 ars SMV.rw-210 83021155211712928288021100212722702225628432 ars SMV.rw-200 9243513378238803110031317310683962380236743 ars SMV.rw-190 796387038763133531139311723150931439362739363 ars SMV.rw-180 7023161331787313583156731339310013971383533853 ars SMV.rw-170 904310513114031533316613103731428314573228032035 3 ars SMV.rw-160 97536153114433703523328933953659382836993 ars SMV.rw-150 96631357318113891312933123231467313073808311263 ars SMV.rw-1401322 3134233973765395238633131231205394938133 ars SMV.rw-1301339 3651379731255390631068316393160931188314963 ars SMV.rw-1201424 3119531282312623150731226310123135431360311983 ars SMV.rw-1101447 31000365031457313863871318113152231115311263 ars SMV.rw-100560 318137753104136973851313533723496844984 ars SMV.rw -90 4744616461248804942466241243499141160410444 ars SMV.rw -80 592414264110641389410185586563451046580356045 ars SMV.rw -70 6465757510585735514655138851107510475164355215 ars SMV.rw -60 642514505139558015118658305934514685118858505 ars SMV.rw -501219 5106051562515745121154135126651107578257185 ars SMV.rw -40 991577055315505574554875637555051143511615 ars SMV.rw - 30169359325670511865141951512573756625107755555 ars SMV.rw -201120 5145451658515535102151413511235568583759995 ars

SMV.rw -101367513315172359795103456495839517295530511725 ars SMV.rw 01402598353605876539751655571510215143056835 ars SMV.rw 1047353665517544856085675543256275605513495 ars SMV.rw 2071556825144451653577551198519135165651562517265 ars SMV.rw 301966513125126057265514573856055466594856265 ars SMV.rw 402605267568251155587051382510035104451376519465 ars SMV.rw 50117251138573851274511115157857795508523754885 ars SMV.rw 6032451310516615784514035170257195999565655765 ars SMV.rw 7052451018511315109258035729513335157051493512695 ars SMV.rw 80799579051100510265697559851088551351496511215 ars SMV.rw 90164254475840580351015552058255905572258085 ars SMV.rw 10066964346563755279287966712817106471430714357 ars SMV.rw 110146171500711227119671367795274387501754375877 ars SMV.rw 120147771514794678067775737474147765771476337 ars SMV.rw 13068973057106075647649781378097285761979117 ars SMV.rw 1407427366757479567698791878017726759579067 ars SMV.rw 150331751975517975727471200712887791745674027 ars SMV.rw 16051571997493777272357272761979867365710107 ars SMV.rw 1701010768875457160271012712077108771240773474327 ars SMV.rw 18010957881713427958787673907523711057148479387 ars SMV.rw 190777710207908755878217530711737211171327712497 ars SMV.rw 2009257610710917130571008766178587829765576107 ars SMV.rw 2104017690785378297415785777037884783877717 ars SMV.rw 22076884708513810968112685898789814718864810259 ars SMV.rw 23086895919140291361987797839992911519654913219 ars SMV.rw 240110398869105691310912599556974091044957310124310 ars SMV.rw 2501273101092101184106661012221089910101110754106221097010 ars SMV.rw 260984106631046910132110110810751108751010211012341088310 ars SMV.rw 2704131089810549107591050210481101150101071106291056310 ars SMV.rw 28013661012481015401013141013061016941097910102510139210111810 ars SMV.rw 290977104661013401074410771101315101480107451049810124810 ars SMV.rw 3001532101223105571011251012751093610752106051010581046510 ars SMV.rw 31011661011971012661053510125210331101189101054105511078610 ars SMV.rw 32014891058110456101030108311073610702107861057610129010 ars SMV.rw 3308561070010919101208101323107261094610742109541089510 ars SMV.rw 3409571050010713109001088010904101077109071063010124910 ars SMV.rw 350873107961092910994101055109021097410569109271037310 ars SMV.rw 360109410109810108310819108231011171010631012451010471159511 ars SMV.rw 370543111022111206116101184711123011105010812109761074410 ars SMV.rw 380793101172107831099310980108911098310608107441092210 ars SMV.rw 3907001051310777106111010691013061010201011411013221099410 ars SMV.rw 400978101413106721010181011071011681014411013351015151070210 ars SMV.rw 4101242106611011661012381013681014531077810553106991066010 ars SMV.rw 420715108991099210501107311013061016851011011015631091510 ars SMV.rw 4301196108871078210116410834107571011741094610124610121010 ars SMV.rw 440732101187109701013891095398509227980091235914269 ars SMV.rw 4501294912109123891280994897669792911779109798849 ars SMV.rw 4602559801915579676989991142978699949113894679 ars SMV.rw 47075397489836922410630101166101299101053108191096810 ars SMV.rw 4801229107921086310105710100210106310103610125610111110121110 ars SMV.rw 4901533101280101177108481015071012391012881010231011801093410 ars SMV.rw 500912107531012291094610116810111010100610747107341051110 ars SMV.rw 510628107871057910953111146111186119791111531113981155911 ars SMV.rw 5201060118811111531115541114171111731172811150611113711128211 ars SMV.rw 530168211538111008111260111176117141174611997118741163011 ars SMV.rw 540810118201159311665119981191111118611101211111911145711 ars

SMV.rw 550133611156811153611155611828118211110751111181187311121211 ars SMV.rw 5609441176811104411144611678117651112191115101186011127111 ars SMV.rw 570100511158811146911139011132111191111985118231161711101811 ars SMV.rw 580822111377111165111005117931110201112191113131274112148712 ars SMV.rw 59012771276912123512120712955126021212401213091210511262712 ars SMV.rw 60013281215111213591253212108612102112115212138612141212115612 ars SMV.rw 61074912496126551291212916124821297212102812127812102512 ars SMV.rw 62062212157112132512116312138412833126641293112122612141312 ars SMV.rw 63041612819124971210891297812987121451121286128011231712 ars SMV.rw 640457129121210111270713692133561394413383138091396513 ars SMV.rw 6501019136191311511377313101213106113103313991137341386213 ars SMV.rw 660456131229131729138451312691313761312441313291310311354513 ars SMV.rw 670706139281399613908131325138991383713591135491393713 ars SMV.rw 68087513683131145131288131117131356136721382413107613115213 ars SMV.rw 69061813680137381377013936135871310081310931365313128613 ars SMV.rw 700886138201314851313021384613660136411391013117213126213 ars SMV.rw 71015801315591313161313871318281312801311671394613108613104313 ars SMV.rw 720854135501378413464139771311351310601398813155913106213 ars SMV.rw 73013901312101315581316581313901362613369131109136751352513 ars SMV.rw 74015741315421392113125313160313747131412138531312941381613 ars SMV.rw 7501003137201312961385313105813110913150813144713173313118813 ars SMV.rw 76010621381113157913129113131313145913164813103813112613121913 ars SMV.rw 7703111353313102913134713665131000131093137681310111380213 ars SMV.rw 780100813116013728137431310131313781365513105113113813120913 ars SMV.rw 7901054131031131284131207131354131465131476131207139241392913 ars SMV.rw 800159113178713149813123113120113127313853136891310501321613 ars SMV.rw 81094413933137771310291311391311111351613967137341361213 ars SMV.rw 820147013162213135913852138661362813109513163113181913106913 ars SMV.rw 830507131072131015131068131038137631357813206136261356313 ars SMV.rw 840704131115131433131617131296131212136221379613114713154013 ars SMV.rw 850151513803131161131053131256139631373813228138391367413 ars SMV.rw 860563137911376113100913912137901385113876137291399113 ars SMV.rw 87013531313331311021310761383513612131263131199137211388413 ars SMV.rw 8801233131025136981391813662137131312751310541312751364013 ars SMV.rw 89013921311421386813112413138913128313131613649138091393913 ars SMV.rw 900717136591361613518131020131052136501357913122213136213 ars SMV.rw 91011311311841312991352413804136051398813114413118414103314 ars SMV.rw 92093614937142341410911470515777151105156921510611587015 ars SMV.rw 930106915123215105815141715102115130615153015112215134715138615 ars SMV.rw 94013881514911511121513671590115101715120915853158601591315 ars SMV.rw 95011311513451583415117015860159201511971510171568115119215 ars SMV.rw 960152315106915106815127915125215135415172815172315165515110314 ars SMV.rw 97012431498414568141321141325145231469814100614107114110714 ars SMV.rw 98042214339149891494014103114152814140014138714116214137214 ars SMV.rw 9907781412521499114108714110614146114897141281144081428614 ars SMV.rw1000 933135531378513617139411329513113513158513113513125913 ars SMV.rw10101199 13108913101813926133181376613970138661399513127713 ars SMV.rw10201577 149911411151471114131014132114125714141514128314141613 ars SMV.rw10301338 13703131153131259131017147621457014510144191481114 ars SMV.rw1040 8151483914874148881461314799149661412531413051496514 ars SMV.rw1050 930141122141409141238141072141272141266147701490014108314 ars SMV.rw10601357 141738141193148991487813121513117313610138621381513 ars SMV.rw10701114 137771394713935139091366313948139091366413116313 ars SMV.rw10801015 131131131044138181377913848139291389713132213101013 ars SMV.rw1090 280133551385413796128581293112103012411126401257812 ars SMV.rw1100 694121159129771296112867128141288612594127211244212 ars

SMV.rw1110 97612854131238138921310011310751311571313621311561374513 ars SMV.rw1120 92513596131141137881384213127413980137411394613116813 ars SMV.rw1130 702134851350513807139211310341310711313101311811395513 ars SMV.rw1140 305131026131210135751359813101113715131096126431278012 ars SMV.rw1150 2881210181216411215331278012110612908121199129021293012 ars SMV.rw1160 9331275511145211133811614117781188511817117471172711 ars SMV.rw1170 9641114181114021114591170811639119421128411111111105811 ars SMV.rw11801118 11909119921117061116551112051154811961116541181411 ars SMV.rw1190 9121114461110371189711994109421067410836108001062910 ars SMV.rw1200 700101052109041010219650961994639612976995679 ars SMV.rw1210716913479786863687008107588078520880785828 ars SMV.rw12201245 8760812048101381014812928973810728109388758 ars SMV.rw1230 956812258734863084328955888888878116389068 ars SMV.rw1240 6728119681237897989129765951698209573910479 ars SMV.rw1250 65994099670914389716911719955912109158910149 ars SMV.rw12601408 10109210724101123101128106821071910139910115210110810 ars SMV.rw1270 96210127010130010817107041015671010291013291010351010089 ars SMV.rw1280 671976591090910159116797999113291126962195359 ars SMV.rw1290904960499429818959098709852944991073912059 ars SMV.rw1300 80791287912939778942897889891993291319911029 ars SMV.rw13101319 91300971891149914639118394779857966199169 ars SMV.rw1320 98610941101150106781088210140410108810103110110010153210 ars SMV.rw1330 9761012411010101089510934107721073410843103541054511 ars SMV.rw1340 8931166211780111045115561155611969111010119261164711 ars SMV.rw1350 946111087115511110181185811552101052107711081110125310 ars SMV.rw1360 618109141012851060410650111216111340116771110691282312 ars SMV.rw13701539 121676121663121443121576126991260412143512112612156512 ars SMV.rw13802080 12163212117812137112141812195012204512109612169112151812 ars SMV.rw1390 832121235121563126911282812150712138812982129721226012 ars SMV.rw1400 499126341291212857121070121236121376128561287312149112 ars SMV.rw14101162131121139471381213761135781375413788139361381513 ars SMV.rw1420 7711376813863133261377213105713160213162013187913114113 ars SMV.rw14301657 13156813129213133513175612145212140012686125061291012 ars SMV.rw1440 9921212071264012101212908123091210151212931211081263112 ars SMV.rw14501076 12175112116512974121173127641274612724126241263712 ars SMV.rw14601048 1285512840121010121150129601281312843128071257712 ars SMV.rw1470 9301260312118712137212104112462125811274212118812146412 ars SMV.rw1480 899121324129441272312990121308121299129731278812118612 ars SMV.rw14901728 121581129011278112114112345126071210951212021282512 ars SMV.rw1500 532121014121686121137121470121294123441115881112641191611 ars SMV.rw1510 915111042111154116971197211107211613119191193411161011 ars SMV.rw15201162 1115411153811119811492111181111158119451150411130011 ars SMV.rw15301472 11115611148911966117671111851114131110841163811120611 ars SMV.rw15401347 12120812112612108312152612778125671264312104212106012 ars SMV.rw15501239 128531285012104912122412129312136812996123751274612 ars SMV.rw1560 55712805128601212991214461210141211611274912110212137512 ars SMV.rw15701012 121050129931249012458128721291612929128351268312 ars SMV.rw1580 742124191211801294012415125431283612101112124012129812 ars SMV.rw1590 963128941211001210541210641215911211471214161299312129412 ars SMV.rw16001254 127811295112134712134312101812813128691213351283612 ars SMV.rw16101101 121236126251212471211551283512775129981285712102712 ars SMV.rw1620 94912127012830126041270412651129421211261296912128012 ars SMV.rw16301377 12782121115129701216491297812132912181412154412154812 ars SMV.rw16401599 129301213241212731284812305129531211231210811269812 ars SMV.rw1650 777121229129041256012936121589121239121258126221287312 ars SMV.rw16601117 1216251213421214941210501212681245512788127131285612 ars

SMV.rw1670 9911212751269712497127871254112852126971210921274812 ars SMV.rw1680 8831282712911129141272412239127101290412111912154912 ars SMV.rw16901309 12132212151512174512599128521273012114512128812133512 ars SMV.rw17001230 1214621281612960125671235312974126071275512106612 ars SMV.rw17101175 12961129181211491282512893127131283512122012128412 ars SMV.rw17201385 1217991215841210991211621210031216201210121210961290712 ars SMV.rw17301073 121393127831294412142112680129231248912128412160112 ars SMV.rw1740 94212980128191211361296912643121061121230123391295412 ars SMV.rw17501066 1292812416129261213271297612123712149612135512117912 ars SMV.rw1760 9311214071213021211021211751211981294412984127651261512 ars SMV.rw1770567129261246912715129471250712808131186139011372213 ars SMV.rw1780 9141310771312131314231315551310671311911314401318201389013 ars SMV.rw17901639 13148313161313128213108613142613107013967137831397013 ars SMV.rw18001130 1394513116313132513119713107313782131043139121372013 ars SMV.rw18101147 131379131284131062131477131533131545131241137091370513 ars SMV.rw1820 8111373213792138641365013733134381312151312001386013 ars SMV.rw1830 59413135513118413123513109813106913702131051139651376513 ars SMV.rw18405501364713 3671365413670136261374513700136951373513 ars SMV.rw1850 97613352139891393213106313940138501376713112113119613 ars SMV.rw18601227 1310531312111314441313451310941315331312281352613111513 ars SMV.rw18701186 1375513835137211353313661139041310171311931362813 ars SMV.rw1880 59613876131080131071131065131422131041131132138081391713 ars SMV.rw1890 56513928139441333713726131138138331310271313301374813 ars SMV.rw1900 60013613134131384813870138121360112139612144012102612 ars SMV.rw1910 66112122912142712132312109012973126121210321295412128812 ars SMV.rw1920 903121141121045123261286512116812125912144412133412108912 ars SMV.rw1930 99712117112126912137012693121265128311210851215561271712 ars SMV.rw1940 9451215221211391210281210561210121276012109912113212112212 ars SMV.rw1950 73512441125221289012675128011251812821117651184411 ars SMV.rw19601095 118991110181110411187611127211119411101211102711153211 ars SMV.rw19701390 1184711726118891157911126611103611979117981176011 ars SMV.rw1980 4651111121195411116711112611102211101311785116541118111 ars SMV.rw1990 8101187011887119881113371111361192111110211132611104411 ars SMV.rw2000 57311642111451157011624111009119021112331179366486 ars SMV.rw20109990 0999009990099900999009990099900999009990099900 ars

APPENDIX B

1100 YEARS OF OCEANIC FINGERPRINTS ON WESTERN NORTH AMERICAN DROUGHTS AND PLUVIALS

B. 1 Abstract

Western North American (WNA) drought has serious implications for water resources, yet long-term controls on WNA climate and drought remain poorly understood. Here we re-assess evidence linking ocean forcing to past WNA droughts and pluvials. We assess the strength of ocean-drought teleconnection patterns preserved in tree-ring reconstructed drought maps, and also explore anomalies in a global network of sea surface temperature reconstructions. Potential forcing mechanisms of climate during Medieval Climate Anomaly (MCA), and individual drought and pluvial events over the past 1100 years are tested. We also assess the potential causes of two multidecadal-length pluvials during the MCA. We find compelling links between the tropical Pacific, the North Atlantic, and some WNA droughts and pluvials, but have difficulty directly linking changes in WNA climate during the MCA to ocean forcing. We find that much of the evidence linking past WNA climate to SSTs is based on tenuous associations and extrapolations of modern observations to broad periods where causal mechanisms remain poorly defined. We suggest links between past SSTs and WNA climate may be more nuanced than often portrayed.

B. 2 Introduction

Western North America (WNA) has experienced a wide range of hydroclimatic conditions over the past millennium. Two broad periods include the Medieval Climate Anomaly (MCA, $\sim 900-1400 \mathrm{AD}$) and the post-MCA, often referred to as the Little Ice Age. Drought area increased during the MCA (Cook et al., 2004) and both drought and pluvial events lasted longer (e.g., Woodhouse and Overpeck 1998; Herweijer et al., 2007). The post-MCA had shorter drought and pluvial events and less area under drought on average. Most ominous over the past millennium was the occurrence of multidecadal-length "megadroughts", droughts more severe than any observed during the historical record (Woodhouse and Overpeck 1998). Megadroughts occurred primarily during the MCA, but are present throughout the past millennium (Cook et al. 2004, 2007, 2010; Meko et al. 2007; Woodhouse and Overpeck 1998), as are numerous multidecadal-length pluvials. Here, we re-visit links between these past changes in WNA climate and potential sea surface temperature (SST) forcing mechanisms.

During the observational period (up to ~ 100 years ago), SSTs have strongly influenced WNA climate. SSTs tend to have longer "memory" than the atmosphere alone, which is likely needed to force persistent multidecadal to centennial-length climate changes. WNA climate is most strongly related to the El Niño Southern Oscillation (ENSO). During La Niña events, cool conditions in the eastern equatorial Pacific tend to displace storm tracks northward, resulting in reduced cool season precipitation in southwestern North America (Southwest), and the opposite tends to be true for El Niño events (e.g. Cayan et al. 1999; Redmond and Koch 1991; Schubert
et al. 2009). The Pacific Decadal Oscillation (PDO) reflects the dominant mode of SST in the North Pacific (Mantua et al. 1997). Although linked with tropical Pacific variability (Newman et al. 2003), the PDO varies on longer timescales (Mantua et al. 1997). The Indian Ocean works in concert with the Pacific whereby warming in the western Pacific and Indian oceans drives deep convection that influences the overlying atmosphere and subsequently the mean position of storm tracks and WNA cool season rainfall (Wang et al., 2008). ENSO, PDO, and Indian Oceans all tend to influence precipitation in southwestern and northwestern North America (Northwest) in opposite directions, whereby the Northwest is wet and the Southwest is dry and vice versa.

North Atlantic SSTs, characterized by the Atlantic Multidecadal Oscillation (AMO), may also influence WNA precipitation, although to a lesser degree than the Pacific (Schubert et al., 2009). Warm North Atlantic SSTs are associated with warmer WNA temperatures. Regional warming associated with a positive AMO was shown to decrease runoff efficiency and stream flow in the Upper Colorado River Basin (Nowak et al. 2012). The impact of the North Atlantic may not be limited, however, to regional temperature effects on the water cycle. Instrumental records and climate models suggest the largest precipitation anomalies in WNA tend to occur when Pacific and Atlantic SSTs are opposite in sign (McCabe et al. 2004; Feng et al. 2011; Schubert et al. 2009), reflecting a combined influence of ocean basins on global atmospheric circulation.

Much evidence supports the assumption that causes of past megadroughts were an extension or enhancement of the processes influencing WNA climate today. The
primary candidate is the tropical Pacific whereby extended "La Niña-like" conditions forced medieval aridity and megadroughts (i.e. Conroy et al. 2009b; Graham et al. 2007; Herweijer et al. 2007; Seager et al. 2007; Stahle et al. 2000). Links also have been drawn between the AMO and past WNA drought as established by a tree-ring reconstruction of North Atlantic SST over the past 400 years (Conroy et al., 2009b; Gray et al., 2004; McCabe et al., 2008). North Atlantic SSTs are less well constrained before ~ 1500 AD, but some SST proxy records indicate tenuous multidecadal to centennial-scale relationships between North American climate and the North Atlantic (Conroy et al. 2009b; Feng et al. 2008, 2011; Oglesby et al. 2012). Various general circulation model studies support the proxy records regarding the causes of medieval megadroughts. A cool tropical Pacific has the strongest ability to simulate WNA megadroughts (Burgman et al. 2010; Graham et al. 2007; Seager et al. 2008), but some modeling results indicate a warm North Atlantic can force drought in the Southwest and Midwest (i.e. Feng et al. 2011; Oglesby et al. 2012).

To date, most analyses tend to focus on megadroughts, and do not adequately address wet periods and the different causes of both droughts and pluvials. Here we extend previous work, using a multifaceted approach to assess the evidence linking SSTs to persistent wet and dry periods in WNA over the past millennium. We use teleconnection patterns imbedded in gridded drought reconstructions, and a screened network of SST proxy records to address the following research questions:

1) What changes in ocean/atmosphere circulation are associated with WNA climate between the MCA and post-MCA?
2) What evidence links WNA megadroughts and pluvials to SST forcing?
3) If La Niña conditions persisted during the entire MCA and are responsible for widespread drought and aridity, what explains the existence of decadallength pluvials within the MCA in the early $13^{\text {th }}$ and $14^{\text {th }}$ centuries?

We highlight key gaps in our current understanding of the causes of WNA climate variability. Although there are limitations to our approach, we find the storyline linking SSTs to WNA climate is complex and more nuanced than often portrayed.

B. 3 Methods

PDSI
Western droughts and pluvials over the period 900-2006 AD were characterized by using the North American Drought Atlas (NADA, Cook et al. 2008). The NADA is a gridded network of tree-ring reconstructed PDSI. Western grid points ($27.5^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}, 97.5^{\circ} \mathrm{W}$ to $125^{\circ} \mathrm{W}$, after Cook et al. 2004) were averaged and smoothed with a 50 -year cubic smoothing spline in highlight multidecadal variability (Figure B.1). Pluvial and drought periods were identified as intervals during which the smoothed series exceeded 0.2 PDSI units above or below the series mean respectively (Table B.1).

Teleconnection Patterns

Teleconnection maps were used to investigate relationships between drought patterns and circulation indices. We assessed December-February averages of circulation indices including NINO3 (1856-2006; EXTENDED NINO3 index:

Kaplan et al. 1998; Reynolds et al. 2002), the PDO (1900-2006; Mantua et al. 1997) and the AMO (1880-2006; van Oldenborgh et al., 2009). Correlating the instrumental circulation indices with each grid-point in the NADA developed modern teleconnection pattern maps. Teleconnection pattern maps were then spatially correlated with NADA maps through time. To compute spatial correlations between maps, we reshaped the teleconnection map and tree-ring reconstructed PDSI map into columns, and then computed the r-value between the two columns. We assessed relationships between the modern teleconnection patterns and the NADA for every year in the 900-2006 AD analysis period, resulting in a time series of the teleconnection pattern strength in drought patterns. The modern teleconnection maps and past teleconnection strength (r-value) time series were developed using the entire NADA, not the subset used to define Western droughts and pluvials. We assessed the teleconnection time series during pluvials and droughts, and during the wettest years within pluvials and the driest years within droughts. The wettest and driest years were defined by unsmoothed PDSI deviations exceeding ± 1 respectively.

Spectral Analysis

We performed spectral analysis on the tree-ring reconstructed PDSI and teleconnection time series to test if low frequency characteristics of the PDSI during the MCA (i.e. Herweijer et al., 2007) can be attributed to changes in a particular teleconnection pattern and associated ocean basin. We used the multi taper method (Thompson 1982). The series were normalized by their mean and variance and detrended prior to spectral analysis. The time series were split into MCA and post-

MCA segments. The 95\% significance test for spectral peaks was developed using a Monti Carlo approach: spectra were computed on 5000 random series with the same AR1 autocorrelation and variance as the original series. The resulting spectral values were then sorted by power at each frequency to create a probability distribution of spectral estimates. The upper $95^{\text {th }}$ percentile for each distribution was used as the confidence limit for the respective frequency.

PaleoSST Reconstruction Anomaly Maps

To further test links between WNA climate and SST forcing, we assessed proxy SST reconstructions. SST records where obtained from the Leduc database (Leduc et al. 2010), the NOAA paleoclimate data center (http://www.ncdc.noaa.gov/paleo/paleo.html), and personal communication with authors. Proxy SST records were screened by degree of resolution and age control (Table B.S1). Records were retained that have 30 or more data points in the analysis period, data points during the MCA and post-MCA periods, data points in drought and pluvial intervals, and 2 or more age control points in the analysis period. To assess potential relationships between SST's and past WNA climate, we evaluated proxy SST anomalies for MCA (900-1400AD) and post-MCA (1400-2000AD) periods, and for drought and pluvial intervals identified above. Proxy SST anomalies were computed with respect to the 900-2000 AD analysis period mean or series length mean if less than the analysis period. The sample and age resolution of the SST proxy records makes assessing SST anomalies during relatively short drought and pluvial intervals dubious at best. To alleviate this shortcoming, we combined all
drought and pluvial intervals to average out some of the age uncertainty in the SST records, but results should still be viewed with caution.

B. 4 Results

Smoothed WNA PDSI shows seven droughts and eight pluvials between 900 and 2000 AD (Figure B.1). Table B. 1 shows the drought and pluvial intervals. Droughts occurred predominantly in the MCA whereas pluvials were more concentrated in the post-MCA period. Two extreme WNA pluvials, however, occurred in the MCA and two severe droughts occurred in the post-MCA. Western PDSI spans the Southwestern and Northwestern climate regions. As a result these widespread drought and pluvial events defined here span regions with somewhat different teleconnected remote forcing.

Our teleconnection pattern maps between instrumental circulation indices and North American PDSI are similar to those shown in Cook et al. (2013). The NINO3 and PDO teleconnection maps are characterized by a north-south dipole in Western climate whereby when the Southwest is dry, the Northwest is wet and vice versa (Figure B.2a-b). The NINO3 teleconnection pattern is stronger and more widespread in the Southwest whereas the PDO has a more widespread influence in the Northwest. However, the spatial patterns of the PDO and NINO3 are extremely similar. The modern relationship between the AMO and WNA climate is less pronounced. The AMO has a weakly negative but significant relationship with PDSI across much of North America during the instrumental period (Figure B.2c).

Correlating the teleconnection maps with the annual reconstructed NADA maps over the 900-2000 AD analysis period results in r-value "teleconnection" time series (Figure B.2d-f) that reflect the strength and direction of the associated teleconnection pattern in North American climate through time. The NINO3 teleconnection time series (Figure B.2d) ranges between $\mathrm{r}=0.81$ and $\mathrm{r}=-0.80$ with a mean absolute teleconnection strength of $\mathrm{r}=0.32$. The PDO teleconnection time series (Figure B.2e) ranges between $r=0.76$ and $r=-0.77$ with a mean absolute teleconnection strength of $\mathrm{r}=0.30$. Not surprisingly the PDO and NINO3 teleconnection time series are almost identical to each other ($\mathrm{r}=0.96$, $\mathrm{p}<0.0001$), as reflected by their teleconnection patterns. As a result, distinguishing between the NINO3 and PDO patterns is not feasible; so we will tend to refer to the NINO3 pattern or the combined "ENSO" pattern. Correlations between the AMO teleconnection pattern and Western PDSI (Figure B.2f) range between $r= \pm 0.61$ with a mean absolute teleconnection strength of $r=0.18$. The NINO3 and AMO teleconnection series are negatively correlated with each other ($\mathrm{r}=-0.57$, $\mathrm{p}<$ 0.0001).

Western pluvials and droughts are associated with distinct teleconnection patterns over much of the analysis period. NINO3 and PDO teleconnection time series (Figure B.2d-e) tend to have sequences of positive anomalies during pluvials and negative anomalies during droughts. Correlating the NINO3 teleconnection time series with WNA PDSI during drought and pluvial intervals suggests that the NINO3 pattern can explain between $41-64 \%$ of the variance in WNA droughts and pluvials (Table B.1), whereas the PDO explains between $12-46 \%$. As we are characterizing them by
averaging Western PDSI, Western droughts tend to be West-wide events. Thus the southward-displaced PDO dipole (Figure B.2b) would lower the correlation between the PDO pattern and West-wide droughts with respect to NINO3. Negative (La Niña) NINO3 teleconnection patterns are slightly more frequent during the MCA (59\% of all years) than the post MCA (53\% of all years). The average absolute strength of the NINO3 teleconnection pattern series does not change between the MCA ($\mathrm{r}_{\mathrm{abs}}=0.32$) and post-MCA $\left(r_{\text {abs }}=0.31\right)$. Pluvials and droughts often are characterized by negative and positive AMO teleconnection patterns respectively (Figure B.2f). The AMO teleconnection time series explains between 1% and 35% of the variance in WNA droughts and pluvials (Table B.1). The frequency of positive/negative AMO teleconnection patterns changes slightly between the MCA and post MCA (54\% of all years during the MCA are AMO+ and 45\% of all years during the post MCA are AMO+) The average absolute AMO teleconnection pattern strength in the NADA increases in the MCA ($\mathrm{r}_{\mathrm{abs}}=0.22$) with respect to the post-MCA $\left(\mathrm{r}_{\mathrm{abs}}=0.14\right)$.

Persistent drought and pluvial events tend to be composed of groups of anomalous years, which are not necessarily consecutive and are often separated by near average years. Figure B. 3 shows histograms of teleconnection time series values during the driest drought years and the wettest pluvial years. The driest drought years have average correlations of: NINO3, $r=-0.39$; PDO, $r=-0.28$; and AMO, $r=0.15$. Wettest pluvial years have a weaker relationship and wider distribution than dry drought years with average correlations of: NINO3, $\mathrm{r}=0.29$; PDO, $\mathrm{r}=0.21$; and the AMO, $r=-0.12$. The directions of the teleconnection pattern relationships are
generally consistent, but distribution of correlations indicates that the most extreme years in the West do not always reflect the teleconnection patterns assessed.

Spectral analysis shows WNA PDSI has a significant spectral peak around 143 years during the MCA (Figure B.4a), which is not present after the MCA (Figure B.4b). Neither the NINO3 nor AMO teleconnection time series show an associated increase in low frequency variance during the MCA (Figure B.4c, e). Rather, both teleconnection patterns show an increase in variance at around 9.5 years during the MCA.

Turning from teleconnections to results from analyses that directly measure forcing; our proxy SST record analysis results are generally consistent with previous work. Overall SST anomalies in the Pacific during the MCA are La Niña-like (Figure B.5a). There are three records in the eastern Pacific indicating the presence of an enhanced cold tongue during the MCA, including diatom inferred SST from Galapagos island lake sediment (Conroy et al. 2008), fossil coral from Palmyra Island (Cobb et al. 2003), and foraminifera from Santa Barbara Basin sediments (Kennet and Kennet 2000). In the western Pacific there are four records that indicate a warmer Warm Pool during the MCA. In the North Atlantic the proxy records do not necessarily indicate overall MCA warming. Rather proxy records suggest that the MCA was characterized overall by cool or neutral conditions in the western North Atlantic and warm conditions in the northeastern Atlantic. In the post-MCA period, eastern tropical Pacific records have warm anomalies and western tropical Pacific records have cool anomalies indicating a transition toward a more El Niño-like background state (Figure B.5b). The post medieval North Atlantic is a mixture of
warm and cold anomalies. Combined drought and combined pluvial groups have "La Niña-like" and "El Niño-like" proxy SST anomalies respectively (Figure B.5c-d). The drought SST anomaly pattern shows overall warming in the North Atlantic, contrasting the mix of warm and cold anomalies during the MCA. The pluvial SST anomaly pattern is weakly El Niño-like.

B. 5 Discussion

Were changes in WNA climate between the MCA and post-MCA forced by ocean/atmosphere circulation patterns? As shown in Figure B.1, there are more longlasting drought and pluvial events during the MCA. Spectral analysis of Western PDSI also shows this change, with more low frequency variance during the MCA (Figure B.4a). Much previous work has attributed the change in WNA MCA climate to the tropical Pacific (i.e. Conroy et al. 2009; Graham et al. 2007; Herweijer et al. 2007; Seager et al. 2007).

Our results regarding differences between the MCA and post MCA are somewhat nuanced. The NINO3 teleconnection pattern time series (Figure B.2d) suggests ENSO has been important in controlling WNA climate variability over the past millennium. Yet there is little change in the strength or direction of ENSO patterns during the MCA. There is little evidence in the teleconnection patterns suggesting stronger or more frequent La Niña events forced MCA megadroughts. Furthermore spectral analysis of the ENSO teleconnection series does not show an increase in low frequency variance coincident with greater persistence in PDSI (Figure B.4c). The AMO teleconnection series (Figure B.2f) has a weaker
relationship with WNA climate than the NINO3 series, but the overall strength increases somewhat during the MCA. This could indicate the North Atlantic had a stronger influence on WNA climate during the MCA. In modern times the North Atlantic varies on long (60-80 year) time scales, which suggests a stronger North Atlantic teleconnection during the MCA could have driven the timing of medieval droughts and pluvials, and be responsible for increases in MCA low frequency climate variability. Spectral analysis of the AMO teleconnection series, however, does not strongly support this argument. Rather, both the NINO3 and the AMO teleconnection series have an increase in spectral power at around 9.5 years during the MCA (Figure B.4c, e).

Proxy SST records suggest a relatively straightforward change between the MCA and post MCA. As highlighted by previous work, SST records show "La Niña" like conditions in the Pacific (Figure B.5a) and a strong east-west SST gradient characterized the MCA (Figure 6a-b; Conroy et al 2010). Coincident increases in WNA MCA drought present a suggestive narrative. Yet, the teleconnection patterns are inconsistent with La Niña as a causal mechanism. If La Niña conditions were responsible for medieval WNA aridity, the teleconnection mechanism must have had a different spatial imprint.

Previous findings using Pacific precipitation proxy records further confound the "La Niña like" MCA story. Precipitation reconstructions show an increase in MCA eastern tropical Pacific rainfall (Figure B.6c; Conroy et al. 2008), and a decrease in western tropical Pacific rainfall (Figure B.6d; Tierney et al, 2010) accompanied by a decreases in western tropical Pacific sea surface salinity (Figure
B.6e, Oppo et al. 2009). On instrumental time scales rainfall in the tropical Pacific is closely linked with SST's (e.g. Conroy et al. 2008). Thus, precipitation records indicate the MCA was El Niño like and the post-MCA was La Niña like, neatly contradicting the SST reconstructions (e.g. Conroy et al. 2008; Oppo et al. 2009; Tierney et al, 2010; Yan et al., 2011). As a result, conditions in tropical Pacific during the MCA may have no modern analogue (Tierney et al, 2010). A possible explanation for this apparent enigma may be more frequent and or stronger El Niño events imposed on the La Niña like background state during the MCA (i.e. Conroy et al. 2009a; Routson et al. 2011).

Our second research question focuses on the causes of drought and pluvial events. Teleconnection patterns are informative here, showing that many severe droughts have sequences of years with La Niña-like precipitation patterns (Figure B.2d). The $16^{\text {th }}$ century megadrought stands out, characterized by consecutive La Niña patterns between 1566 and 1578, and the period between 1566 and 1587 is interrupted by only two slightly positive teleconnection years (Figure B.2d). Many of the MCA droughts also have sequences of La Niña precipitation patterns, but they do not tend to persist through the entire droughts. Pluvials tend to have positive ENSO type teleconnection patterns, but these patterns are generally weaker than for droughts. Pluvials during the $17^{\text {th }}$ and $18^{\text {th }}$ centuries have sequences of El Niño-like patterns. Droughts tend to have a positive relationship with the AMO teleconnection pattern, especially during characteristically widespread MCA megadroughts, and the opposite tends to be true for pluvials (Figure B.2f). We also assessed the patterns during the most severe years within drought and pluvial events. The patterns are
consistent, albeit more pronounced than the broader drought and pluvial intervals (Figure B.3), suggesting that climate forcing during extreme years has a stronger relationship with SSTs.

The resolution and age control of proxy SST reconstructions are poor, and caution is advised when interpreting these records on relatively short drought and pluvial length timescales. SST reconstructions suggest that droughts and pluvials tend to have La Niña-like and El Niño-like background conditions, respectively. Proxy SST anomalies in the North Atlantic are ubiquitously warm during WNA droughts (Figure B.5c). This somewhat contrasts the overall MCA, which has a mixture of warm and cold anomalies. Pluvials are associated with a cool North Atlantic, but the pattern is not as robust as warmth during droughts. Warm and cold North Atlantic SST anomalies during droughts and pluvials respectively, support the hypothesis that the AMO could be driving the timing of multidecadal length droughts and pluvials.

Our third research question revolves around the existence of the two pluvials that occur within the MCA between 1176-1215 and 1290-1350 respectively. How could MCA pluvials occur during a time where SST proxy records show persistent La Niña conditions in the Pacific? This could be partially due to the low temporal resolution of the SST proxy data, but they may also be a manifestation of the complexity presented by the various tropical Pacific proxy records for the MCA as discussed above. The two pluvials are pronounced in our west-wide PDSI average, and are wet in both Southwestern and Northwestern PDSI reconstruction composites (Cook et al. 2013). PDSI maps of the two pluvials show they have relatively different spatial patterns across North America (Figure B.7). The first pluvial is characterized
by a strong east-west dipole, where WNA is wet and Eastern North America is dry. The smoothed NINO3 teleconnection series is neutral during this first pluvial and the smoothed AMO teleconnection series is slightly negative (Figure B.8). The east-west dipole pattern of the 1176-1215 pluvial (Figure B.7) is strikingly reminiscent of the second mode of North American drought variability identified by Woodhouse et al. (2009). They define two dominant modes of North American drought using principal components analysis. Their first principal component (PC1) reflects an ENSO type north-south dipole pattern, and their second principal component (PC2) reflects an east-west dipole they link to the jet stream or Northern Annular Mode. During the 1176-1215 pluvial PC2 has a positive anomaly (Figure B.8). The second pluvial has a widespread "Pan-American" pattern, with the largest anomalies centered directly in the middle of WNA (Figure B.7). The widespread pattern of the second MCA pluvial is reminiscent of the AMO teleconnection pattern. The unsmoothed AMO teleconnection time series has a sequence of negative years from 1296 AD , through 1305 AD. The smoothed series in Figure B. 8 also shows the AMO is negative during the earlier portion of this pluvial, suggesting that the AMO may have played a role in causing the second MCA pluvial. The PC indexes (Woodhouse et al. 2009) are less clear during the second MCA pluvial, showing small anomalies in both the first and second modes. Together the evidence suggests medieval pluvials were forced by a combination of factors, but predominantly the Northern Annular Mode during the first pluvial and perhaps the North Atlantic during the second pluvial. Neither pluvial map has a characteristic ENSO dipole pattern when averaged across the entire pluvial duration (Figure B.7).

B. 6 Conclusion

Evidence linking ocean forcing to past WNA climate is nuanced. PDSI has more low frequency variance during the MCA, but teleconnection patterns do not show pronounced changes between the MCA and post MCA. La Niña teleconnection patterns increase only slightly during the MCA, and the strength of the AMO teleconnection pattern also increases somewhat during the MCA. SST reconstructions show the MCA was La Niña like, whereas precipitation reconstructions from the tropical Pacific show more frequent or stronger El Niño events occurred during the MCA. Teleconnection patterns indicate that ENSO, PDO, and AMO likely influenced severe WNA droughts and pluvials over the past millennium. Iconic droughts like the $16^{\text {th }}$ century megadrought and some medieval droughts have sequences of La Niña teleconnection patterns implicating the tropical Pacific. SST reconstructions corroborate the teleconnection patterns and indicate that severe droughts are associated with a La Niña-like pattern in the Pacific and a warm North Atlantic. SST patterns are more mixed during past pluvials, but tend to have an El Niño-like pattern. The cause of the two MCA pluvials is enigmatic. One pluvial appears to have a spatial pattern associated with the Northern Annular mode characterized in previous work (Woodhouse et al. 2009), and the other could be linked to the North Atlantic, but a combination of factors likely contributed to these events. Together the evidence linking past WNA climate to SSTs is still based on tenuous associations and extrapolations of modern observations. We show that sequences of years with strong

SST teleconnections were important for forcing discrete drought and pluvial events, but the evidence does not indicate the same processes were responsible for multidecadal to centennial scale variance changes in WNA climate.

B. 7 References

Burgman, R., R. Seager, A. Clement, and C. Herweijer, 2010: Role of tropical Pacific SSTs in global medieval hydroclimate: A modeling study. Geophysical Research Letters, 37 (6), doi:10.1029/2009GL042239.

Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and Hydrologic Extremes in the Western United States. Journal of Climate, 12 (9), 2881-2893. doi: $\underline{\text { http://dx.doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2 }}$

Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Nin o/Southern Oscilla- tion and tropical Pacific climate during the last millennium. Nature, 424 (6946), 271-276, doi:doi:10.1038/nature01779.

Conroy, J. L., J. T. Overpeck, J. E. Cole, T. M. Shanahan, and M. Steinitz- Kannan, 2008: Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record, Quaternary Science Reviews, 27, 11661180, doi:10.1016/j.quascirev.2008.02.015.

Conroy, J. L., A. Restrepo, J. T. Overpeck, M. Steinitz-Kannan, J. E. Cole, M. B. Bush, and P. A. Colinvaux, 2009a; Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nature Geoscience, 2, 4650, doi:10.1038/ngeo390

Conroy, J. L., J. T. Overpeck, J. E. Cole, and M. Steinitz-Kannan, 2009b: Variable oceanic influences on western North American drought over the last 1200 years. Geophysical Research Letters, 36 (17), doi:10.1029/2009GL039558.

Conroy, J. L., J. T. Overpeck, and J. E. Cole, 2010: El Niño/Southern Oscillation and changes in the zonal gradient of tropical Pacific sea surface temperature over the last 1.2 ka. PAGES news, 18 (1), 32-34.

Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle, 2004: Long- Term Aridity Changes in the Western United States. Science, 306 (5698), 1015-1018, doi:10.1126/science. 1102586.

Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Science Reviews,

81 (1-2), 93-134, doi:http://dx.doi.org/10.1016/j.earscirev.2006.12.002.
Cook, E. R., R. Seager, R. R. Heim Jr, R. S. Vose, C. Herweijer, and C. Woodhouse, 2010: Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. Journal of Quaternary Science, 25 (1), 48-61, doi: 10.1002/jqs. 1303.

Cook, E.R., et al. 2008: North American summer PDSI reconstructions, version 2a, IGBP PAGES World Data Cent. Paleoclimatology Data Contributions Service 2008-046, Paleoclimatology Program, NGDC, NOAA, Boulder, Colorado.

Cook, B. I., J. E. Smerdon, R. Seager, and E. R. Cook, 2013: Pan-continental droughts in North America over the last millennium. Journal of Climate, (2013).

Feng, S., R. J. Oglesby, C. M. Rowe, D. B. Loope, and Q. Hu, 2008: Atlantic and Pacific SST influences on Medieval drought in North America simulated by the Community Atmospheric Model. Journal of Geophysical Research: Atmospheres, 113 (D11), doi: 10.1029/2007JD009347.

Feng, S., Q. Hu, and R. J. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate dynamics, 37 (3-4), 569-586 doi:10.1007/s00382-010-0835-x

Forman, S. L., M. Spaeth, L. Marín, J. Pierson, J. Gómez, F. Bunch, and A. Valdez, 2006: Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA. Quaternary Research, 66 (1), 97-108.

Graham, N. E., et al., 2007: Tropical Pacific-mid-latitude teleconnections in medieval times, Climatic Change, 83, 241-285, doi:10.1007/s10584- 007-9239-2.

Graham, N. E., C. M. Ammann, D. Fleitmann, K. M. Cobb, and J. Luterbacher, 2011: Support for global climate reorganization during the "Medieval Climate Anomaly". Climate Dynamics, 37, 1217-1245, doi:http://dx.doi.org/10.1007/s00382-010-0914-z.

Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Pederson, 2004: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31 (12), doi:10.1029/2004GL019932.

Herweijer, C., R. Seager, E. R. Cook, and J. Emile-Geay, 2007: North American Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data. Journal of Climate, 20 (7), 1353-1376, doi:http://dx.doi.org/10.1175/JCLI4042.1.

Hidalgo，H．G．，2004：Climate precursors of multidecadal drought variability in the western United States．Water Resources Research， 40 （12），W12504 doi：10．1029／2004WR003350

Kaplan，A．，M．Cane，Y．Kushnir，A．Clement，M．Blumenthal，and B．Rajagopalan， 1998：Analyses of global sea surface temperature 1856－1991，Journal of Geophysical Research 103 （18）567－589 doi：10．1029／97JC01736

Kennett，D．J．，and J．P．Kennett，2000：Competitive and cooperative responses to climatic instability in coastal southern California．American Antiquity，379－ 395.

Mann，M．E．，et al．，2009：Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly．Science， 326 （5957），1256－1260， doi：10．1126／science． 1177303.

Mantua，N．J．，S．R．Hare，Y．Zhang，J．M．Wallace，and R．C．Francis，1997：A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production． Bulletin of the American Meteorological Society， 78 （6），1069－1079， doi：http：／／dx．doi．org／10．1175／1520－0477（1997）078〈1069：APICOW）2．0．CO；2．

McCabe，G．J．，M．A．Palecki，and J．L．Betancourt，2004：Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States． Proceedings of the National Academy of Sciences， 101 （12），4136－4141， doi：10．1073／pnas． 0306738101.

Meko，D．M．，C．A．Woodhouse，C．A．Baisan，T．Knight，J．J．Lukas，M．K．Hughes， and M．W．Salzer，2007：Medieval drought in the upper Colorado River Basin． Geophysical Research Letters， 34 （10）， 10 705－10 709， doi：10．1029／2007GL029988．

Newman，M．，G．P．Compo，and M．A．Alexander，2003：ENSO－Forced Variability of the Pacific Decadal Oscillation．Journal of Climate， 16 （23），3853－3857， doi：10．1175／1520－0442（2003）016〈3853：EVOTPD〉2．0．CO；2．

Nowak，K．，M．Hoerling，B．Rajagopalan，and E．Zagona，2012：Colorado River Basin Hydroclimatic Variability．Journal of Climate 25 （12），4389－4403 doi： http：／／dx．doi．org／10．1175／JCLI－D－11－00406．1

Oglesby，R．，S．Feng，Q．Hu，and C．Rowe，2012：The role of the Atlantic Multidecadal Oscillation on medieval drought in North America：Synthesizing results from proxy data and climate models．Global and Planetary Change， 84 － 85 （0）， 56 －65，doi：10．1016／j．gloplacha．2011．07．005．

Oppo，D．W．，Y．Rosenthal，and B．K．Linsley，2009：2，000－year－long temperature and hydrology reconstructions from the Indo－Pacific warm pool，Nature，460，

1113-1116, doi:10.1038/nature08233.
Redmond, K. T., and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resources Research, 27 (9), 2381-2399.

Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. Journal of Climate 15, 1609-1625, doi: http://dx.doi.org/10.1175/15200442(2002)015<1609:AIISAS>2.0.CO; 2

Routson, C. C., C. A. Woodhouse, and J. T. Overpeck, 2011: Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought? Geophysical Research Letters, 38 (22), L22 703, doi:10.1029/2011GL050015.

Schubert, S., et al., 2009: A US CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results. Journal of Climate, 22 (19), 5251-5272, doi:http://dx.doi.org/10.1175/2009JCLI3060.1.

Seager, R., R. Burgman, Y. Kushnir, A. Clement, E. Cook, N. Naik, and J. Miller, 2008: Tropical Pacific forcing of North American Medieval Megadroughts: Testing the Concept with an Atmosphere Model Forced by CoralReconstructed SSTs. Journal of Climate, 21 (23), 6175-6190, doi:http://dx.doi.org/10.1175/2008JCLI2170.1.

Seager, R., N. Graham, C. Herweijer, A. L. Gordon, Y. Kushnir, and E. Cook, 2007: Blueprints for Medieval hydroclimate. Quaternary Science Reviews, 26 (1921), 2322- 2336, doi:http://dx.doi.org/10.1016/j.quascirev.2007.04.020.

Stine, S., 1994: Extreme and persistent drought in California and Patagonia during mediaeval time. Nature, 369 (6481), 546-549, URL http://dx.doi.org/10.1038/369546a0.

Tierney, J. E., D. W. Oppo, Y. Rosenthal, J. M. Russell, and B. K. Linsley, 2010: Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography, 25(1), doi:10.1029/2009PA001871

Thomson, D. J., 1982: Spectrum Estimation and Harmonic-Analysis. Proceedings of the IEEE, 70 (9), 1055-1096.
van Oldenborgh, G. J., L. A. te Raa, H. A. Dijkstra, and S. Y. Philip, 2009: Frequency or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean, Ocean Science, 5, 293-301, doi:10.5194/os-5-2932009.

Wang, H., and V. M. Mehta, 2008: Decadal variability of the Indo-Pacific warm pool and its association with atmospheric and oceanic variability in the NCEPNCAR and SODA reanalyses. Journal of Climate, 21 (21), 5545-5565 doi:10.1175/2008JCLI2049.1

Weiss, J. L., C. L. Castro, and J. T. Overpeck, 2009: Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures, Journal of Climate, 22, 5918-5932, doi:10.1175/ 2009JCLI2905.1.

Woodhouse, C. A. and J. T. Overpeck, 1998: 2000 Years of Drought Variability in the Central United States. Bulletin of the American Meteorological Society, 79 (12), 2693-2714, doi:http://dx.doi.org/10.1175/15200477(1998)079〈2693:YODVIT〉2.0.CO;2.

Woodhouse, C. A., J. L. Russell, and E. R. Cook, 2009: Two modes of North American drought from instrumental and paleoclimatic data. Journal of Climate, 22 (16), 4336-4347, doi:10.1175/2009JCLI2705.1

Yan, H., L. Sun, Y. Wang, W. Huang, S. Qiu, and C. Yang, 2011: A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nature Geoscience, 4(9), 611-614.

B. 8 Figures

Figure B.1: Average of Western PDSI gridpoints (inset map), spanning 900-2006 AD, smoothed with a 50 yr cubic smoothing slpine. Droughts are defined as periods where the smoothed series exceeds -0.2 below the long-term mean. Pluvials are defined as periods where the smoothed series exceeds +0.2 above the long-term mean.

Figure B.2: Teleconnection pattern Analysis. Maps show the modern teleconnection relationship (correlation fields) between instrumental climate modes and the North American Drought Atlas. Black dots indicate significant local grid point correlations ($\mathrm{p} \leq 0.1$). The time series show spatial correlations between the maps (left) and annual tree-ring reconstructed PDSI patterns in the NADA. The heavy black is smoothed with a 20 year moving average. The instrumental climate modes smoothed with a 20 year moving average are plotted against the teleconnection strength time series in blue.

Figure B.3: Histograms showing the frequency of positive and negative teleconnection pattern correlations during all dry years during megadroughts and all wet years during pluvials. Negative ENSO correlations indicate a La Niña pattern and positive AMO correlations indicate a warm North Atlantic.

Figure B.4: Spectral analysis of the PDSI, NINO3 teleconnection series, and the AMO teleconnection series during the MCA (900-1400, left panels) and post-MCA (1400-2007, right panels) periods. Peaks significant above the 95% red noise confidence interval (red) are denoted in years.

Figure B.5: SST anomalies during the medieval period, post medieval period, during all severe drought events, and all persistent pluvial events. Drought and pluvial events are defined by the smoothed series in Figure 1. Anomalies are computed with respect to the 900-2000 AD mean.

Figure B.6: Contradicting tropical Pacific SST and precipitation ENSO reconstructions. Records are from both sides of the tropical Pacific basin. Red coloring indicates La Niña like conditions and blue color indicates El Niño like conditions. a) Diatom inferred SST from the Lake El Junco in the Galapagos Islands (Conroy et al. 2009a), b) Mg/Ca inferred SST from the Indo Pacific Warm Pool (Oppo et al. 2009), c) grain size inferred precipitation intensity from Lake El Junco (Conroy et al. 2008), d) deuterium leaf wax isotope precipitation reconstruction from the Indo Pacific Warm Pool (Tierney et al. 2010), and e) $\delta^{18} \mathrm{O}$ of sea water inferred salinity reconstruction from the Indo Pacific Warm Pool (Oppo et al. 2009).

Figure B.7: Reconstructed PDSI maps for MCA pluvials including the 1176-1215 AD and 1290-1351 AD events. Anomalies are computed with respect to the 900-2007 AD mean.

Figure B.8: Comparison of the leading principal components of WNA PDSI from Woodhouse et al. 2009 in grey (PC1) and black (PC2), with the NINO3 (red) and AMO (blue) teleconnection strength time series. All series are smoothed with a 50year cubic smoothing spline. The units for the PCs are in variance and the units for the teleconnection time series are in r -value correlation.

Table B. 1 Variance explained by teleconnection strength time series in Western droughts and pluvials.

	Teleconnection index correlation $\left(\mathrm{R}^{2}\right)$ with Western PDSI Drought intervals (AD)		
$941-1052$	ENSO	AMO	PDO
$1120-1175$	0.49	0.29	0.37
$1216-1289$	0.56	0.27	0.42
$1351-1413$	0.55	0.34	0.41
$1435-1483$	0.64	0.1	0.52
$1566-1593$	0.41	0.05	0.35
$1849-1888$	0.44	0.19	0.12
Pluvial Intervals		0.01	0.24
$1176-1215$	0.5	0.35	0.35
$1290-1350$	0.56	0.29	0.44
$1521-1565$	0.55	0.07	0.28
$1594-1644$	0.34	0.06	0.14
$1670-1702$	0.59	0.07	0.46
$1806-1848$	0.46	0.22	0.24
$1889-1940$	0.39	0.2	0.21
$1966-2000$	0.41	0.01	0.16
Series length			
$900-2000$	0.49	0.18	0.3

B. 9 Supplemental Figures

Figure B.S1: SST proxy records used in analysis. References for records by number are shown in table S 1 , and a map of locations in figure S .

Figure B.S2: SST record locations. Records are shown in figure B.S1

Figure B.S3: NINO3 teleconnection time series in black and the AMO teleconnection time series plotted in grey with drought and pluvial intervals.

B. 10 Supplemental Circulation Reconstruction Analysis

We assessed a suite of published climate mode reconstructions in hopes that they would reflect the teleconnection patterns preserved in the gridded drought maps. We used two AMO reconstructions (Gray et al. 2004; Mann et al. 2009), four PDO reconstructions (D’Arrigo et al. 2006; MacDonald et al. 2005; Mann et al. 2009; Shen et al. 2006), and four ENSO reconstructions (Braganza et al. 2009; Emil-Geay et al. 2013; Li et al. 2013; Mann et al. 2009). All were obtained from the National Oceanic and Atmospheric Administration (NOAA) paleoclimate data center (http://www.ncdc.noaa.gov/paleo/paleo.html). We only included climate mode reconstructions that spanned two or more drought and pluvial intervals. Anomalies in the mode reconstructions were assessed during drought and pluvial intervals and are shown Tables B.S2 and B.S3 respectively.

Climate mode reconstructions (Figure B.S4) were not especially informative regarding the causes of past WNA megadroughts pluvials. Mode reconstructions were inconsistent within and between records during droughts and pluvials. Mode reconstruction anomalies during droughts and pluvials are shown in tables B.S2 and B. S 3 respectively. ENSO reconstructions are negative 57.9% of the time during droughts and positive 55.2% of the time during pluvials. AMO reconstructions are positive 66.7% of the time during droughts and negative 61.5% of the time during pluvials. PDO reconstructions are negative 42.6% of the time during droughts, and positive 50% of the time during pluvials.

B. 11 Supplemental Circulation References:

D’Arrigo, R., R. Villalba, and G. Wiles, 2001: Tree-ring estimates of Pacific decadal climate variability. Climate Dynamics, 18 (3-4), 219-224, doi:dx.doi.org/10.1007/s003820100177.

Emile-Geay, J., K. M. Cobb, M. E. Mann, and A. T. Wittenberg, 2013a: Estimating Central Equatorial Pacific SST variability over the Past Millennium. Part 1: Method- ology and Validation. Journal of Climate, 26, 2302-2328, doi:http://dx.doi.org/10.1175/ JCLI-D-11-00510.1.

Emile-Geay, J., K. M. Cobb, M. E. Mann, and A. T. Wittenberg, 2013b: Estimating Cen- tral Equatorial Pacific SST variability over the Past Millennium. Part 2: Reconstructions and Implications. Journal of Climate, 26, 2329-2352, doi:http://dx.doi.org/10.1175/ JCLI-D-11-00510.1.

Li, J., et al., 2013: El Nino modulations over the past seven centuries. Nature Climate Change, 3 (9), 822-826.

MacDonald, G. M., and R. A. Case, 2005: Variations in the Pacific Decadal Oscillation over the past millennium. Geophysical Research Letters, 32 (8).

Mann, M. E., et al., 2009: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326 (5957), 1256-1260, doi:10.1126/science. 1177303.

Shen, C., W. C. Wang, W. Gong, and Z. Hao, 2006: A Pacific Decadal Oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophysical Research Letters, 33(3).
B. 12 Supplemental Circulation Figure

Figure B.S4: Climate circulation index reconstructions including ENSO (1-4), AMO (5-6), and PDO (7-10). Associated publications are referenced in tables S2 and S3. All records are smoothed with a 25 -year moving average.

B. 13 Supplemental Tables

Table B.S1: SST reconstruction information

\#	Site or Core	Citation	Lat	Lon	Resolution: mean $($ min $\max) \mathrm{yr} / \mathrm{smpl}$	Proxy	Dating Method	$\begin{aligned} & \hline \text { \# of } \\ & 14 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { \# of } \\ & 210 \mathrm{~PB} \end{aligned}$	Total Tie points
1	BJ-03-32GGC	Oppo et al 2009	-3.53	119.27	10 (10-10)	$\mathrm{Mg} / \mathrm{Ca}$	210Pb, AMS 14C, Tephra	5	13	19
2	PL07-73	Black et al 2007	10.75	-64.77	1.3 (.49-2.6)	$\mathrm{Mg} / \mathrm{Ca}$	Varve, 210Pb, AMS 14C	12	30	42+varves
3	MD99-2209	Cronin et al 2003	37.82	-76.12	3.2 (0.1-34.7)	MgCa	137Cs, 210Pb, AMS 14C	9	Mltpl.	
4	El Junco	Conroy et al 2009	-0.9	-89.48	5.5 (1-9)	Diatom	137 Cs , 210Pb, AMS 14C	4	9	14
5	Gulf of Maine Shells	Wanamaker et al 2008	43.65	-69.8	1 (1-1)	Bivalves	Varves AMS 14C	3		3+varves
6	M200309/ENAM9606	Richter et al 2009	55.65	13.99	17.4 (11-37)	$\mathrm{Mg} / \mathrm{Ca}$	226Ra, 137Cs, 210Pb, AMS 14C	4	13	17
7	MD98-2160	Newton et al 2006	-5.2	117.48	7.5 (1-20)	$\mathrm{Mg} / \mathrm{Ca}$	AMS 14C, Tephra	3		4
8	MD98-2176	Stott et al 2004	-5	133.44	27.2 (10-66)	$\mathrm{Mg} / \mathrm{Ca}$	AMS 14C	2		2
9	MD98-2181	Stott et al 2004	6.3	125.82	19.7 (2-88)	$\mathrm{Mg} / \mathrm{Ca}$	AMS 14C	5		5
10	MD99-2275	Sicre et al 2008/2011	66.56	-17.7	3.2 (1-6)	Alkenone	Tephra Chronology, 210pb		23	28
11	MD99-2275	Eriksson et al 2006	66.55	17.7	15.3 (3.2-27.2)	Diatom	AMS 14C, Tephra Chronology	7		11
12	PO287-26	Rodrigues et al 2009	38.55	9.35	11.6 (3-85)	Alkenone	210Pb, AMS 14C	6	12	18
13	Palmyra	Cobb et al 2003	6	-160	1 (1-1)	Coral	U/Th			25
14	Rapid21-COM	Miettinen et al 2012	57.27	-27.54	5.6 (1-21)	Diatom	210Pb, AMS 14C	9	5	14
15	SO9039KG	Doose-Rolinski et al 2001	24.83	65.92	15.5 (1-46)	Alkenone	Varve, AMS 14C	5		5+varves
16	SSDP102	Kim et al 2004	34.95	128.88	45 (15-78)	Alkenone	AMS 14C	3		3
17	ODP893A	Kennet and Kennet 2000	34.29	-120.04	28.8 (10.1-96.1)	Foram	AMS 14C	11		11

Table B.S2: Circulation reconstruction anomalies during drought periods. Time series can be seen in figure S4.

Mode	Reconstruction	Anomaly by Drought Period						
		$\begin{aligned} & \hline 941- \\ & 1052 \\ & \hline \end{aligned}$	$\begin{aligned} & 1120- \\ & 1175 \end{aligned}$	$\begin{gathered} 1216- \\ 1289 \\ \hline \end{gathered}$	$\begin{aligned} & 1351- \\ & 1413 \end{aligned}$	$\begin{aligned} & \hline 1435- \\ & 1483 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1566- \\ & 1593 \\ & \hline \end{aligned}$	$\begin{aligned} & 1849- \\ & 1888 \end{aligned}$
ENSO	1. Emile Geay et al. 2013	NaN	-0.183	0.118	0.023	0.174	-0.157	-0.102
	2. Mann et al. 2009	-0.277	-0.118	-0.165	-0.058	-0.138	0.022	0.194
	3. Li et al. 2013	NaN	NaN	NaN	0.061	-0.015	-0.192	-0.071
	4. Braganza et al. 2009	NaN	NaN	NaN	NaN	NaN	0.603	0.205
AMO	5. Mann et al. 2009	0.275	0.028	0.078	0.064	-0.040	-0.160	-0.111
	6. Gray et al. 2004	NaN	NaN	NaN	NaN	NaN	0.518	0.337
PDO	7. D'Aarrigo et al. 2006	NaN	NaN	NaN	NaN	NaN	0.201	0.461
	8. MacDonald et al. 2005	-0.865	-0.787	-0.368	0.018	0.665	0.438	0.511
	9. Mann et al. 2009	0.296	0.049	0.101	0.023	-0.254	-0.112	0.009
	10. Shen et al. 2006	NaN	NaN	NaN	NaN	-0.489	-0.136	-0.074

57.9% of the time reconstructions are ENSO- during drought
66.7% of the time reconstructions are AMO+ during drought
42.6% of the time reconstructions are PDO- during drought

Table B.S3: Circulation index reconstruction anomalies during pluvial periods.

Mode	Reconstruction	Anomaly by Pluvial Period							
		$\begin{aligned} & 1176 \\ & 1215 \end{aligned}$	$\begin{aligned} & 1290- \\ & 1350 \end{aligned}$	$\begin{aligned} & 1521- \\ & 1565 \end{aligned}$	$\begin{aligned} & 1594- \\ & 1644 \end{aligned}$	$\begin{aligned} & 1670- \\ & 1702 \end{aligned}$	$\begin{aligned} & 1806- \\ & 1848 \end{aligned}$	$\begin{aligned} & 1889- \\ & 1940 \end{aligned}$	$\begin{aligned} & 1966- \\ & 2000 \end{aligned}$
ENSO	1. Emile Geay et al. 2013	0.024	0.135	0.098	-0.018	-0.179	-0.336	0.090	0.448
	2. Mann et al. 2009	-0.134	-0.013	0.136	0.094	0.077	0.004	0.368	0.621
	3. Li et al. 2013	NaN	0.067	-0.125	-0.052	0.251	0.093	-0.050	0.230
	4. Braganza et al. 2009	NaN	NaN	-0.089	-0.067	0.043	-0.392	-0.113	-0.302
AMO	5. Mann et al. 2009	0.059	-0.034	-0.057	-0.336	-0.233	-0.290	-0.077	0.091
	6. Gray et al. 2004	NaN	NaN	NaN	-0.665	0.884	-1.136	0.031	0.062
PDO	7. D'Aarrigo et al. 2006	NaN	NaN	-0.608	-0.103	0.399	0.062	-0.087	-0.115
	8. MacDonald et al. 2005	-0.236	-0.153	1.044	0.133	-0.068	0.212	0.646	0.375
	9. Mann et al. 2009	0.067	-0.022	-0.060	-0.237	-0.210	-0.241	-0.157	0.154
	10. Shen et al. 2006	NaN	NaN	0.030	0.237	0.032	-0.027	0.019	0.421

55.2% of the time reconstructions are ENSO+ during pluvials
61.5% of the time reconstructions are AMO+ during pluvials
50% of the time reconstructions are PDO+ during pluvials

APPENDIX C

THREE MILLENNIA OF SOUTHWEST NORTH AMERICAN DUSTINESS AND FUTURE IMPLICATIONS

Cody C. Routson ${ }^{1,2, *}$, Jonathan T. Overpeck ${ }^{1,3,4}$, Connie A. Woodhouse ${ }^{1,2,5}$, and William F. Kenney ${ }^{6}$

1 Department of Geosciences, University of Arizona, Tucson, Arizona, USA.
2 Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA.
3 Institute of the Environment, University of Arizona, Tucson, Arizona, USA.
4 Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA.

5 School of Geography and Development, University of Arizona, Tucson, Arizona, USA.

6 Land Use and Environmental Change Institute, University of Florida, Gainesville, Florida, USA.
*e-mail: routson@email.arizona.edu
Manuscript submitted to Nature Geoscience
C. 1 Abstract

We generated a 2940-year-long, sub-decadal resolution dust deposition record from Fish Lake, in the southern San Juan Mountains, Colorado documenting relationships between southwest United Sates (Southwest) drought and atmospheric dustiness. We used μ Xray-fluorescence to analyze the geochemical composition of sediment cores,
local bedrock, and dust deposited on local snowpack to constrain dust-input endmembers. We employed an end-member mixing method to calculate the fraction of wind-deposited dust in the lake sediment through time. Independent high-resolution grain-size records were combined with the geochemical results to create a composite dust record. The new record confirms anomalous dustiness in the $19^{\text {th }}$ and $20^{\text {th }}$ centuries, associated with recent land disturbance, drought, and livestock grazing ${ }^{1-3}$. Before anthropogenic influences, drought and aridity also generated higher than average atmospheric dust loading. Medieval times were associated with high levels of dustiness, consistent with widespread medieval aridity. The period between 800 and 300 BC was also unusually dusty, approaching peak mid- $20^{\text {th }}$ century levels. High levels of pre-industrial dustiness indicate the Southwest is naturally prone to desertification. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape ${ }^{4}$ the Southwest will likely become dustier, driving negative impacts on snowpack and water availability ${ }^{5}$, as well as human health ${ }^{6}$.

C. 2 Introduction

Dust entrained by spring winds and southwesterly storm systems is deposited on mountain snowpack where it increases solar radiation absorption ${ }^{5,7,8,9}$. Recent dust on snow events in the Rocky Mountains, which are the headwaters to major river systems that support over 60 million people ${ }^{10}$, have accelerated melt, decreased runoff, and reduced snow-cover duration by up to 51 days ${ }^{5,7,8,9}$. Southwestern dustiness increased substantially with historical and modern land use ${ }^{2}$, but recent drought has also enhanced windblown dust off undisturbed landscapes ${ }^{11}$. Across the Southwest, increases in airborne dust prompted extensive research on the fate and
transport of dust and implications for regional water resources ${ }^{5,7,8,9,11,12}$. However, these studies are focused on a relatively short period of record. It is unclear whether dustiness in the Southwest is predominantly a modern phenomenon associated with widespread settlement and disturbance ${ }^{1-3}$, or if intermittent dusty conditions have occurred over longer timescales as suggested by regional eolian sediment features ${ }^{13}$.

Dune and loess deposits indicate that some locations in the West experienced extremely arid and dusty intervals during the Holocene ${ }^{14,15}$. At the same time Southwest tree ring records provide strong evidence for multi-decadal-length droughts during Roman ${ }^{16,17}$ (1-400 AD) and medieval times ${ }^{16,17,18}$ (900-1400 AD), but were these droughts severe enough to mobilize dust? Some dune deposits in the Southwest may have activated in response to these droughts ${ }^{13}$. However, existing dust records with low temporal resolution in the San Juan Mountains show no change in dust accumulation rates before the mid 1800 's $\mathrm{AD}^{1,2}$, suggesting biologic crusts may have stabilized soils during severe droughts ${ }^{19}$. Higher resolution dust records are needed to characterize the natural variability of dustiness to more thoroughly understand the relationship between dust and drought in the Southwest.

C. 3 Reconstructing Dustiness

To assess links between dustiness and Southwestern aridity, we developed a 2940-year-long sub-decadal resolution dust record. We used lake sediments from Fish Lake $\left(37.25^{\circ} \mathrm{N}, 106.68^{\circ} \mathrm{W}\right)$ in the south San Juan Mountains, a relatively narrow mountain chain that defines the northeastern boundary of the high desert Colorado Plateau (Figure C.1). Alpine Fish Lake is lake located above the treeline (3718 meters elevation), where prevailing southwesterly winds and storm systems deposit dust
eroded from the Colorado Plateau desert. Dust is deposited in the San Juan Mountains at a rate of $5-10 \mathrm{~g} \mathrm{~m}^{-2} \mathrm{yr}^{-120}$, and Google Earth imagery taken in spring 2011 clearly shows dust on the melting snow surface around Fish Lake (Figure C.1). Fish Lake is located in the San Juan Volcanic Field, which has geochemistry distinct from the weathered sedimentary desert soils of the Colorado Plateau. Sediment cores and samples of local bedrock material were collected in the summers of 2009 and 2011. Windblown dust was collected off the melting snow surface near Wolf Creek Pass in April 2012.

Sediment cores were analyzed for age control, grain size, and geochemistry. We established age-depth chronologies with radiocarbon dating of terrestrial plant macrofossils and ${ }^{210} \mathrm{~Pb}$ dating of the upper surface sediments (Figure C.S1 and Figure C.S2). Sediments were sampled at 0.5 cm intervals for grain size. Dust obtained from local snowpack is predominantly composed of fine silt and clay grain sizes (Figure C.2a). Over the record length, Fish Lake sediment is composed of an average of 83.7\% dust grain sizes. Fish Lake sediment also has a coarser grain fraction derived from weathering and decomposition of local bedrock, indicating a small portion of the dust grain size fraction is probably locally derived.

Micro scanning X-ray fluorescence ($\mu \mathrm{XRF}$) was used to characterize the geochemistry of sediment, dust, and local bedrock. Windblown dust and local bedrock have similar titanium counts; dust is slightly enriched in potassium, whereas calcium and strontium are higher in the local bedrock (Figure C.S3). Strontium concentrations however, were too low to measure in the sediment reliably. Calcium shows the greatest difference between local rock and windblown dust. Calcium is
present in moderate to high concentrations in windblown dust collected from southwestern landscapes ${ }^{20,21}$ (Figure C.S3); however, μ XRF analysis shows that calcium abundance in south San Juan Volcanic Field bedrock around Fish Lake is over 4 times higher than in dust deposited on local snow (Figure C.S3). To calculate the fraction of dust (fd) in the sediment we applied a geochemical end-member mixing model (Equation 1) using potassium and calcium ratios in dust, local bedrock, and sediment.

$$
\begin{equation*}
f d=\frac{\frac{K}{C a} \text { sed }-\frac{K}{C a} \text { rock }}{\frac{K}{C a} \text { dust }-\frac{K}{C a} \text { rock }} \tag{1}
\end{equation*}
$$

The sediment is a mixture of two end members, dust and local bedrock (Figure C.2b). The mixing model indicates Fish Lake sediment is composed of an average of 54\% dust: far less than the grain size estimation (84\%). Nonetheless, the relative constancy of sediment accumulation rates in Fish Lake (Figure C.S1 and Figure C.S2) indicate that our dust record is relatively free of sediment dilution bias. We standardized the grain size and $\mu \mathrm{XRF}$ dust records from short and long cores to account for variable sediment accumulation between cores (Figure C.S4), and we combined these data using the median into one composite dust record, utilizing the common variability between cores and between methods to produce a more realistic representation of past dustiness.

The resulting 2940-year-long Fish Lake dust record (Figure C.3a) provides a new perspective on Southwestern climate and aridity. Low dust intervals occur notably during the post-Roman (500-700AD) and post-medieval (1400-1700AD) periods. Tree-ring records including nearby Summitville ${ }^{16}$ (21 km away; Figure C.3b) and reconstructed Southwestern gridded Palmer Drought Severity Index ${ }^{22}$ (PDSI; Figure C. $3 \mathrm{c} ; 20$ grid points averaged, $32^{\circ} \mathrm{N}$ to $40^{\circ} \mathrm{N}$ and $105^{\circ} \mathrm{W}$ to $115^{\circ} \mathrm{W}$) help characterize local and regional moisture balance conditions. Low dust periods tend to correspond with wetter, or at least non-arid intervals. The Fish Lake record also shows persistent dusty periods. A downward trend in dustiness over the first half of the record may reflect a long-term change in Southwestern aridity. High dust levels occur between 900 BC and 200 BC. Dust levels in the earliest portion of our record (i.e. before 800 BC) are comparable to those of peak dustiness during the $20^{\text {th }}$ century. The Roman Period, characterized by extreme drought in some areas of the Southwest ${ }^{16,17,22}$, is only moderately dusty. A medieval period of relatively high dustiness occurred between 700 AD and 1400 AD . Dust levels first increase in the mid 700's coincident with drought events in the western US ${ }^{17}$, but before the onset of the most severe Southwestern medieval droughts (Figure C.3). High medieval dust levels are consistent with widespread increases in drought area ${ }^{23}$. Based on our age model, the highest dust peak in the record occurs between 1540 and 1555 . This peak is present in both short and long $\mu \mathrm{XRF}$ records, but is not well represented in the lower resolution grain size record (Figure C.S5). This high dust interval is within radiocarbon age error of the multidecadal $16^{\text {th }}$ century Southwestern megadrought ${ }^{24}$, and could reflect associated dustiness.

The Fish Lake dust record also confirms anomalous dustiness likely related to $19^{\text {th }}$ century mass livestock introductions and human land use changes ${ }^{2}$. Livestock were initially introduced in low numbers into the Southwest as early as the mid 1500 's with the first Spanish explorers ${ }^{25}$. Completion of the railroad in the late 1800's enabled an exponential increase in livestock populations, with numbers of sheep and cattle in hundreds of thousands. Fragile desert ecosystems were quickly denuded of grasses and vegetation, resulting in widespread arroyo cutting, soil destabilization, and landscape changes across the Southwest ${ }^{26}$. By the 1920's livestock numbers had stabilized and begun to decline ${ }^{25,26}$. Livestock declines however, came shortly before the 1930's dust bowl drought, followed by the 1950's drought. The Fish Lake record shows dust levels began to increase in the mid to late 1800's, rising until the 1950's, when dust deposition stabilized and then declined. Declines are probably related to a relative decrease in livestock abundance coupled with land management practices. The Fish Lake record suggests that dust levels increased somewhat since the mid 1980's perhaps associated with recent droughts in the Southwest. The Fish Lake record shows that recent human-induced dustiness is anomalous, but it does not represent a 500% increase over preindustrial dustiness ${ }^{2}$ (Figure C.S6).

The chronology of dune and loess activity dates from around the western and central US indicate some dusty periods in the Fish Lake record were associated with widespread dune migration and loess deposition (Figure C.3d). The Great Sand Dunes National Park located 115 km northeast of Fish Lake experienced medieval and recent dune activity consistent with our record ${ }^{13}$. The Great Plains also record
some recent dune and loess activity in the last 150 years ${ }^{14,15}$. Dune mobilization and loess deposition also occurred in the Great Plains during medieval times and before 300 BC ${ }^{15}$. Dust deposited at Fish Lake during these intervals likely reflects the widespread impact of drought.

C. 4 Conclusion

In conclusion, dust has been an important component of Southwestern climate over the past several millennia, implying that Southwest landscapes undisturbed by humans and their animals can become significant dust sources during prolonged arid periods. Recent dust levels may be anomalous, but they are not necessarily unprecedented. Persistently dusty periods occurred numerous times over the past three millennia. Southwestern tree-ring records indicate that low dust periods are associated with regionally wetter conditions and high dust periods are associated with periods of persistent or frequent drought. Dune and loess deposits in the Southwest and the Great Plains confirm that some dusty periods at Fish Lake are related to widespread aridity. Recent research has documented impacts of dust on snow causing reductions in runoff and streamflow (e.g., in the Colorado River) ${ }^{5,8,9}$. Furthermore, mineral dust aerosols have also been implicated in past precipitation suppression ${ }^{27}$. It is not clear if preindustrial dust levels at Fish Lake were sufficient to suppress precipitation, but evidence suggests that atmospheric dust loading amplifies the impacts of drought ${ }^{27}$. As the earth warms, the Southwest is projected to see a decrease in mean precipitation, and an increase in consecutive dry days ${ }^{4}$. These changes will lead to an increased risk of prolonged drought ${ }^{28}$, worsened by warming
and increased atmospheric moisture demand ${ }^{29}$. Resulting aridity- and human-driven atmospheric mineral dust loading will amplify severe climate change impacts on water resources ${ }^{5}$ and human health ${ }^{6}$, exacerbating the regional impacts of anthropogenic climate change.

C. 5 Methods

Core Sampling

In summers of 2009 and 2011 a 170 cm long core and a 30 cm long core were taken respectively from Fish Lake using Alpacka rafts and a universal gravity corer. The sediment water interface was preserved on the short core by siphoning off water above the sediment surface, carefully packing with a sponge to absorb water and prevent slumping, cutting off the remaining core tube above the sponge, and capping for transport. See supplemental material for discussion of age control on the sediment cores.

Grain Size Analysis

Grain size samples were pretreated using a modification of the methods described by Dr. Donald Rodbell of Union College (http://www1.union.edu/rodbelld/grainsizeprep.htm). In a sequence of treatments $10 \% \mathrm{HCL}$ was used to remove potential carbonates, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ was used to remove organics, and 1 M NaOH was used to remove biogenic silica. Sediment samples were rinsed, centrifuged, and decanted three times between each step, following the methods used in ref. 30. We also added $\left(\mathrm{NaPO}_{3}\right)_{6}$ to the samples before analysis as a
dispersant to inhibit aggregation of clay-sized particles. Grain size distributions were analyzed using a laser-diffraction Malvern Mastersizer, 2000 particle size analyzer. The average of five measurements was used for each sample. Dust samples were pretreated and analyzed using the same grain size protocol. Using the overlapping portions of dust and sediment grain size distributions (Figure C.3), dust in sediment was characterized as grain sizes less than or equal to $45.7 \mu \mathrm{~m}$.

Geochemical μ XRF Analysis

Sediments were sampled by carefully removing wet slabs $4.5 \times 2.0 \times 0.5 \mathrm{~cm}$ in size. Acetone exchanges were used to remove water, and the slabs were imbedded in an epoxy resin. Imbedded sediment slabs were split using a diamond saw and surfaced on 600 grit sanding paper. Half of each slab was used to make glass microscope thin-sections. The other half was analyzed using an EDAX Eagle III tabletop scanning $\mu \mathrm{XRF}$ analyzer at the University of Arizona Department of Geosciences. Line scans down each slab were run using $40 \mathrm{kv}, 300 \mu \mathrm{a}$, at 25 micron resolution, and 16 seconds of spot measurement time. For μ XRF analysis of dust and local bedrock, samples were pulverized using a mortar and pestle, compressed into pellets, and run using the same μ XRF instrument settings as on the sediment.

A mean count adjustment was applied to the sediments to conceptualize the mixing model (Figure C.2b). When analyzing the sediment, X-rays travel through epoxy imbedding resin and organic sediment in addition to the mineral component of the sediment. The epoxy resin and organic matter reduce the μ XRF signal and respective element abundances relative to the dust and bedrock samples (Figure
C.S7). Different elements are influenced slightly differently. A constant value of 40 was added to the potassium and calcium mean counts, and the value 20 was added to titanium mean counts (Figure C.S7). The adjustment has no influence on the final record because potassium and calcium ratios were used, but is useful for understanding the theoretical framework using the ratio/ratio scatter plot (Figure C.2b)

Turbidites and shrinkage

Thirty turbidites (distinct packages of sediment deposited instantaneously by underwater landslides) were removed from the Fish Lake grain size and geochemical records. Turbidite depths were visually characterized from the core and digitized thin section photographs in GIS. Thin sections were digitized using a digital SLR camera through an Olympus microscope. The thin-section photographs were imported into GIS and scaled to depth using μ XRF line-scans on the sediment slabs. Turbidite depths were measured in GIS and verified with measurements on the wet sediment core.

There were also some cases of sediment shrinkage when imbedding the sediment pucks. Shrinkage was accounted for by using the depth differences of 36 marker layers between the thin-sections and the wet core. Shrinkage was adjusted linearly between the marker layers. Both turbidites and shrinkage were also visible in the grain size and $\mu \mathrm{XRF}$ records. Turbidites were coarse intervals in the grain size record and spikes of calcium counts in the μ XRF record, which were used to check
that the various records were all on the same depth-scale after adjusting for the shrinkage (Figure C.S8).

Composite Record

A method similar to tree-ring techniques was applied to reduce method and core dependent variability. Grain-size and the μ XRF methods were applied to the short and long cores. The four resulting records were normalized by their mean and variance. Grain-size dust records were then interpolated to 5 -year sample resolution and the $\mu \mathrm{XRF}$ dust records were binned to 5-year sample resolution, and all records were combined using the median.

Age Control (for supplemental material)

Age control was developed using ${ }^{210} \mathrm{~Pb}$ and ${ }^{14} \mathrm{C}$ dating. Sediments of the upper most portion of the surface core were sampled at 0.5 cm intervals and radiometric measurements $\left({ }^{210} \mathrm{~Pb}\right.$ and $\left.{ }^{226} \mathrm{Ra}\right)$ were made using low-background gamma counting with well-type intrinsic germanium detectors (Appleby et al., 1987; Schelske et al., 1994). Sediment ages were calculated using the constant rate of supply model (Figure C.S2; Appleby and Oldfield 1983). Age errors were propagated using first-order approximations and calculated according to Binford (1990). Radiocarbon dating on terrestrial macrofossils was used to constrain ages beyond the ${ }^{210} \mathrm{~Pb}$ chronology. Radiocarbon samples were combusted and analyzed at the University of Arizona's Accelerator Mass Spectrometer facility. Marker layers were used to correlate age depths between the short and long cores. Radiocarbon ages were calibrated and age
depth models were developed using the R program for Classic Age-Depth Modeling (Clam; Blaauw 2010). Radiocarbon dates were calibrated using the IntCal09.14C calibration curve (Reimer et al., 2009). Clam creates probability distributions of ages for each ${ }^{14} \mathrm{C}$ date then iteratively fits age-depth models (here a smoothing spline) and bases its final age-depth model (Figure C.S1) off the best fit of 1000 iterations (Blaauw 2010).

Acknowledgements

We thank K. Routson, R. Yetman, and C. Stielstra for extensive help in the field. We thank N. Mckay, J. Betancourt, A. Cohen, E. Brown, D. Meko, J. Conroy, and R. Reynolds for comments and insights. The National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation, the Science Foundation Arizona, the NOAA funded Climate Assessment for the Southwest, the Colorado Scientific Society, and the University of Arizona Department of Geoscience contributed funding and support for this research.

Author Contributions

J.T.O. and C.A.W. conceived the project idea. C.C.R identified the lake, collected the sediment cores, developed the geochemical and grain-size records, performed the data analysis, and wrote the paper. W.F.K. developed the ${ }^{210} \mathrm{~Pb}$ chronology. All authors commented on the manuscript.

Additional Information

The authors declare no competing financial interests. Correspondence and requests for materials should be directed to C.C.R.

C. 6 References

1. Ballantyne, A. P., Brahney, J., Fernandez, D., Lawrence, C. L., Saros, J., Neff, J. C., \& Naqvi, S. W. A. Biogeochemical response of alpine lakes to a recent increase in dust deposition in the Southwestern, US. Biogeosciences, 8, 26892706 (2011).
2. Neff, J. C., Ballantyne, A. P., Farmer, G. L., Mahowald, N. M., Conroy, J. L., Landry, C. C., ... \& Reynolds, R. L. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geosci. 1, 189-195 (2008).
3. Reynolds, R. L., Mordecai, J. S., Rosenbaum, J. G., Ketterer, M. E., Walsh, M. K., \& Moser, K. A. Compositional changes in sediments of subalpine lakes, Uinta Mountains (Utah): evidence for the effects of human activity on atmospheric dust inputs. J. Paleolim. 44, 161-175 (2010).
4. Collins, M., R. et al., Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).
5. Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., \& Udall, B. Response of Colorado River runoff to dust radiative forcing in snow. Proc. of the Nat. Acad. of Sci. 107, 17125-17130 (2010).
6. Morman, S. A., \& Plumlee, G. S. The role of airborne mineral dusts in human disease. Aeolian Res. 9, 203-212 (2013).
7. Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., ... \& Farmer, G. L. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 34, L12502 (2007).
8. Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., \& Landry, C. C. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resources Res. 48, W07521 (2012).
9. Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., \& Landry, C. C. Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resources. Res. 48, W07522 (2012).
10. Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., \&

Dozier, J. Mountain hydrology of the western United States. Water Resources. Res. 42, W08432 (2006).
11. Munson, S. M., Belnap, J., \& Okin, G. S. Responses of wind erosion to climateinduced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences 108, 3854-3859 (2011).
12. Neff, J. C., Reynolds, R. L., Munson, S. M., Fernandez, D., \& Belnap, J. The role of dust storms in total atmospheric particle concentrations at two sites in the western US. J. Geophys. Res. Atmos. 118, 201-212 (2013).
13. Forman, S. L., Spaeth, M., Marín, L., Pierson, J., Gómez, J., Bunch, F., \& Valdez, A. Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA. Quat. Res. 66, 97-108 (2006).
14. Halfen, A. F., \& Johnson, W. C. A review of Great Plains dune field chronologies. Aeolian Res. 10, 135-160 (2013).
15. Miao, X., Mason, J. A., Swinehart, J. B., Loope, D. B., Hanson, P. R., Goble, R. J., \& Liu, X. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology 35, 119-122 (2007).
16. Routson, C. C., Woodhouse, C. A., \& Overpeck, J. T. Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought? Geophys. Res. Lett. 38, L22703 (2011).
17. Woodhouse, C. A., \& Overpeck, J. T. 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc. 79, 2693-2714 (1998).
18. Cook, E. R., Seager, R., Heim, R. R., Vose, R. S., Herweijer, C., \& Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long term palaeoclimate context. J. Quat. Sci. 25, 48-61 (2010).
19. Belnap, J., \& Gillette, D. A. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Deg. \& Devel., 8, 355-362 (1997).
20. Lawrence, C. R., Painter, T. H., Landry, C. C., \& Neff, J. C. Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, United States. J. Geophys. Res. 115, 2005-2012 (2010).
21. Brahney, J., Ballantyne, A. P., Sievers, C., \& Neff, J. C. Increasing Ca ${ }^{2+}$ deposition in the western US: The role of mineral aerosols. Aeolian Res. 10, 77-87 (2013).
22. Cook, E. R., et al. North American summer PDSI reconstructions, version 2a, IGBP PAGES World Data Cent. Paleoclimatol. Data Contrib. Ser. 2008- 046, Paleoclimatol. Program, NCDC, NOAA, Boulder, Colo (2008).
23. Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., \& Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 10151018 (2004).
24. Stahle, D. W., et al. Tree-ring data document 16th century megadrought over North America. EOS, Trans. Amer. Geophys. Union 81, 121-125 (2000).
25. Sayre, N. The cattle boom in southern Arizona: towards a critical political ecology. J. Southwest 41, 239-271 (1999).
26. Abruzzi, W. S. The social and ecological consequences of early cattle ranching in the Little Colorado River Basin. Human Ecol. 23, 75-98 (1995).
27. Cook, B. I., Seager, R., Miller, R. L., \& Mason, J. A. Intensification of North American megadroughts through surface and dust aerosol forcing. J. Clim. 26, 7635-7649 (2013).
28. Ault, T.R. J. E. Cole, J. T. Overpeck, G. T. Pederson and D. M. Meko. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Clim. (2014).
29. Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., ... \& McDowell, N. G. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Clim. Change 3, 292-297 (2012).
30. Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., \& Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166-1180 (2008).

Supplemental References:

Appleby, P. G., Oldield F. The assessment of ${ }^{210} \mathrm{~Pb}$ data from sites with varying sediment accumulation rates. Hydrobiologia 103, 29-35 (1983).

Appleby P. G., Nolan P. J., Gifford D. W., Godfrey M. J., Oldfield F., Anderson N.
J., Battarbee R. W. ${ }^{210} \mathrm{~Pb}$ dating by low background gamma counting. Hydrobiologia 143, 21-27 (1986).

Binford, M. W. Calculation and uncertainty analysis of ${ }^{210} \mathrm{~Pb}$ dates for PIRLA project lake sediment cores. J. of Paleolim. 3, 253-267 (1990).

Blaauw, M. Methods and code for 'classical' age-modeling of radiocarbon sequences. Quat. Geochron. 5, 512-518 (2010).

Reimer, P. J., Baillie, M. G., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., ... \& Weyhenmeyer, C. E. IntCa109 and Marine09 radiocarbon age calibration curves, 050,000 years cal BP. Radiocarbon 51, 1111-1150 (2009).

Schelske, C. L., Peplow, A., Brenner, M., \& Spencer, C. N. Low-background gamma counting: applications for ${ }^{210} \mathrm{~Pb}$ dating of sediments. Journal of Paleolimnology 10, 115-128 (1994).

C. 7 Figures

Figure C.1: Study Site. Google earth imagery from Spring 2011 shows dust accumulating on the snow surface on and around Fish Lake ($37.25^{\circ} \mathrm{N}, 106.68^{\circ} \mathrm{W}$). Inset map shows Fish Lake in the south San Juan Mountains (star), and the Colorado Plateau outlined in grey.

Figure C.2: Reconstruction Methods. a Grain size distributions of dust of snow (red) and Fish Lake sediment (black). Sediments diverge from dust toward coarser grain sizes representing locally derived material. The dashed vertical line denotes $45.7 \mu \mathrm{~m}$ where the sediment begins to diverge from wind deposited dust. b The elemental ratio/ratio end-member mixing model using μ XRF abundance counts of titanium, potassium, and calcium, showing sediment (black) distributed between bedrock (blue) and windblown dust (red) end-members.

Figure C.3: Comparison of Fish Lake dust index with regional drought
indicatiors. a Fish Lake dust reconstruction compared with \mathbf{b} a tree-ring record of local Summitville spring time moisture balance ${ }^{16}$, and \mathbf{c} Southwestern PDSI ${ }^{22}$. Both moisture records are smoothed with a 70-year cubic smoothing spline to highlight long-term variabilty in aridity. d Dune activity dates from the Great Sand Dunes National Park ${ }^{13}$ (diamonds), and dune (squares) and loess (circles) activity dates from the Great Plains ${ }^{15}$.

C. 8 Supplemental Figures

Figure C.S1Fish Lake age model. Calibrated ${ }^{210} \mathrm{~Pb}$ and ${ }^{14} \mathrm{C}$ dates in green with the best fit of 1000 smoothing spline age models in black.

Figure C.S2: Fish Lake ${ }^{\mathbf{2 1 0} \mathbf{P b}}$ age model. Dates shown in the filled squares plotted with associated error based on a constant rate of supply model (Appleby and Oldfield 1983).

Figure C.S3: Dust versus bedrock geochemistry. Histograms showing the frequency of elemental abundances characterized using μ XRF counts. Counts increase to the right on the x -axis. X -axis scale differs between plots. Titanium has similar abundances in local bedrock and in windblown dust. Potassium has slightly higher abundance in windblown dust. Calcium has moderate to high abundance in windblown dust and much higher abundance in local bedrock. Strontium has slightly higher abundance in local bedrock than windblown dust, but counts were too low to measure in the sediment reliably.

Figure C.S4: Grain size and geochemical records. Comparing grain size dust record (red) with μ XRF dust record (blue). The records have been normalized by their mean and variance, and the short and long cores were combined using the mean. The μ XRF record has been smoothed with a 25 -point running mean for comparison purposes.

Figure C.S5: Grain size and geochemical records on short and long cores. Dust μ XRF record (top) and dust grain size record (bottom) and from short (blue) and long (red) cores. The gaps in the μ XRF record are sections of sediment that did not imbed properly.

Figure C.S6: Fish Lake versus Senator Beck and Porphery Lakes. Senator Beck and Porphery Lakes dust records developed by ref. 2 are from the central San Juan Mountains. The Fish Lake record closely matches the last 100 years where all records have the best age control, but Fish Lake differs earlier in time where flux rate estimations from Senator Beck and Porphery Lakes are limited by age control points.

Figure C.S7: Epoxy elemental abundance adjustment. Elemental ratio scatter plots of μ XRF counts of dust off snow (red), bedrock from around Fish Lake (blue), and Fish Lake sediment (black). Panels a-b are raw μ XRF counts of Ti/Ca and K/Ca. Counts are diluted in the sediment with respect to the dust and bedrock due to epoxy resin and organic matter. Panels c-d show the adjusted fish lake sediment with respect to dust and local bedrock (Shifting sediment elemental counts higher to account for μ XRF count reductions), illustrating how the sediment is a mixture of the two sources.

Figure C.S8: Coarse grain sizes versus calcium abundance. Coarse grain size fraction ($>100 \mu \mathrm{~m}$, red), plotted with $\mu \mathrm{XRF}$ estimated calcium abundance (blue) before turbidites were removed. Plot shows coarse grain sizes correspond with high calcium concentrations.

C. 9 Supplemental Tables

Table C.S1: Fish Lake radiocarbon measurements and dates

Sample Name	Depth (cm)	Lab Number	$\delta^{13} \mathrm{C}$	FMC	${ }^{14} \mathrm{C}$ (year bp)	Error
Bulk Sed.	0	AA89058	-29.9	1.0071 ± 0.0042	pst bomb	NA
Aqtc. grass	21.67	AA90931	-26.1	0.9628 ± 0.004	305	33
Wood	36.64	AA99397	-26.3	0.9201 ± 0.0044	699	38
Pine cone	63.44	AA90932	-22.6	0.8485 ± 0.0036	1320	34
Wood	84.62	AA90935	-26.5	0.8026 ± 0.0035	1767	35
Wood	94.34	AA90933	-26.8	0.7837 ± 0.0034	1958	35
Wood	115.31	AA90937	-27.2	0.7546 ± 0.0033	2262	36
Wood	125.41	AA90941	-25.2	0.7375 ± 0.0033	2446	36

Table C.S2: Fish Lake 210Pb dates on the upper surface sediments. Dates are calculated based on the constant rate of supply model.

	Constant Rate of Supply (year AD)		
Depth (cm)	Lower	Mean	Upper
1	1996.1	1997.4	1998.7
1.5	1987.6	1988.8	1990
2	1977.6	1978.9	1980.2
2.5	1966.3	1967.6	1968.9
3	1952.6	1954.2	1955.8
3.5	1940.4	1942.3	1944.1
4	1932.4	1934.6	1936.8
4.5	1924.1	1926.7	1929.3
5	1917	1919.9	1922.9
5.5	1910.9	1914.3	1917.7
6	1903.7	1907.7	1911.6
6.5	1893.8	1898.4	1903
7	1884.9	1890.4	1895.9
7.5	1875.8	1882.3	1888.7
8	1867.4	1875.2	1883
8.5	1848	1859.3	1870.6
9	1829.4	1845.7	1862
9.5	1775.9	1815.5	1855.1
10	1573.7	1763.2	1952.6

APPENDIX D

THE MEGADROUGHT ENVIRONMENT

D. 1 Abstract:

We suggest warm temperatures exacerbated megadroughts in the southwestern United States over the past 2000 years. We present a new temperature reconstruction from the south San Juan Mountains in southern Colorado in conjunction with recently developed dust and moisture balance records that span the last 2000 years. The reconstruction indicates the San Juan Mountains may have been warmer in the past than present, and elevated temperatures coincided with periods of anomalous aridity. Warm temperatures and dustiness during megadroughts imply that temperature and dust may have acted as important drought feedback mechanisms over the past 2000 years in the Southwest. As headwaters of the Rio Grande and San Juan Rivers, the San Juan Mountains are a critical contributor to Southwest water resources, and their current rate of warming is outpacing many regions in the West. Past temperature extremes in our record indicate that the San Juan Mountains are highly sensitive to temperature change, which will impact surface water supplies in a future of rapid warming.

D. 2 Body

Megadroughts (multidecadal in length) have occurred several times in the Southwestern United States (Southwest) over the past 2000 years (Routson et al.

2011; Woodhouse and Overpeck 1998). Documented in tree-rings and other natural climate archives, megadroughts are associated with substantial decreases in Colorado River flow (Meko et al. 2007) and the collapse of the ancient pueblo culture (Douglas et al. 1929). The timing and duration of Southwestern megadroughts have been well characterized (Cook et al., 2007; 2010; Meko et al., 2007; Routson et al., 2011; Woodhouse and Overpeck 1998), but uncertainty still surrounds other local environmental conditions.

Recent warming in the Southwest has been implicated in widespread drought and has strongly impacted regional water resources. At high elevations, warming has driven declines in snowfall, faster snowpack ablation, and shortened snow-covered season, resulting in decreased runoff available for downstream users (Barnett et al., 2008; Bales et al., 2006; Harpold et al., 2012; Nowak et al., 2012). Furthermore, warming combined with drought stress has driven widespread forest mortality via fire, moisture deficit, and insect attacks (Breshears et al., 2008; Westerling et al., 2006; Van Mantgem et al., 2009), which can also result in less available water (Harpold et al., 2013; Biederman et al., 2012). Warmer air temperatures increase atmospheric moisture demand, and intensify the effects of precipitation deficits (Breshears et al., 2005; Weiss et al., 2009; Williams et al., 2012). On the Colorado Plateau, vegetation mortality and dustiness have increased with temperature (Munson et al., 2011). Windblown dust deposited on Rocky Mountain snowpack then works in concert with warmer air temperatures, causing faster ablation and decreased runoff efficiency (Painter et al., 2007, 2010, 2012). Given current feedbacks between
temperature, dustiness, and moisture deficit, to what degree did anomalous temperature influence megadroughts in the Southwest?

To date, the temperature history of the Southwest during megadroughts is poorly constrained. The most notable megadroughts occurred during the Roman Period ($\sim 1-400 \mathrm{AD}$) and the Medieval Climate Anomaly (MCA, $\sim 900-1400$ AD; Cook et al., 2010; Meko et al., 2007; Routson et al., 2011), which are thought to have been warmer than average in the Northern Hemisphere (Christiansen and Ljungqvist 2012, Ljungqvist 2010; Mann et al., 2008, 2009; Moberg et al., 2005). Limited evidence suggests the Southwest may have been warmer at times during the MCA (i.e. Mann et al., 2009; Salzer and Kipfmueller 2005), and that some megadroughts may have coincided with warm temperatures (Meko et al., 2007; Woodhouse et al., 2010).

To better constrain the paleoenvironmental temperatures of megadroughts, we tested a new biomarker proxy known as gycerol dialkyl glycerol tetraethers (GDGTs). GDGTs are series of membrane lipids closely linked with mean annual air temperature (Loomis et al., 2012; Tierney et al., 2010). We used a lake sediment core from south San Juan Mountains to reconstruct 2000 years of temperature variability. The San Juan Mountains are located in southern Colorado, the epicenter of Southwestern megadroughts (Cook et al., 2013b), and an important headwaters region to the San Juan and Rio Grande Rivers. Sediment cores were obtained from Blue Lake at 3500 meters elevation (Figure D.1). We established age control using ${ }^{210} \mathrm{~Pb}$ of the upper most surface sediments, and ${ }^{14} \mathrm{C}$ dating of terrestrial macrofossils (Figure D.2). GDGTs were extracted from sediment samples and analyzed on a mass
spectrometer (i.e. Tierney et al. 2010; see methods section). GDGT compound relative abundance was calibrated to mean annual air temperature using the Loomis et al. (2012) calibration (henceforth the Loomis calibration).

The association between GDGTs and temperature was characterized using high elevation snow telemetry (SNOTEL) stations (Table D.S1, NRCS 2013) and National Weather Service (NWS) stations (Table D.S2, WRCC 2013). The sediment core was sampled at 3-5 year resolution over the past ~ 100 years to compare with instrumental station data. The GDGT record has a good match with regional high elevation (> 3000 m) SNOTEL stations (Figure D.3a-b), however the SNOTEL stations have only been in place since the mid 1980's. The GDGTs have no significant relationship with NWS stations. Most NWS stations however, are located at low elevations and tend to have variable relationships between each other and with the high elevation SNOTEL stations (See supplemental material), indicating there is spatial heterogeneity in temperature and that the NWS stations may not be the most reliable for estimating temperatures at Blue Lake. The close relationship between the Blue Lake record and the SNOTEL stations, implies the GDGTs are at least representative of local high elevation temperatures.

The new Blue Lake temperature reconstruction spans the last 2300 years and indicates the south San Juan Mountains were warmer in the past than they are today (Figure D.4a). The record has an overall downward trend, where long-term cooling continued into the mid 1980's when the GDGTs and instrumental records show the San Juan Mountains began rapidly warming (Ragwala and Miller 2010). The GDGT record shows the Roman and Medieval periods were unusually warm. The average
temperature during the Roman Period (1-400 AD) was $2.7^{\circ} \mathrm{C}$ warmer than the last 100 years and average temperature during the medieval period (900-1400 AD) was $1.8^{\circ} \mathrm{C}$ warmer than the last 100 years. The Blue Lake record shows a maximum temperature during the Roman Period was $4.2^{\circ} \mathrm{C}$ above the 1950-2009 mean at 338 AD , compared with most recent maximum of $2.3^{\circ} \mathrm{C}$ at the end of the record in 2009 . To put past warm periods in the context of future warming, downscaled regional CMIP5 multimodel ensemble climate projections suggest the San Juan area could warm as much as $6^{\circ} \mathrm{C}$ over the next century, and SNOTEL stations and our record already show warming at a faster rate than predicted (Figure D.4a).

Considerable error is associated with the absolute temperature estimates presented here. The Loomis calibration is based off 111 east African lakes, and has root mean square error of prediction of $2.1^{\circ} \mathrm{C}$ with a maximum bias of $1^{\circ} \mathrm{C}$. Although the Loomis calibration is based off tropical lakes, mean GDGT temperatures at Blue Lake ($1.8^{\circ} \mathrm{C}$ for $1950-2009$) do fall within the Loomis calibration range. Furthermore, recent work shows the Loomis calibration applies to GDGTs in Arctic lakes for some seasons (Shanahan et al., 2013). Nonetheless, GDGT's have not been well tested in temperate environments, and a local calibration set is needed. There is also error associated with measurements on the massspectrometer and in integrating the compound concentration curves. The GDGT temperatures could be biased warm. Comparing mean annual air temperatures between the GDGT record and the closest SNOTEL station Lily Pond between 1985 and 2009, the GDGT record has a mean temperature of $2.1^{\circ} \mathrm{C}$ whereas Lily Pond has a mean temperature of $1.5^{\circ} \mathrm{C}$. Blue Lake is slightly higher in elevation than Lily Pond,
but without an understanding of local cold air drainage patterns (i.e. Lundquist et al 2007) it is hard to assess the nature of potential microsite climate bias.

It is not clear from the GDGT record if the timing and magnitude of Roman Period and MCA warming at Blue Lake was confined to the higher elevations of the south San Juan Mountains or was more regional in scale. At the hemispheric scale, the MCA was warmer than average (Christansan and Ljungqvist 2012; Ljungqvist 2010; Mann et al., 2008, 2009; Moberg et al., 2005), but not consistently across all regions (Hughes and Diaz 1994; Mann et al., 2009). Although fewer reconstructions are available, two out of three Northern Hemisphere temperature reconstructions indicate the Roman Period was also warmer than average (Figure D.S1a; Christansan and Ljungqvist 2012; Ljungqvist 2010; Moberg et al., 2005). Moving toward finer scales, North American temperatures constrained by pollen suggest the MCA was up to $0.1^{\circ} \mathrm{C}$ warmer than the 1904-1980 average, which is a much smaller degree of change that we see in our record (Figure D.S2b, Trouet et al. 2013). The Mann et al. (2009) gridded temperature reconstruction suggests Western MCA temperatures were up to $0.3^{\circ} \mathrm{C}$ warmer than their 1961 to 1990 reference period mean (Figure D.S2c).

While few regional temperature records of this length exist, two multimillennial-length bristlecone pine temperature reconstructions from Northern Arizona and the Great Basin compare poorly with the Blue Lake Temperature record. In Northern Arizona 500 km southwest of Blue Lake, temperatures reconstructed on the San Francisco Peaks show warming coincident with some megadroughts, but no overall warming during the Roman Period or the MCA (Figure D.S2d, Salzer and Kipfmueller 2005). Temperatures constrained by bristlecone ring width and changes
in the position of treeline in the Great Basin (700 km or more from Blue Lake) indicate there were long-term changes, but not coincident with periods of anomalous warming in the GDGT record (Figure D.S2e, Salzer et al., 2013). The seasonality of the temperature signal and spatial variability in past temperatures may account for these discrepancies. The Blue Lake record is calibrated to mean annual temperature whereas the bristlecone records are calibrated to July maximum temperature for the San Francisco Peaks and July-September temperature in the Great Basin.

Comparing the Blue Lake temperature reconstruction with local drought and dust records (Routson et al., 2011; Routson et al., in prep) shows relationships between drought, dustiness and warm temperatures, suggesting that megadroughts and periods of persistent aridity in the Southwest may have been forced in part by unusually warm temperatures (Figure D.4). A moisture-sensitive bristlecone pine drought record from Summitville (21 km from Blue Lake) shows extreme drought within the Roman and medieval periods (Figure D.4b, Routson et al., 2011). GDGT's indicate that anomalously warm temperatures accompanied these dry intervals in the south San Juan Mountains. Instrumental analyses show the Summitville bristlecone growth has an independent negative relationship with temperature (Routson et al., 2011). High temperatures increase evapotranspiration rates, amplifying the effect of moisture deficit on already moisture-limited trees and exacerbating drought conditions. Dust deposition in Fish Lake (5 km from Blue Lake) indicates these periods of anomalous temperature and drought in the south San Juan Mountains were associated with elevated dustiness (Figure D.4c, Routson et al., in prep). Dust deposited in the San Juan Mountains integrates regional drought conditions,
especially across the desert landscapes to the Southwest (Painter et al., 2007). High dust deposition suggests regional scale aridity, perhaps also exacerbated by unusual warming. The GDGT's and bristlecone moisture records indicate the Roman Period was warmer and drier in the south San Juan Mountains than the medieval period; however, dust deposition was higher and longer lasting during the medieval period. Higher medieval dust deposition may indicate that arid conditions during the medieval period were regional in scale while the $2^{\text {nd }}$ century drought was locally acute, although tree-ring reconstructed PDSI in addition to tree-ring records from New Mexico and Utah corroborate the regional severity of the $2^{\text {nd }}$ century drought (Cook et al., 2008; Grissino-Mayor 1998; Knight et al., 2010; Routson et al., 2011).

The new GDGT reconstruction suggests the San Juan Mountains may be highly sensitive to temperature change. SNOTEL stations indicate that high elevation environments in Colorado are warming over twice as fast as the Colorado state average (Clow 2010), and the San Juan Mountains are currently warming at one of the fastest rates in North America (Rangwala and Miller 2010). The poor relationship with lower elevation NWS stations limits our ability to extrapolate beyond local conditions in the San Juan Mountains. However, given the critical role of this sensitive, high elevation system as headwaters of the Rio Grande and the San Juan River, a major tributary of the Colorado River, local conditions in the San Juan Mountains have regional implications for water resources.

In conclusion, a new temperature reconstruction from the south San Juan Mountains suggests that temperatures warmer than today occurred during the Roman and Medieval periods. Records of dustiness and drought stress reveal coincident
timing of warm temperatures, severe drought, and high dustiness. These observations lead us to speculate that dust and temperature may have worked in concert as a drought enhancing feedback, whereby high temperatures caused increased drought stress and vegetation mortality, higher atmospheric dust loading, more frequent dust on snow events, and subsequent decreases in runoff. To further support the fidelity of our results we need a local GDGT calibration set and corroboration with other highresolution regional temperature reconstructions that capture low frequency temperature variability. Nonetheless, our results suggest that past temperatures the San Juan Mountains were highly variable. Given the projected rate of future warming, sensitive mountain environments like the San Juan and greater Rock Mountain region are a key vulnerability for future Southwestern water resources.

D. 3 Methods

We collected short (20 cm) and long (180 cm) sediment cores using packable rafts and a universal gravity corer. Age control was established using ${ }^{210} \mathrm{~Pb}$ on the upper sediment of an undisturbed short core. The upper 8 cm was sampled at 0.5 cm resolution and ${ }^{210} \mathrm{~Pb}$ and ${ }^{226} \mathrm{Ra}$ measurements were made using low-background gamma counting with well-type intrinsic germanium detectors (Appleby et al., 1987; Schelske et al., 1994). A constant rate of supply (CRS) model was used to calculate ${ }^{210} \mathrm{~Pb}$ ages (Appleby and Oldfield 1983), and error was calculated using first-order approximations (e.g. Binford 1990). Radiocarbon (${ }^{14} \mathrm{C}$) dating of terrestrial macrofossils on two longer cores was used to constrain ages before the ${ }^{210} \mathrm{~Pb}$ chronology. Radio carbon samples were pretreated and combusted at the University of Arizona Accelerator Mass Spectrometer (AMS) facility. Cores were cross-
correlated using marker layers to get dates from different cores on the same depthscale. One ${ }^{14} \mathrm{C}$ age was excluded due to an age reversal. The date was on wood fragment that likely grew well before washing into the lake, and is thus not an accurate date of sedimentation. Age modeling was conducted using the Classic Age Depth Modeling program (clam; Blaauw 2010). We used clam to calibrate ${ }^{14} \mathrm{C}$ dates with the IntCal09.14C calibration curve (Reimer et al 2009). Clam develops an age model based on the best of 1000 age models iteratively fit to probability distributions radiometric ages (Blaauw 2010).

We sampled a single core with undisturbed surface sediment that spanned the last 2000 years for the reconstruction. The upper 9 cm were sampled at 2.5 mm (average 4.5 year) resolution for comparison with instrumental temperature data. Between 9 cm and 131 cm the core was sampled at 1 cm (average 20.5 year) resolution. Samples were freeze-dried and homogenized. Organic lipid compounds were extracted in a $9: 1 \mathrm{v} / \mathrm{v}$ mixture of dichloromethane and alcohol in an accelerated solvent extraction system. The lipid extracts were separated by polarity using $\mathrm{Al}_{2} \mathrm{O}_{3}$ column chromatography. The polar compounds were then dried under N_{2} gas, dissolved in 9:1 hexane/isopropanol and analyzed on a high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometer (HPLC/APCIMS) following methods described in Tierney et al. (2010) and others (Schouten et al., 2007, 2009). Data were analyzed using the Agilent Chemstation program to assess ions including m/z 1292 (IV), $\mathrm{m} / \mathrm{z} 1050$ (III), $\mathrm{m} / \mathrm{z} 1048$ (IIIb), m / z 1046 (IIIc), m/z 1036 (II), m/z 1034 (IIb), m/z 1032 (IIc), m/z 1022 (I), m/z 1020 (Ib), m/z 1018 (Ic). Compound concentration peaks were integrated visually using the
methods described in Weijers et al. (2007). Relative compound abundance was calibrated to mean annual air temperature (MAAT) using the Loomis et al. (2012) calibration, a stepwise forward selection regression model derived from 111 east African lakes:

$$
\begin{aligned}
M A A T=22.77 & -33.58 \times f(\boldsymbol{I I I})-12.88 \times f(\text { II })-418.53 \times(\text { II } \boldsymbol{c})+86.43 \\
& \times(\boldsymbol{I} b)
\end{aligned}
$$

For the instrumental period we compared our new proxy record against regional Snow Telemetry (SNOTEL) stations, NWS stations, and an average of the nearest 4 PRISM pixels (Daly et al 2002). SNOTEL data were accessed through the Natural Resource Conservation Service website:
http://www.wcc.nrcs.usda.gov/snow/. SNOTEL station data were screened for daily outliers that exceed ± 2 standard deviations from the daily mean (e.g. Harpold et al. 2012). The closest SNOTEL station is at Lily Pond, located 17 km from Blue Lake at 3339 meters elevation. Ten SNOTEL stations located above 3000 m elevation in the San Juan Mountains were used to characterize recent high elevation temperature change (Table S1). The data were converted to anomalies by subtracting the series length mean prior to 1995 , and then the stations were combined using the arithmetic mean. To compute correlations with the Blue Lake record, the SNOTEL data were binned to the same resolution as the GDGT record using an arithmetic mean. NWS coop station data were obtained through the Western Regional Climate Center website: http://www.wrcc.dri.edu. Downscaled CMIP5 RCP 8.5 climate projection
ensembles over period 1950 through 2099 for the local Blue Lake grid cell (latitude:
$37.125,37.25^{\circ} \mathrm{N}$; Longitude: $-105.75,-106.25^{\circ} \mathrm{W}$) were obtained from:
http://gdodcp.ucllnl.org/downscaled_cmip_projections/ (Maurer et al., 2007).

D. 4 References

Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F. J. A. N., Anderson, N. J., \& Battarbee, R. W. 210Pb dating by low background gamma counting. In Paleolimnology IV (pp. 21-27). Springer Netherlands (1987).

Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., George, S. S., Otto-Bliesner, B., ... \& Deser, C. (2013). The continuum of hydroclimate variability in western North America during the last millennium. Journal of Climate, (2013).

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., \& Dozier, J. (2006). Mountain hydrology of the western United States. Water Resources Research, 42(8).

Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., ... \& Dettinger, M. D. (2008). Human-induced changes in the hydrology of the western United States. science, 319(5866), 1080-1083.

Biederman, J. A., Brooks, P. D., Harpold, A. A., Gochis, D. J., Gutmann, E., Reed, D. E., ... \& Ewers, B. E. (2012). Multiscale observations of snow accumulation and peak snowpack following widespread, insect-induced lodgepole pine mortality. Ecohydrology.

Binford, M. W. Calculation and uncertainty analysis of 210 Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology, 3(3), 253-267 (1990).

Blaauw, M. Methods and code for 'classical'age-modelling of radiocarbon sequences. Quaternary Geochronology, 5(5), 512-518 (2010).

Breshears, D. D., et al. (2005), Regional vegetation die- off in response to global-change- type drought, Proc. Natl. Acad. Sci. U. S. A., 102(42), 15,14415,148, doi:10.1073/pnas. 0505734102.

Breshears, D. D., Myers, O. B., Meyer, C. W., Barnes, F. J., Zou, C. B., Allen, C. D., ... \& Pockman, W. T. (2008). Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 7(4), 185-189.

Clow DW (2010) Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim 23(9), 2293-2306

Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill, and G. Funkhouser (1995), The "segment length curse" in long tree- ring chronology development for palaeolclimatic studies, Holocene, 5(2), 229-237, doi:10.1177/ 095968369500500211.

Cook, B. I., Seager, R., Miller, R. L., \& Mason, J. A. Intensification of North American megadroughts through surface and dust aerosol forcing. Journal of Climate, (2013a).

Cook, B. I., J. E. Smerdon, R. Seager, and E. R. Cook, 2013: Pan-continental droughts in North America over the last millennium. Journal of Climate, (2013b).

Cook, E. R., Seager, R., Heim, R. R., Vose, R. S., Herweijer, C., \& Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long term palaeoclimate context. Journal of Quaternary Science, 25(1), 48-61 (2010).

Cook, E.R., et al. 2008: North American summer PDSI reconstructions, version 2a, IGBP PAGES World Data Cent. Paleoclimatology Data Contributions Service 2008-046, Paleoclimatology Program, NGDC, NOAA, Boulder, Colorado.

Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris (2002), A knowledge- based approach to the statistical mapping of climate, Clim. Res., 22, 99-113, doi:10.3354/cr022099.

Douglass, A. E. (1929), The Secret of the Southwest Solved With Talkative Tree Rings, pp. 736-770, Judd and Detweiler, Washington, D. C.

Grissino- Mayor, H. (1996), A 2129- year reconstruction of precipitation for northwestern New Mexico, USA, in Tree Rings, Environment, and Humanity, edited by J. S. Dean, D. M. Meko, and T. W. Swetnam, pp. 191-204, Radiocarbon, Tucson, Ariz.

Harpold, A., Brooks, P., Rajagopal, S., Heidbuchel, I., Jardine, A., \& Stielstra, C. (2012a). Changes in snowpack accumulation and ablation in the intermountain west. Water Resources Research, 48(11).

Harpold, A. A., Biederman, J. A., Condon, K., Merino, M., Korgaonkar, Y., Nan, T., ... \& Brooks, P. D. (2013). Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology.

Hughes, M. K., \& Diaz, H. F. (1994). Was there a 'Medieval Warm Period’, and if so, where and when?. Climatic Change, 26(2-3), 109-142.

Knight, T. A., D. M. Meko, and C. H. Baisan (2010), A bimillennial- length tree- ring reconstruction of precipitation for the Tavaputs Plateau, north-eastern Utah, Quat. Res., 73, 107-117, doi:10.1016/j.yqres.2009.08.002.

Ljungqvist, F. C. (2010), A new reconstruction of temperature variability in the extra- tropical Northern Hemisphere during the last two millennia, Geogr. Ann., 92, 339-351, doi:10.1111/j.1468-0459.2010.00399.x.

Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A., \& Sinninghe Damsté, J. S. (2012). Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth and Planetary Science Letters, 357, 277-288.

Mann, M. E., et al., 2009: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326 (5957), 1256-1260, doi:10.1126/science. 1177303.

Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy (2007), 'Fine-resolution climate projections enhance regional climate change impact studies', Eos Trans. AGU, 88(47), 504.

Meko, D. M., C. A. Woodhouse, C. A. Baisan, T. Knight, J. J. Lukas, M. K. Hughes, and M. W. Salzer, 2007: Medieval drought in the upper Colorado River Basin. Geophysical Research Letters, 34 (10), 10 705-10 709, doi:10.1029/2007GL029988.

Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., \& Karlén, W. (2005). Highly variable Northern Hemisphere temperatures reconstructed from lowand high-resolution proxy data. Nature, 433(7026), 613-617.

Munson, S. M., Belnap, J., \& Okin, G. S. Responses of wind erosion to climateinduced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences, 108(10), 3854-3859 (2011).

Nowak, K., M. Hoerling, B. Rajagopalan, and E. Zagona, 2012: Colorado River Basin Hydroclimatic Variability. Journal of Climate 25 (12), 4389-4403 doi: http://dx.doi.org/10.1175/JCLI-D-11-00406.1

NRCS 2013: SNOTEL data and products. Available online:
http://www.wcc.nrcs.usda.gov/snow/
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., ... \& Farmer, G. L. Impact of disturbed desert soils on duration of
mountain snow cover. Geophysical Research Letters, 34(12), L12502 (2007).
Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., \& Udall, B. Response of Colorado River runoff to dust radiative forcing in snow. Proceedings of the National Academy of Sciences, 107(40), 17125-17130 (2010).

Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., \& Landry, C. C. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6-year record of energy balance, radiation, and dust concentrations. Water Resources Research, 48(7) (2012).

Reimer, P. J., Baillie, M. G., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., ... \& Weyhenmeyer, C. E. IntCa109 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP (2009).

Routson, C. C., C. A. Woodhouse, and J. T. Overpeck, 2011: Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought? Geophysical Research Letters, 38 (22), L22 703, doi:10.1029/2011GL050015.

Salzer, M. W., and K. F. Kipfmueller (2005), Reconstructed temperature and precipitation on a millennial timescale from tree- rings in the southern Colorado Plateau, Clim. Change, 70, 465-487, doi:10.1007/s 10584-005-5922-3.

Salzer, M. W., Bunn, A. G., Graham, N. E., \& Hughes, M. K. (2013). Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Climate Dynamics, 1-10.

Schelske, C. L., Peplow, A., Brenner, M., \& Spencer, C. N. Low-background gamma counting: applications for 210 Pb dating of sediments. Journal of Paleolimnology, 10(2), 115-128 (1994).

Schouten, S., et al. 2009. An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography-mass spectrometry. Geochemistry, Geophysics, Geosystems 10, Q03012.

Schouten, S., Huguet, C., Hopmans, E.C., Kienhuis, M.V.M., Sinninghe Damsté, J.S., 2007. Analytical methodology for TEX86 paleothermometry by highperformance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Analytical Chemistry 79, 2940-2944.

Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren, D., \& Sinninghe Damsté, J. S. (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments.

Geochimica et Cosmochimica Acta, 74(17), 4902-4918.
Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., ... \& Veblen, T. T. (2009). Widespread increase of tree mortality rates in the western United States. Science, 323(5913), 521-524.

Weiss, J. L., C. L. Castro, and J. T. Overpeck, 2009: Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures, Journal of Climate, 22, 5918-5932, doi:10.1175/ 2009JCLI2905.1.

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., \& Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science, 313(5789), 940-943.

Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., ... \& McDowell, N. G. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change (2012).

Woodhouse, C. A. and J. T. Overpeck, 1998: 2000 Years of Drought Variability in the Central United States. Bulletin of the American Meteorological Society, 79 (12), 2693-2714, doi:http://dx.doi.org/10.1175/15200477(1998)079 〈2693:YODVIT 〉 2.0.CO;2.

WRCC 2013: Western Regional Climate Center, Cooperative Climatological Data Summaries. Available Online: http://www.wrcc.dri.edu/climatedata/climsum/

D. 5 Figures

Figure D.1: Blue Lake, located under the star in the south San Juan Mountains in southern Colorado. The heavy grey line delineates the Colorado Plateau.

Figure D.2: Blue lake age model showing ${ }^{210} \mathrm{~Pb},{ }^{14} \mathrm{C}$ dates in green and the best-fit age model curve in black. The grey date is an excluded radiocarbon date with an age reversal. The date was on a piece of wood, that likely grew well before being washed into the lake and thus is not accurate date of sediment deposition.

Figure D.3: A) Blue Lake (red) versus 21 National Weather Service stations (grey) and 9 SNOTEL stations located above 3000 meters elevation (black). All SNOTEL stations are within the San Juan Mountains, and NWS stations in the San Juan Mountain region. Anomalies are computed on the individual stations to avoid elevation bias with changes in sample depth. Anomalies are with respect to the 19601995 mean for the NWS stations and for the series length mean before 1995 for the SNOTEL stations. B) SNOTEL stations versus Blue Lake. SNOTEL data are binned to the same resolution as Blue Lake for computing correlations.

Figure D.4: A) Blue Lake temperature (this study). The mean of 10 SNOTEL stations is plotted in grey, and the average of the CMIP5 RCP8.5 temperature projections is plotted in black. Anomalies are computed with respect to the 1960-2000 mean for the reconstruction and projections, and with respect to the series length mean for the SNOTEL record. B) Summitville Bristlecone Pine moisture (Routson et al., 2011), smoothed with a 50 -year moving average. C) San Juan Mountain dust deposition (Routson et al., in prep) smoothed with a 15 year moving average. Vertical boxes show the Roman ($0-400 \mathrm{AD}$) and Medieval (900-1400 AD) warm periods in the Blue Lake record. Warm temperatures during the Medieval and Roman periods are coincident with severe droughts, and elevated dustiness. The warmest period in the last 2000 years occurs associated with the $2^{\text {nd }}$ century megadrought.

D. 6 Supplemental Text

Instrumental Record Comparisons
To test the fidelity of the calibration, the upper 9 cm of sediment core was sampled at $0.25 \mathrm{~cm}(\sim 4.5 \mathrm{yr})$ resolution to compare with instrumental temperature records. The reconstruction matches poorly with the average of four local gridded PRISM temperature data points (Daly et al., 2002). To further explore instrumental record relationships we compared our record with a subset of 10 high elevation ($>3000 \mathrm{~m}$) snow telemetry (SNOTEL) station data from the San Juan Mountains (Figure D.3a). Binned to the same resolution as the biomarker record, the SNOTEL station temperatures are highly and significantly correlated with our record despite the limited degrees of freedom (Figure D. $3 \mathrm{~b}, \mathrm{r}=0.93, \mathrm{p}=0.001$). There is no significant relationship between our record and average temperature anomalies of 20 regional National Weather Service (NWS) stations (Figure D.3a). The NWS, however, do not all agree with one another. Correlations between NWS stations range between $r=-0.44$ and $r=0.90$, with a mean station correlation of $r=0.51$. Only four national NWS stations are located above 2700 m elevation, and they are not strongly correlated with each other either (Figure D.S1). Correlations between the four high elevation NWS stations range between $r=0.16$ and $r=0.53$ with a mean correlation of $r=0.34$. To test if high elevation temperatures in the San Juan Mountains respond differently than temperature at lower elevations, we compared the $10(>3000 \mathrm{~m})$ SNOTEL stations with a subset of 15 regional lower elevation (<2400m) NWS stations (Figure D.S3). The comparison shows the high elevation SNOTEL stations diverge somewhat from the NWS stations, especially since 2005 . We also correlated
each SNOTEL station with each NWS station (Table D.S3). The table is ordered by elevation, but does not show clear elevation related patterns. Rather individual stations (e.g., Del Norte and Montevista) have poor and or negative relationships to the SNOTEL stations. The discrepancies between the SNOTEL stations and the low elevation NWS stations and between individual stations might result in part from regional variability in temperature patterns across a range of elevations and terrain.

Analysis of Abrupt Change

The Blue Lake record shows periods of abrupt temperature change in the San Juan Mountains, especially transitioning into the Roman and Medieval Periods. We employed a simple assessment of rates of change using 100-year moving window linear-regressions (Figure D.S4). Low sample resolution resulted in some windows having limited numbers of sample points to constrain the regressions. The transition into the Roman Period between $30-130 \mathrm{AD}$ warmed at a rate of $2.4^{\circ} \mathrm{C}$ per century. Similarly, the transition into the medieval period from 876-976 AD also occurred rapidly, warming at a rate of $2.8^{\circ} \mathrm{C}$ per century. Cooling at the end of the medieval period occurred at a rate of $2.8^{\circ} \mathrm{C}$ per century. Over the last 100 years the average rate of warming has been $0.6^{\circ} \mathrm{C}$ per century based the 100 -year window regression or our record. Within the last 20 years alone however, the San Juan Mountains have warmed by almost $1^{\circ} \mathrm{C}$ (Rangwala and Miller 2010). The relatively short duration of recent warming and low-resolution sampling prior to instrumental records prohibits us from assessing recent change in the context of the last two millennia.

D. 7 Supplemental Figures

Figure D.S1: San Juan Mountain National Weather Service stations above 2700 meters elevation.

Figure D.S2: Temperature reconstruction comparisons. A) Three Northern Hemisphere 2000-year temperature reconstructions. Moberg et al., 2005 is shown in the grey line, Ljungvist 2010 in the heavy weight black line, and the smoothed version of Christiansen and Ljungvist (2012) is shown in the lightweight black line. B) North American pollen based temperature reconstruction (Trouet et al 2013). C) Average of Western temperature grid points from Mann et al. (2009) (27.5 to 47.5, and -97.5 to -122.5). D) Great Basin bristlecone pine ring width and treeline based temperature reconstruction (Salzer et al., 2013). E) San Francisco Peaks bristlecone pine mean summer maximum temperature reconstruction smoothed with a 21 year moving average (Salzer and Kipfmueller 2005). F) The closest pixel to Blue Lake (37.5, -107.5) from Mann et al. (2009). G) Blue Lake GDGT temperature. Boxes show the Roman ($0-400 \mathrm{AD}$) and Medieval ($900-1400 \mathrm{AD}$) period intervals.

Figure D.S3: Comparison of 15 National Weather Service stations below 2400 meters in the San Juan Mountain region with 9 San Juan Mountain SNOTEL stations above 3000 meters elevation. Anomalies are computed on the individual stations to avoid elevation bias with changes in sample depth. Anomalies are with respect to the 19601995 mean for the NWS stations and for the series length mean before 1995 for the SNOTEL stations.

Figure D.S4: Assessing average rates of temperature change in the Blue Lake record (top) using linear regressions on 100-year moving windows. The window was advanced by one year for each regression. The slope of each regression line is plotted in the second panel at the first year of the 100-year window. The highest rates of change are between 2 and 3 degrees per century transitioning into the Roman and medieval periods. Sample resolution is around 20-years for most of the record, so an average of 5 points controlling the slope of each regression.

Figure D.S5: Blue Lake ${ }^{210} \mathrm{~Pb}$ age model (filled squares) with error plotted in black lines. Ages based on a constant rate of supply model (Appleby and Oldfield 1983).

Figure D.S6: Fifteen NWS stations below 2400 meters elevation in the San Juan Mountain Region.

Figure D.S7: High elevation versus low elevation NWS stations. Only four NWS stations exist above 2700 m elevation.

Figure D.S8: Blue Lake versus tree-ring and pollen based North American temperature reconstructions (Trouet et al., 2013).

Figure D.S9: Great basin temperature in blue (Salzer et al. 2013) compared with Blue Lake in red. Anomalies are computed with respect to the series length mean.

Figure D.S10: Another perspective on the relationship between south San Juan Mountain temperature (top) and droughts (bottom). The temperature record is the Blue Lake biomarker reconstruction (this study) and the drought record is from Summitville bristlecone pine (Routson et al., 2011).
D. 8 Supplemental Tables

Table D.S1: SNOTEL stations

Station	Number	Lat	Lon	Elevation
Cumbres Trestle	431	37.02	-106.45	3060
El Diente Peak	465	37.78	-108.02	3048
Lily Pond	580	37.38	-106.55	3353
Lizard Head Pass	586	37.8	-107.92	3109
Mineral Creek	629	37.85	-107.73	3060
Slumgullion	762	37.98	-107.2	3487
Upper San Juan	840	37.48	-106.83	3109
Vallecito	843	37.48	-107.5	3316
Wolf Creek Summit	874	37.48	-106.8	3353
Stump Lakes	797	37.48	-107.63	3414

Table D.S2: National Weather Service Stations

Station	ID	Lat	Lon	Elevation (m)
MONTROSE \#2	55722	38.49	-107.88	1764
CORTEZ	51886	37.34	-108.59	1880
DURANGO	52432	37.28	-107.88	2012
DULCE	292608	36.94	-107.00	2071
MESA VERDE NP	55531	37.20	-108.49	2160
TIERRA AMARILLA 4 N	298845	36.77	-106.55	2275
ALAMOSA	50125	37.47	-105.88	2297
FT LEWIS	53016	37.23	-108.05	2329
CENTER 4 SSW	51458	37.71	-106.14	2339
MANASSA	55322	37.17	-105.94	2344
MONTE VISTA 2W	55706	37.58	-106.19	2345
SAGUACHE	57337	38.09	-106.14	2347
CHAMA	291664	36.92	-106.58	2393
DEL NORTE 2E	52184	37.67	-106.32	2397
TELLURIDE 4 WNW	58204	37.95	-107.87	2636
LAKE CITY	54734	38.02	-107.31	2642
HERMIT 7 ESE	53951	37.77	-107.11	2758
SILVERTON	57656	37.81	-107.66	2830
RIO GRANDE RSVR	57050	37.73	-107.27	2953
WOLF CREEK PASS 1 E	59181	37.47	-106.79	3243

Table D.S3: A correlation matrix between the NWS and SNOTEL stations. The stations are ordered by low to high elevations from left to right for the SNOTEL and from top to bottom for the NWS stations. See tables D.S1 and D.S2 for elevations. All the SNOTEL stations used are located above 3000 m , but the NWS stations don not show an elevation trend toward stronger relationships with the high elevation SNOTEL stations. Rather, individual stations such as Del Norte (NWS), or Stump Lakes (SNOTEL) have poor and or negative relationships with the other stations.

										$\begin{aligned} & \stackrel{y}{v} \\ & \stackrel{\rightharpoonup}{\omega} \\ & 0 \\ & 0 \\ & \vdots \\ & \stackrel{y}{\omega} \end{aligned}$
Montrose	0.38	0.71	0.58	0.61	0.38	0.46	0.37	0.73	0.21	-0.02
Cortez	0.4	0.68	0.66	0.72	0.5	0.63	0.27	0.77	0.31	0.28
Dulce	0.51	0.61	0.47	0.54	0.27	0.45	0.2	0.68	0.23	-0.07
Mesa Verde	0.56	0.88	0.79	0.72	0.66	0.74	0.52	0.89	0.44	0.21
T. Amarilla	0.29	0.57	0.37	0.4	0.19	0.26	0.19	0.6	-0.04	-0.11
Alamosa	0.43	0.55	0.58	0.5	0.4	0.43	0.32	0.68	0.27	-0.05
Fort Lewis	0.56	0.42	0.24	0.32	0.08	-0.02	0.1	0.36	0.15	-0.48
Center 4	0.25	0.45	0.49	0.45	0.31	0.39	0.15	0.66	0.12	-0.16
Manassa	0.36	0.54	0.45	0.48	0.25	0.29	0.18	0.6	0.23	-0.19
Monte Vista	-0.06	0.2	-0.12	0.02	-0.37	-0.23	-0.2	0.32	-0.11	-0.3
Saguache	0.39	0.48	0.46	0.52	0.34	0.35	0.21	0.57	0.23	-0.28
Chama	0.59	0.67	0.55	0.57	0.35	0.48	0.27	0.81	0.24	0.08
Del Norte	-0.11	-0.23	-0.42	-0.34	-0.55	-0.54	-0.54	-0.16	-0.48	-0.61
Telluride	0	-0.21	-0.25	-0.55	-0.23	-0.38	-0.17	-0.25	-0.34	0.06
Lake City	0.48	0.56	0.59	0.45	0.39	0.42	0.31	0.74	0.33	0.08
Hermit	0.06	-0.47	-0.23	-0.01	-0.21	-0.22	-0.22	-0.36	0.07	-0.46
Silverton	0.18	0.69	0.37	0.44	0.21	0.37	0.09	0.73	0.19	0.06
Rio Grande	0.5	0.92	0.7	0.64	0.53	0.5	0.51	0.83	0.48	0.04
Wolf Creek	0.42	0.52	0.43	-0.04	0.58	0.49	0.34	0.54	-0.29	0.55

Table D.S4: Radiocarbon measurements and ages from Blue Lake

Core	Sample Name	Depth (cm)	Lab Number	13C	FMC	14C (yr bp)	Error (yr)
NA	Bulk Sed	0	AA89049	-29.9	1.1157 ± 0.0052	pst bomb	NA
2	Pine Needle	22	AA99391	-27.3	0.9496 ± 0.0063	415	53
1	Pine Needle	56.5	AA99388	-25.8	0.8761 ± 0.007	1063	64
2	Bark	62.4	AA99392	-22.9	0.8555 ± 0.0041	1254	38
1	Wood,(excld)	63.5	AA89050	-25.6	0.816 ± 0.015	1640	150
2	Pine Cone	75.1	AA99393	-23.8	0.8174 ± 0.004	1619	39
1	Pine Needle	78.4	AA99389	-22.7	0.8174 ± 0.004	1525	39
1	Conifer Bract	103.9	AA89052	-22.1	0.79 ± 0.015	1900	150
1	Grass	111.3	AA99390	-24.8	0.7786 ± 0.007	2010	72
1	Pine Needle	126.6	AA89054	-23.8	0.767 ± 0.014	2130	150
2	Pine needle	155.6	AA99394	-24.5	0.7132 ± 0.0055	2715	62
2	Pine Needle	166.9	AA99395	-25.4	0.6967 ± 0.0061	2903	71
2	Pine Needle	240.2	AA99396	-25.2	0.614 ± 0.0035	3918	46

Table D.S5: Blue Lake ${ }^{210} \mathrm{~Pb}$ dates, depth, and upper and lower boundaries. Dates are based on the constant rate of supply model.

	Constant Rate of Supply (year AD)		
Depth (cm)	Lower	Mean	Upper
0.5	2002.8	2004.3	2005.8
1	1994.6	1996.3	1998
1.5	1987.4	1989.1	1990.8
2	1979.7	1981.5	1983.3
2.5	1970.9	1972.9	1975
3	1963.5	1965.9	1968.3
3.5	1957.7	1960.3	1962.9
4	1952.5	1955.2	1957.8
4.5	1944.2	1947.3	1950.4
5	1935.6	1939	1942.3
5.5	1926.9	1930.7	1934.4
6	1915.7	1920.4	1925.2
6.5	1903.2	1909.6	1915.9
7	1889.4	1898	1906.6
7.5	1876.1	1886.9	1897.7
8	1863.2	1875.4	1887.6
8.5	1815.2	1841.4	1867.5

Table D.S6
Fractional GDGT compound abundance

Depth cm	Year AD	$\begin{gathered} \text { GDGT } \\ \text { III } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III c } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II c } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I c } \end{gathered}$	Loomis ${ }^{\circ} \mathrm{C}$
0.25	2008.6	0.361	0.009	0.001	0.449	0.029	0.004	0.135	0.009	0.003	4.045
0.5	2005.4	0.407	0.010	0.001	0.418	0.030	0.003	0.114	0.008	0.008	3.001
0.75	2002.1	0.450	0.014	0.002	0.358	0.044	0.004	0.112	0.013	0.003	2.338
1	1998.9	0.487	0.014	0.002	0.310	0.056	0.005	0.105	0.017	0.003	1.667
1.25	1995.5	0.469	0.016	0.002	0.325	0.055	0.005	0.108	0.015	0.004	1.876
1.5	1992.0	0.488	0.016	0.003	0.279	0.065	0.007	0.121	0.019	0.004	1.529
1.75	1988.6	0.465	0.020	0.003	0.293	0.064	0.008	0.120	0.022	0.005	1.939
2	1985.1	0.514	0.016	0.003	0.284	0.046	0.006	0.111	0.016	0.002	0.757
2.25	1981.5	0.520	0.015	0.003	0.292	0.040	0.004	0.111	0.013	0.003	1.195
2.75	1974.3	0.461	0.015	0.003	0.319	0.045	0.005	0.136	0.015	0.002	2.357
3	1970.7	0.452	0.019	0.003	0.317	0.051	0.006	0.134	0.015	0.002	2.349
3.25	1966.8	0.457	0.022	0.004	0.310	0.054	0.006	0.128	0.016	0.004	2.393
3.5	1963.0	0.473	0.030	0.004	0.292	0.063	0.009	0.109	0.016	0.005	0.969
3.75	1959.2	0.502	0.033	0.004	0.274	0.064	0.008	0.095	0.016	0.003	0.289
4	1955.3	0.483	0.033	0.004	0.279	0.065	0.009	0.102	0.017	0.007	0.783
4.25	1951.2	0.476	0.033	0.004	0.286	0.069	0.008	0.102	0.016	0.007	1.117
4.5	1947.0	0.518	0.031	0.003	0.268	0.065	0.006	0.093	0.013	0.003	0.454
4.75	1942.9	0.483	0.024	0.003	0.288	0.070	0.005	0.112	0.014	0.002	2.159
5	1938.8	0.489	0.027	0.003	0.280	0.072	0.006	0.106	0.014	0.003	1.475
5.25	1934.2	0.485	0.022	0.003	0.285	0.066	0.005	0.115	0.015	0.004	2.020
5.5	1929.7	0.508	0.020	0.003	0.276	0.063	0.006	0.108	0.014	0.002	0.892
5.75	1925.2	0.491	0.021	0.003	0.285	0.063	0.006	0.113	0.016	0.003	1.528
6.25	1915.8	0.475	0.021	0.003	0.293	0.066	0.006	0.115	0.016	0.004	1.861
6.5	1911.0	0.486	0.021	0.003	0.290	0.063	0.006	0.112	0.016	0.004	1.817
6.75	1906.2	0.487	0.020	0.003	0.295	0.060	0.006	0.112	0.016	0.002	1.659
7	1901.3	0.504	0.021	0.003	0.285	0.059	0.005	0.109	0.013	0.002	1.234
7.25	1896.2	0.491	0.020	0.003	0.289	0.064	0.006	0.110	0.014	0.002	1.447
7.5	1891.1	0.493	0.021	0.003	0.290	0.062	0.005	0.109	0.014	0.002	1.470
7.75	1886.0	0.485	0.023	0.003	0.284	0.066	0.006	0.108	0.015	0.010	1.576
8.25	1875.5	0.484	0.024	0.003	0.295	0.069	0.005	0.106	0.013	0.001	1.643
8.5	1870.1	0.503	0.022	0.003	0.281	0.061	0.006	0.108	0.014	0.002	1.145
8.75	1864.7	0.512	0.021	0.003	0.273	0.064	0.006	0.105	0.014	0.002	0.795
9	1859.3	0.480	0.022	0.003	0.286	0.069	0.006	0.112	0.017	0.004	1.858
10	1836.8	0.482	0.022	0.003	0.291	0.068	0.005	0.112	0.016	0.002	1.913
11	1813.5	0.483	0.020	0.003	0.290	0.065	0.005	0.115	0.017	0.003	2.150
12	1789.5	0.473	0.019	0.002	0.290	0.063	0.005	0.123	0.020	0.004	2.605
13	1764.9	0.466	0.019	0.002	0.293	0.064	0.007	0.123	0.021	0.004	2.368

Cont'd. Depth cm	$\begin{gathered} \text { Year } \\ \mathrm{AD} \\ \hline \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III } \\ \hline \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III c } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II b } \\ \hline \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II c } \\ \hline \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I c } \\ \hline \end{gathered}$	$\begin{gathered} \text { Loomis } \\ { }^{\circ} \mathrm{C} \end{gathered}$
14	1739.9	0.477	0.018	0.003	0.286	0.065	0.007	0.121	0.019	0.004	1.802
16	1689.1	0.436	0.020	0.003	0.296	0.073	0.008	0.130	0.026	0.006	3.058
17	1663.6	0.466	0.020	0.003	0.284	0.071	0.006	0.122	0.022	0.005	2.675
19	1613.2	0.445	0.020	0.003	0.295	0.073	0.006	0.130	0.023	0.004	3.520
20	1588.4	0.451	0.019	0.002	0.298	0.072	0.006	0.126	0.023	0.004	3.395
21	1564.2	0.465	0.019	0.003	0.293	0.065	0.006	0.123	0.021	0.005	2.602
22	1540.6	0.457	0.020	0.002	0.294	0.073	0.006	0.122	0.022	0.003	3.162
24	1495.7	0.458	0.017	0.002	0.298	0.067	0.006	0.125	0.021	0.004	2.769
26	1453.6	0.426	0.017	0.003	0.293	0.074	0.011	0.139	0.031	0.007	2.927
27	1433.5	0.433	0.017	0.003	0.292	0.077	0.010	0.132	0.029	0.007	2.931
28	1414.0	0.443	0.017	0.003	0.288	0.076	0.010	0.129	0.028	0.006	2.470
29	1395.0	0.449	0.016	0.003	0.286	0.070	0.011	0.131	0.028	0.006	1.959
30	1376.4	0.442	0.017	0.003	0.291	0.072	0.010	0.130	0.029	0.007	2.648
31	1358.3	0.439	0.017	0.003	0.296	0.073	0.010	0.128	0.030	0.005	2.832
33	1323.2	0.395	0.017	0.003	0.291	0.083	0.011	0.150	0.040	0.011	4.754
35	1289.4	0.444	0.015	0.003	0.290	0.070	0.011	0.129	0.030	0.008	2.012
36	1272.8	0.437	0.015	0.003	0.279	0.073	0.012	0.137	0.034	0.010	2.347
38	1240.1	0.441	0.016	0.003	0.280	0.071	0.009	0.138	0.033	0.009	3.467
39	1223.9	0.425	0.017	0.003	0.287	0.085	0.010	0.140	0.034	0.000	3.622
40	1207.8	0.449	0.017	0.003	0.283	0.075	0.008	0.132	0.030	0.004	3.325
41	1191.7	0.423	0.017	0.003	0.288	0.080	0.009	0.137	0.036	0.008	4.366
42	1175.5	0.443	0.016	0.003	0.279	0.077	0.009	0.136	0.032	0.006	3.415
43	1159.2	0.435	0.018	0.003	0.284	0.081	0.010	0.131	0.032	0.006	3.108
44	1142.8	0.418	0.019	0.003	0.280	0.091	0.009	0.132	0.039	0.008	4.507
45	1126.3	0.444	0.021	0.003	0.265	0.090	0.009	0.124	0.038	0.006	3.967
46	1109.5	0.441	0.022	0.003	0.269	0.088	0.008	0.127	0.037	0.005	4.278
49	1057.4	0.423	0.020	0.003	0.267	0.093	0.013	0.132	0.038	0.010	3.033
50	1039.3	0.443	0.020	0.003	0.269	0.088	0.010	0.123	0.038	0.006	3.601
51	1020.8	0.416	0.019	0.003	0.290	0.079	0.009	0.144	0.034	0.006	4.290
52	1001.8	0.413	0.019	0.003	0.289	0.082	0.010	0.142	0.036	0.006	4.214
53	982.3	0.426	0.021	0.003	0.273	0.088	0.010	0.134	0.037	0.007	3.944
54	962.2	0.409	0.020	0.003	0.291	0.084	0.009	0.140	0.038	0.007	4.931
55	941.5	0.435	0.021	0.003	0.283	0.078	0.010	0.135	0.030	0.005	2.927
58	875.5	0.413	0.020	0.003	0.294	0.085	0.013	0.136	0.029	0.007	2.093
59	852.4	0.429	0.020	0.003	0.288	0.082	0.012	0.132	0.028	0.006	1.953
61	805.5	0.395	0.021	0.004	0.293	0.092	0.012	0.145	0.033	0.006	3.523
62	782.1	0.427	0.020	0.003	0.285	0.085	0.013	0.131	0.029	0.007	1.850
63	758.9	0.409	0.020	0.003	0.297	0.083	0.012	0.139	0.031	0.007	2.847
64	736.1	0.417	0.019	0.003	0.284	0.085	0.012	0.136	0.036	0.008	3.267
65	713.7	0.406	0.019	0.003	0.306	0.081	0.009	0.138	0.031	0.006	3.959
66	691.8	0.407	0.019	0.003	0.297	0.080	0.011	0.141	0.033	0.008	3.434

$\left.\begin{array}{cccccccccccccc}\hline \begin{array}{c}\text { Cont'd. } \\ \text { Depth } \\ \text { cm }\end{array} & \text { Year } & \text { GDGT } & \text { GIII } & \text { GDGT } & \text { GII b } & \text { GDGT } & \text { GDI c } & \text { GDT } & \text { GDGT }\end{array} \begin{array}{c}\text { Loomis } \\ { }^{\circ} \mathrm{C}\end{array}\right]$

Cont'd. Depth cm	$\begin{gathered} \text { Year } \\ \text { AD } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { III c } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { II b } \end{gathered}$	$\begin{aligned} & \text { GDGT } \\ & \text { II c } \end{aligned}$	$\begin{gathered} \text { GDGT } \\ \text { I } \\ \hline \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I b } \end{gathered}$	$\begin{gathered} \text { GDGT } \\ \text { I c } \end{gathered}$	Loomis ${ }^{\circ} \mathrm{C}$
111	1.6	0.419	0.017	0.003	0.292	0.070	0.010	0.147	0.036	0.007	3.774
112	-12.4	0.405	0.017	0.003	0.294	0.079	0.010	0.152	0.034	0.006	4.366
114	-40.2	0.438	0.023	0.003	0.305	0.011	0.011	0.157	0.041	0.010	2.946
115	-54.1	0.430	0.020	0.003	0.293	0.072	0.009	0.139	0.028	0.006	3.094
116	-68.0	0.422	0.020	0.004	0.299	0.067	0.010	0.144	0.026	0.008	2.700
117	-82.0	0.434	0.020	0.003	0.295	0.065	0.010	0.144	0.024	0.005	2.330
118	-96.2	0.422	0.014	0.003	0.306	0.060	0.010	0.151	0.027	0.007	2.596
119	-110.5	0.429	0.015	0.003	0.310	0.060	0.008	0.147	0.022	0.005	2.809
120	-125.1	0.444	0.015	0.003	0.288	0.059	0.009	0.153	0.023	0.006	2.569
121	-140.0	0.415	0.020	0.004	0.289	0.074	0.009	0.148	0.035	0.006	4.224
122	-155.1	0.428	0.016	0.003	0.295	0.060	0.010	0.156	0.026	0.006	2.675
123	-170.7	0.423	0.016	0.004	0.289	0.067	0.010	0.156	0.027	0.007	3.186
124	-186.6	0.449	0.017	0.003	0.290	0.061	0.009	0.144	0.022	0.005	2.226
125	-203.0	0.438	0.016	0.003	0.288	0.062	0.009	0.150	0.026	0.008	2.635
126	-219.9	0.423	0.019	0.003	0.287	0.070	0.010	0.150	0.030	0.008	3.370
127	-237.4	0.420	0.019	0.003	0.297	0.070	0.009	0.147	0.029	0.005	3.631
128	-255.5	0.415	0.019	0.003	0.298	0.069	0.010	0.151	0.029	0.005	3.381
129	-274.0	0.405	0.020	0.003	0.294	0.072	0.009	0.156	0.034	0.007	4.568
130	-293.1	0.403	0.018	0.003	0.299	0.072	0.009	0.155	0.033	0.007	4.413
131	-312.7	0.412	0.018	0.003	0.303	0.070	0.009	0.150	0.031	0.005	3.935

D. 9 Supplemental Comparison of Calibrations

The Tierney et al. (2010) calibration is based on redundancy analysis on a subset of 36 non-saline lakes out of 46 east African lakes across a 3730 m elevation gradient. Their final equation is based on a three-component regression consisting of three major branched GDGTs. The Loomis et al. (2012) calibration is based on an expanded dataset totaling 111 east African lakes including the original lakes. Loomis et al use a stepwise forward selection model that employs four combined GDGT variables that explain the most variance in their calibration set. Loomis et al (2012) compare their calibration with other published calibrations. Their reconstruction does a better job of characterizing cooler temperatures and removing the influence of Lake pH . They also test the performance of their calibration by applying the calibration to a 48-kyr-temperature reconstruction and comparing it with other calibrations and published regional temperature reconstructions.

Tierney et al. (2010)
$M A A T=50.47-74.18 \times f(\boldsymbol{I I I})-31.60 \times f(\boldsymbol{I I})-34.69 \times f(\boldsymbol{I})$

Loomis et al. (2012)
$M A A T=22.77-33.58 \times f($ III $)-12.88 \times f(\boldsymbol{I I})-418.53 \times($ IIc $)+86.43$
$\times(I b)$

The Loomis calibration produces the lowest error and explains the most variance of their lakes of the proposed calibrations $\left(R^{2}=0.94, \operatorname{RMSE}=1.9^{\circ} \mathrm{C}\right)$. Recent work has
also shown the Loomis calibration applies to GDGT distributions in artic lakes (Shanahan 2013). Shanahan et al show that GDGTs calibrated with the Loomis method are representative of summer or growing season temperatures in 59 lakes across Baffin Island. The GDGTs are most representative of summer temperatures, during which time there is light and the lakes are somewhat ice free.

Figure D.S11: Comparison of the Loomis et al. (2012) GDGT temperature calibration versus the Tierney et al. (2010) calibration.

APPENDIX E: PERMISSIONS

APPENDIX A: SECOND CENTURY MEGADROUGHT IN THE RIO GRANDE HEADWATERS, COLORADO: HOW UNUSUAL WAS MEDIEVAL DROUGHT? Reprinted with permission from John Wiley and Sons.

Routson, C. C., C. A. Woodhouse, and J. T. Overpeck, 2011: Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought? Geophysical Research Letters, 38 (22), L22 703, doi:10.1029/2011GL050015.

Rightslink Printable License 10/31/13 3:32 PM

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Oct 31, 2013
\qquad
\qquad

This is a License Agreement between Cody C Routson ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

License Number	3259580500434
License date	Oct 31, 2013
Order Content Publisher	John Wiley and Sons
Order Content Publication	Geophysical Research Letters Second century megadrought in the Rio Grande headwaters, Order Content Title
	Colorado: How unusual was medieval drought?
Licensed copyright line	Copyright 2011 by the American Geophysical Union.
Order Content	Cody C. Routson, Connie A. Woodhouse, Jonathan
Author	T. Overpeck
Order Content Date	Nov 19, 2011
Start page	n/a
End page	n/a
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Total	$\mathbf{0 . 0 0}$ USD

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley \& Sons, Inc. or one of its group companies (each a "Wiley Company") or a society for whom a Wiley Company has exclusive publishing rights in relation to a particular journal (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

1. The materials you have requested permission to reproduce (the "Materials") are protected by copyright.
2. You are hereby granted a personal, non-exclusive, non-sublicensable, nontransferable, worldwide, limited license to reproduce the Materials for the purpose specified in the licensing process. This license is for a one-time use only with a maximum distribution equal to the number that you identified in the licensing process. Any form of republication granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before may be distributed thereafter). The Materials shall not be used in any other manner or for any other purpose. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Material. Any third party material is expressly excluded from this permission.
3. With respect to the Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Materials without the prior permission of the respective copyright owner. You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Materials, or any of the rights granted to you hereunder to any other person.
4. The Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley \& Sons Inc or one of its related companies (WILEY) or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Materials or any of the intellectual property rights
therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto.
5. NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
6. WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
7. You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
8. IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
9. Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
10. The failure of either party to enforce any term or condition of this Agreement
shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
11. This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
12. Any fee required for this permission shall be non-refundable after thirty (30) days from receipt
13. These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
14. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
15. WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
16. This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
17. This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

Wiley Open Access Terms and Conditions

Wiley publishes Open Access articles in both its Wiley Open Access Journals program [http://www.wileyopenaccess.com/view/index.html] and as Online Open articles in its subscription journals. The majority of Wiley Open Access Journals have
adopted the Creative Commons Attribution License (CC BY) which permits the unrestricted use, distribution, reproduction, adaptation and commercial exploitation of the article in any medium. No permission is required to use the article in this way provided that the article is properly cited and other license terms are observed. A small number of Wiley Open Access journals have retained the Creative Commons Attribution Non Commercial License (CC BY-NC), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Online Open articles - Authors selecting Online Open are, unless particular exceptions apply, offered a choice of Creative Commons licenses. They may therefore select from the CC BY, the CC BY-NC and the Attribution-NoDerivatives (CC BY-NC-ND). The CC BY- NC-ND is more restrictive than the CC BY-NC as it does not permit adaptations or modifications without rights holder consent.

Wiley Open Access articles are protected by copyright and are posted to repositories and websites in accordance with the terms of the applicable Creative Commons license referenced on the article. At the time of deposit, Wiley Open Access articles include all changes made during peer review, copyediting, and publishing. Repositories and websites that host the article are responsible for incorporating any publisher-supplied amendments or retractions issued subsequently. Wiley Open Access articles are also available without charge on Wiley's publishing platform, Wiley Online Library or any successor sites.

Conditions applicable to all Wiley Open Access articles:
The authors' moral rights must not be compromised. These rights include the right of "paternity" (also known as "attribution" - the right for the author to be identified as such) and "integrity" (the right for the author not to have the work altered in such a way that the author's reputation or integrity may be damaged).

Where content in the article is identified as belonging to a third party, it is the obligation of the user to ensure that any reuse complies with the copyright policies of the owner of that content.

If article content is copied, downloaded or otherwise reused for research and other purposes as permitted, a link to the appropriate bibliographic citation (authors, journal, article title, volume, issue, page numbers, DOI and the link to the definitive published version on Wiley Online Library) should be maintained. Copyright notices and disclaimers must not be deleted.

Creative Commons licenses are copyright licenses and do not confer any other rights, including but not limited to trademark or patent rights.

Any translations, for which a prior translation agreement with Wiley has not been agreed, must prominently display the statement: "This is an unofficial translation of an article that appeared in a Wiley publication. The publisher has not endorsed this translation."

Conditions applicable to non-commercial licenses (CC BY-NC and CC BY-NCND)

For non-commercial and non-promotional purposes individual non-commercial users may access, download, copy, display and redistribute to colleagues Wiley Open Access articles. In addition, articles adopting the CC BY-NC may be adapted, translated, and text- and data-mined subject to the conditions above.

Use by commercial 'for-profit" organizations

Use of non-commercial Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Commercial purposes include:

Copying or downloading of articles, or linking to such articles for further redistribution, sale or licensing;

Copying, downloading or posting by a site or service that incorporates advertising with such content;

The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee (for example, a compilation produced for marketing purposes, inclusion in a sales pack)

Use of article content (other than normal quotations with appropriate citation) by forprofit organizations for promotional purposes

Linking to article content in e-mails redistributed for promotional, marketing or educational purposes;

Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation such as marketing products

Print reprints of Wiley Open Access articles can be purchased from:
corporatesales@wiley.com
The modification or adaptation for any purpose of an article referencing the CC BY-NC-ND License requires consent which can be requested from RightsLink@wiley.com .

Other Terms and Conditions:
BY CLICKING ON THE "I AGREE..." BOX, YOU ACKNOWLEDGE THAT YOU HAVE READ AND FULLY UNDERSTAND EACH OF THE SECTIONS OF AND PROVISIONS SET FORTH IN THIS AGREEMENT AND THAT YOU ARE IN AGREEMENT WITH AND ARE WILLING TO ACCEPT ALL OF YOUR

OBLIGATIONS AS SET FORTH IN THIS AGREEMENT.
v1.8
If you would like to pay for this license now, please remit this license along with your payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should be in the form of a check or money order referencing your account number and this invoice number RLNK501148955.

Once you receive your invoice for this order, you may pay your invoice by credit card. Please follow instructions provided at that time.

Make Payment To: Copyright Clearance Center Dept 001 P.O. Box 843006 Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer Support: customercare @ copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777.

Gratis licenses (referencing $\$ 0$ in the Total field) are free. Please retain this printable license for your reference. No payment is required.

[^0]: ${ }^{\text {a }}$ Drought initiation and termination are defined as when the smoothed series drops below or rises above the long-term mean. The ten most persistent droughts in each record are shown from top to bottom. The $2^{\text {nd }}$ century megadrought is highlighted in grey.
 ${ }^{\mathrm{b}}$ PDSI points $103,104,118,119,132,133$ are averaged to represent four corners region

